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Abstract: Leaf color is a key ornamental characteristic of cultivated caladium (Caladium × hortulanum
Birdsey), a plant with diverse leaf colors. However, the genetic improvement of leaf color in cultivated
caladium is hindered by the limited understanding of leaf color diversity and regulation. In this study,
the chlorophyll and anthocyanin content of 137 germplasm resources were measured to explore the
diversity and mechanism of leaf color formation in cultivated caladium. Association analysis of
EST-SSR markers and pigment traits was performed, as well as metabolomics and transcriptomics
analysis of a red leaf variety and its white leaf mutant. We found significant differences in chlorophyll
and anthocyanin content among different color groups of cultivated caladium, and identified three,
eight, three, and seven EST-SSR loci significantly associated with chlorophyll-a, chlorophyll-b, total
chlorophyll and total anthocyanins content, respectively. The results further revealed that the white
leaf mutation was caused by the down-regulation of various anthocyanins (such as cyanidin-3-O-
rutinoside, quercetin-3-O-glucoside, and others). This change in concentration is likely due to the
down-regulation of key genes (four PAL, four CHS, six CHI, eight F3H, one F3′H, one FLS, one
LAR, four DFR, one ANS and two UFGT) involved in anthocyanin biosynthesis. Concurrently, the
up-regulation of certain genes (one FLS and one LAR) that divert the anthocyanin precursors to other
pathways was noted. Additionally, a significant change in the expression of numerous transcription
factors (12 NAC, 12 bZIP, 23 ERF, 23 bHLH, 19 MYB_related, etc.) was observed. These results
revealed the genetic and metabolic basis of leaf color diversity and change in cultivated caladium,
and provided valuable information for molecular marker-assisted selection and breeding of leaf color
in this ornamental plant.
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1. Introduction

Leaf color, a fundamental characteristic of plants, significantly contributes to the value
of ornamental plants. As aesthetic preferences shift towards ornamental plants, varieties
with a rich diversity of leaf colors are becoming increasingly popular and play a pivotal
role in landscape greening. The types and concentrations of pigments in the leaves, such as
chlorophyll, carotenoids, and anthocyanins, mainly determine the leaf color variation in
ornamental plants [1]. Chlorophyll is the vital pigment for photosynthesis and the main
factor influencing the greenness of plant leaves [2]. Anthocyanins are a group of water-
soluble pigments, mostly located in vacuoles, that can give various colors from orange to
red to blue to plant organs [3]. Exploring the molecular mechanism of leaf color diversity
in ornamental plants, elucidating the different pigment metabolic pathways and regulatory
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networks, and providing a theoretical foundation and technical support for selecting and
breeding superior varieties have significant theoretical and practical implications.

Typically, a metabolic disorder in anthocyanin results in lighter leaf color in plants.
In Acer tutcheri Duthie, the fading of the spring red leaf is directly caused by a decrease in
the anthocyanin/chlorophyll ratio, a result of the combined effect of reduced anthocyanin
synthesis and increased anthocyanin degradation [4]. In Paeonia lactiflora Pall, researchers
compared the anatomical, physiological, and molecular characteristics of leaves at the
purple, purple-green, and green stages. They found that changes in surface pigment were
the primary determinant of the leaf color transition from purple to green. This change was
associated with the altered expression of genes involved in the synthesis and degradation
of both anthocyanin and chlorophyll [5]. In white ornamental cabbage (Brassica oleracea var.
acephala de Candolle), the white color of the inner leaves is attributed to an extremely low
or absent level of anthocyanin biosynthesis, coupled with high chlorophyll degradation
and minimal chlorophyll biosynthesis [6]. In Phoebe bournei, Wang et al. [7] discovered that
the anthocyanin content gradually decreased as the leaves developed. They suggested that
the anthocyanin cyanidin-3-O-glucoside and the PbF3′H, PbbHLH1, and PbbHLH2 genes are
likely to be responsible for the red leaf color. While a disorder in the anthocyanin metabolic
pathway is a crucial mechanism for inducing leaf color mutation, research on the formation
mechanism of red to white leaf mutation remains scarce.

Two species, Caladium bicolor (Ait.)Vent. and Caladium schomburgkii Schott., appear
to be the sources of modern commercial caladium cultivars [8]. They have various leaf
shapes, colors, and patterns, making them a suitable choice for potted and garden plants [9].
Previous studies have shown that single genes control the leaf shape, main vein color, leaf
spot, and leaf background color of cultivated caladium [8,10–13]. The leaf color, the most
attractive feature of cultivated caladium, is a key factor for plant selection. Caladium varieties
display different leaf colors, such as white, red, pink, yellow, purple, and purple-black [14].
However, the genetic mechanism of leaf color diversity in cultivated caladium is poorly
understood [15]. The breeding of cultivated caladium mainly depends on sexual hybridization
between varieties. However, this method faces significant genetic bottlenecks due to the
difficulties of interspecific hybridization and high genetic heterogeneity [8,13,16,17]. To
overcome this challenge, recent studies have tried to use tissue culture to induce somatic
mutation or ploidy change to create new genetic variation [18,19]. These studies have revealed
that somatic mutation can result in new traits such as cultivated caladium chromosome
amplification or deletion, leaf shape, and color change. However, research on the pigment
diversity and molecular mechanism of leaf color change in cultivated caladium is limited,
hampering further improvement of cultivated caladium leaf color.

In a previous study, 144 cultivated caladium germplasms were collected and divided
into four color groups using colorimeter measurement and multivariate statistical analysis.
These groups were genotyped with SSR markers to identify molecular markers significantly
associated with colorimeter parameters [14]. However, the pigment composition of these
four color groups remains unclear. Further analysis of the pigment differences in the
leaves could enhance the understanding of the formation of cultivated caladium leaf
color. In this study, the chlorophyll and anthocyanin of these four color groups were
analyzed and combined with SSR markers to identify molecular markers associated with
pigments. This will lay a foundation for molecular marker-assisted selective breeding
of leaf color. Additionally, the red leaf ‘Lieyanxiongxin’ and its white leaf mutant were
screened (Figure S1), and the cause of red to white change was analyzed by metabolomics
and transcriptomics. This will provide new insights into the formation mechanism of
cultivated caladium leaf color change.

2. Results
2.1. Diversity Analysis of Chlorophyll and Anthocyanin of Cultivated Caladium Germplasms

Figure 1A–D illustrates the normal distribution of chlorophyll a, chlorophyll b, total
chlorophyll, and total anthocyanin. These four numerical traits exhibit a continuous distribution,
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with coefficients of variation ranging from 85.88% to 124.90% (Tables S1 and S2). Among
them, total anthocyanin content has the highest coefficient of variation (124.90%), followed
by chlorophyll b content (118.49%) and chlorophyll a content (93.96%). The total chlorophyll
content has the smallest coefficient of variation (85.88%). The content of chlorophyll a ranges
from 0.0053 µg/mL to 0.9469 µg/mL, chlorophyll b varies from 0.0129 µg/mL to 0.7481 µg/mL,
total chlorophyll ranges from 0.0372 µg/mL to 1.6950 µg/mL, and total anthocyanin ranges
from 0.0037 U/g to 2.867 U/g. Correlation analysis reveals that chlorophyll a, chlorophyll
b, and total chlorophyll content are significantly positively correlated with each other, but
not significantly correlated with the five parameters measured by the colorimeter and total
anthocyanin content (Figure S2). Total anthocyanin content is significantly negatively correlated
with L* and h◦, and significantly positively correlated with a* and C (Figure S2).
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Figure 1. Diversity analysis of chlorophyll and anthocyanin in cultivated caladium germplasm re-
sources. (A) Chlorophyll-a content. (B) Chlorophyll-b content. (C) Total chlorophyll content. (D) Total
anthocyanins content.

Figure 2 presents a comparison of chlorophyll and anthocyanin in cultivated caladium
leaves of different color groups. For chlorophyll a, chlorophyll b, and total chlorophyll
content, the green group exhibits the highest content, with mean values of 0.40 µg/mL,
0.25 µg/mL, and 0.65 µg/mL, respectively (Figure 2A–C; Table S3). The palegreen and
lightpink groups rank second, while the red group has the lowest content. For total
anthocyanin content, the red group has the highest mean content (0.93 U/g), followed by
the lightpink group (0.29 U/g), with the green (0.15 U/g) and palegreen groups (0.09 U/g)
having low content (Figure 2D; Table S3). Multiple comparison analysis reveals that the
green group has significantly higher chlorophyll a, chlorophyll b, and total chlorophyll
content than the other color groups, while the red group has significantly higher total
anthocyanin content than the other three color groups.
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of different color groups. (A) Chlorophyll-a content. (B) Chlorophyll-b content. (C) Total chlorophyll
content. (D) Total anthocyanins content. Groups exhibiting significant differences were denoted by
distinct letters (a, b) at a significance level of p < 0.05.

2.2. Association Analysis of EST-SSR with Chlorophyll and Anthocyanin Content

Based on the SSR genotyping results from our previous study, an association analysis
of chlorophyll a, chlorophyll b, total chlorophyll, and total anthocyanin content was con-
ducted. The analysis revealed that at the p < 0.05 level, three, eight, three and seven loci
were significantly associated with chlorophyll a, chlorophyll b, total chlorophyll, and total
anthocyanin content, respectively, explaining 5.12% to 11.44% of the variation (Figure 3A–D;
Table S4). At the p < 0.01 level, one locus each was identified to be highly significantly
associated with chlorophyll b, total chlorophyll, and total anthocyanin content. Notably,
CAL15 was highly significantly associated with both chlorophyll b and total chlorophyll,
explaining 11.44% and 10.95% of the variation, respectively. In the CAL15 marker, individ-
uals with the 256:256 genotype had mean chlorophyll b and total chlorophyll content of
2.03 µg/mL and 2.45 µg/mL, respectively, significantly higher than those with the 256:259
genotype (Figure 3E,F). Additionally, CAL162 was highly significantly associated with total
anthocyanin content, explaining 8.48% of the variation. In the CAL162 marker, the geno-
type with the 214 fragment had a mean total anthocyanin content of 2.34 U/g, significantly
higher than the mean total anthocyanin content in other genotypes (Figure 3G).
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Figure 3. Association analysis of chlorophyll and anthocyanin based on 26 EST-SSRs. (A) QQ plot of
chlorophyll-a content. (B) QQ plot of chlorophyll-b content. (C) QQ plot of total chlorophyll content.
(D) QQ plot of total anthocyanins content. (E) Box chart analysis of chlorophyll-b content at CAL15
locus. (F) Box chart analysis of total chlorophyll content at CAL15 locus. (G) Box chart analysis of
total anthocyanins content at CAL162 locus. Values above the blue dashed line indicate p < 0.05, and
values above the red dashed line indicate p < 0.01. Groups exhibiting significant differences were
denoted by distinct letters (a, b) at a significance level of p < 0.05. The “**” in (G) indicates p < 0.01.

2.3. Anthocyanin Metabolomics Analysis of ‘Lieyanxiongxin’ and Its White Leaf Mutant

‘Liyanxiongxin’ (HH) is a caladium cultivar with red leaves. Interestingly, we found
a white-leaf mutant (HB) of HH during its mass production. Except for the leaf color, HH
and HB are almost identical in other traits (Figure 4A). The anthocyanin analysis of ‘Lieyanx-
iongxin’ and its white leaf mutant revealed that the total anthocyanin content of ‘Lieyanx-
iongxin’ leaves was 0.80 U/g, significantly higher than that of the white leaf mutant HB
(0.05 U/g) (Figure 4B). To identify the anthocyanin types, we performed high performance
liquid chromatography-mass spectrometry (HPLC-MS) analysis. Figures S3 and S4 show
the total ion chromatogram and extracted ion chromatogram, respectively. The anthocyanin
metabolomics analysis identified 54 anthocyanin compounds, including 11 pelargonidins,
nine cyanidins, seven delphinidins, six flavonoids, six petunidins, five malvidins, five pe-
onidins, and four procyanidins. Among these, HH had 14 unique metabolites, including
Cyanidin-3-O-xyloside, cyanidin-3-O-arabinoside, cyanidin-3,5-O-diglucoside, delphinidin-3-
O-sophoroside, delphinidin-3-O-sambubioside, delphinidin-3-O-arabinoside, malvidin-3-O-
(6-O-malonyl-beta-D-glucoside), pelargonidin, pelargonidin-3-O-arabinoside, pelargonidin-3-
O-(6-O-p-coumaroyl)-glucoside, pelargonidin-3-O-rutinoside-5-O-glucoside, peonidin-3-O-
arabinoside, peonidin-3,5-O-diglucoside, and petunidin-3-O-(6-O-p-coumaroyl)-glucoside.
In contrast, HB had only three unique metabolites, including cyanidin-3-O-galactoside,
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delphinidin-3-O-rutinoside, and pelargonidin-3-O-(6-O-malonyl-beta-D-glucoside), and
they shared 37 metabolites (Figure 4C). Additionally, there were 14 unique anthocyanins
in HH, but their concentrations were all below 0.45 µg/g, with pelargonidin having the
highest concentration.
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The heatmap results indicated that most of the anthocyanin content in HH was higher
than that in HB (Figure 4D). Orthogonal projections to latent structures discriminant analysis
(OPLS-DA) results demonstrated a significant difference in the anthocyanin content between
HH and HB leaves (Figure 4E). Compared with HH, 36 anthocyanins in the mutant HB were
significantly down-regulated (VIP > 1, Log2FC < −1) (Figure 4F). Moreover, nine anthocyanins
had |Log2FC| greater than 5, namely cyanidin-3-O-rutinoside, cyanidin-3-O-sophoroside,
cyanidin-3-O-glucoside, cyanidin-3-O-sambubioside, pelargonidin-3-O-glucoside, pelargonidin-
3-O-rutinoside, peonidin-3-O-glucoside, rutin and quercetin-3-O-glucoside. Their concentrations
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in HH leaves were 126.61 µg/g, 6.71 µg/g, 46.52 µg/g, 7.92 µg/g, 6.20 µg/g, 15.22 µg/g,
0.12 µg/g, 486.90 µg/g, and 187.95 µg/g, respectively. These compounds may be responsible
for the red color of HH leaves.

2.4. Transcriptome Analysis of ‘Lieyanxiongxin’ and Its White Leaf Mutant

Following the filtering of raw sequencing data, a total of 487,622,460 clean reads
(73.13 Gb) from the transcriptome were obtained. The Q20 value of the six samples exceeded
97.85%, and the Q30 value was greater than 93.00%, with a GC percentage ranging from 49.08
to 50.64% (Table S5). We assembled a total of 176,869 unigenes (mean length 1381.22 bp)
representing 303,585 transcripts (mean length 1118.72 bp) (Table S6). The highest number of
transcripts fell within the 200 to 300 bp range, accounting for 19.33%, while the lowest number
of transcripts fell within the 1900 to 2000 bp range (1.38%). The highest number of unigenes
fell within the 300 to 400 bp range, accounting for 10.69% (Table S6).

We annotated a total of 176,869 unigenes against the KEGG, NR, SwissProt, TrEMBL,
KOG, GO, and Pfam databases (Table S7). Of these unigenes, 94,815 (53.61%) were annotated
in at least one database. The number of annotated unigenes was highest in TrEMBL (92,695)
and lowest in Pfam (54,796). Further BLAST searches against other databases showed that
67,138, 92,388, 58,515, 53,732, and 75,370 unigenes had matches in KEGG, Nr, SwissProt,
KOG, and GO databases, respectively. Principal component analysis (PCA) and correlation
analysis showed that the correlation between different duplicate samples was high, while the
correlation between different processed samples was low (Figures 5A and S5).
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The differential expression genes (DEGs) were identified by DESeq based on the Frag-
ments Per Kilobase of exon model per million mapped fragments (FPKM). DEGs with |log2
(fold change)| ≥ 1 and FDR < 0.05 were considered significantly different. Compared with
the parent HH, there were 5240 genes significantly up-regulated and 5499 genes significantly
down-regulated in HB (Figure 5B). GO enrichment analysis results showed that the most
significant top two pathways were flavonoid metabolic process and flavonoid biosynthetic
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process (Figure 5C). KEGG enrichment analysis showed that flavonoid biosynthesis was the
most significantly enriched pathway (Figure 5D).

2.5. Analysis of Anthocyanin Biosynthesis Pathway and Identification of Transcription Factors

Metabolome data analysis showed that anthocyanin-related metabolites increased
significantly. To further identify the cause of the loss of anthocyanin in HB leaves, we
pinpointed 61 DEGs related to anthocyanin biosynthesis among the differentially expressed
genes (Figure 6; Table S8). Anthocyanins belong to flavonoids, which share a common
synthesis main chain with other flavonoids upstream and form various anthocyanins by
branch synthesis reactions from dihydrokaempferol. Compared with the control HH, most
of the PAL, CHS, CHI, F3H, F3′H, DFR, ANS, UFGT, and ANR genes that were positively
correlated with anthocyanin accumulation in HB leaves were significantly down-regulated.
At the same time, the LAR gene that promotes the synthesis of other substances from the
anthocyanin precursor substances leucocyanidin, leucopelargonidin, and leucodelphinidin,
respectively, was significantly up-regulated, and the FLS gene that catalyzes the formation
of kaempferol from dihydrokaempferol was also significantly up-regulated. In addition,
we also identified differentially expressed transcription factors.
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Figure 6. Differential expression analysis of anthocyanin biosynthesis pathway genes in ‘Lieyanxiongxin’
(HH) and its white-leaf mutant (HB). Red gene family names indicate that up-regulated genes are
predominant. Blue gene family names indicate that down-regulated genes are dominant. Black gene
family names indicate that the number of up-regulated and down-regulated genes are comparable.
PAL: phenylalanine ammonia-lyase; C4H: cinnamate 4-hydroxylase; 4CL: 4-coumarate-CoA ligase;
CHS: chalcone synthase; CHI: chalcone isomerase; F3H: flavonone 3-hydroxylase; F3′H: flavonoid
3′-hydroxylase; FLS: flavonol synthase; F3′5′H: flavonoid 3′5′-hydroxylase; DFR: dihydroflavonol
reductase; LAR: leucoanthocyanidin reductase; ANS: anthocyanidin synthase; UFGT: UDP-glycose
flavonoid glycosyltransferase. ANR: anthocyanidin reductase.
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In the transcriptome, we identified a total of 2523 transcription factors (Table S9). The
ten most abundant families of these transcription factors, listed in order of their prevalence,
were bHLH, C3H, ERF, FAR1, bZIP, MYB-related, C2H2, WRKY, G2-like, and NAC (Figure S6).
Compared to the control parent HH, we identified 246 differentially expressed transcription
factors in HB leaves. Among these, 147 transcription factors were up-regulated, including
12 NAC, 12 bZIP, 11 bHLH, 11 ERF, 10 MYB-related, seven WRKY, seven NF-YB, seven HSF,
and 70 other transcription factors (Figure 7A; Table S10). Conversely, 99 transcription factors
were down-regulated, including 14 FAR1, 12 ERF, 12 bHLH, nine MYB-related, six G2-like, five
B3, five NAC, and 36 other transcription factors (Figure 7B; Table S11). The high number of
up-regulated and down-regulated genes in the bHLH, ERF, and MYB_related families suggests
that they may play a certain role in the formation of the HB white leaf trait. Figure 7C,D
illustrate the gene expression heatmap of the top five gene families, ranked by the number of
up-regulated and down-regulated transcription factors.
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up-regulated transcription factor families. (D) Heatmap of gene expression of top five down-regulated
transcription factor families.

2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis

Based on DEGs, 13 key genes were selected for qRT-PCR validation (Table S11). Nine
of these genes were related to anthocyanin biosynthesis, including PAL (Cluster-65039.4),
CHS (Cluster-86566.3), CHI (Cluster-68142.4), F3H (Cluster-86892.4), F3′H (Cluster-24600.0),
FLS (Cluster-68129.0), DFR (Cluster-68464.4), ANS (Cluster-75878.1), and UFGT (Cluster-
32190.0). The other four genes were transcription factors, namely ERF (Cluster-77844.0),
NAC (Cluster-23501.3), WRKY (Cluster-86826.2), and bHLH (Cluster-51028.0). The qRT-PCR
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results agreed with the FPKM results, confirming the reliability and reproducibility of the
RNA-seq data (Figure 8).
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3. Discussion

In our previous study, we classified 144 cultivated caladium germplasm resources into
four color groups based on colorimeter measurement and multivariate statistical analy-
sis [14]. In this study, we further analyzed the differences in chlorophyll and anthocyanin
across different color groups, finding significant pigment differences among the groups.
Correlation analysis revealed that total anthocyanin content was significantly positively
correlated with a* and C, and significantly negatively correlated with L* and h◦. This
aligns with previous studies on flower color in Gerbera hybrida Lynch [20], potted multiflora
chrysanthemum (Chrysanthemum morifolium Ramat.) [21], Gloriosa superba Linnaeus [22],
and other plants, where the a* value was significantly positively correlated with antho-
cyanin content. This suggests that colorimeter measurement can be used to predict the
anthocyanin content of cultivated caladium leaves, providing an efficient method for rapid
detection of cultivated caladium leaf anthocyanin.

Association analysis is a crucial method for mining molecular markers associated
with traits. In this study, we associated three, eight, three, and seven loci with chlorophyll
a, chlorophyll b, total chlorophyll, and total anthocyanin content, respectively, using the
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MLM model. Previous studies have successfully identified loci significantly associated
with chlorophyll or anthocyanin in the leaves or petals of various plants, such as tea plant
(Camellia spp. Kamel) [23], peanut (Arachis hypogaea L.) [24], rose (Rosa rugosa Thunb.) [25],
Gerbera hybrida [20], rice (Oryza sativa L.) [26–28], and Perilla frutescens (L.) Britt. [29], through
association analysis. Chlorophyll and anthocyanin content are both determined by multiple
genes [30]. Therefore, multiple loci associated with chlorophyll or anthocyanin content can
be mined in both this study and previous studies. Moreover, when performing association
analysis of these complex quantitative traits in hybrid plants, the phenotypic explanatory
rate of the associated loci is often relatively low [20,31]. In this study, the significant loci
identified explained 5.12% to 11.44% of the phenotypic variation, respectively, and were
significantly correlated with chlorophyll a, chlorophyll b, total chlorophyll, and total antho-
cyanin content. Due to the lack of relevant whole genome sequencing information, these
significantly associated EST-SSR markers can provide reference for the genetic variation
and molecular marker-assisted selective breeding of cultivated caladium leaf pigment.

Anthocyanin metabolic disorder is a primary factor contributing to the lighter leaf
color in plants. In this study, we initially identified 36 significantly down-regulated antho-
cyanin metabolites through metabolomics analysis. Subsequently, transcriptomics revealed
several key genes of anthocyanin biosynthesis that were significantly down-regulated.
Concurrently, the LAR and FLS genes, which promote the synthesis of other substances
from anthocyanin precursor substances, were significantly up-regulated. This combina-
tion of factors led to the white leaf mutation of ‘Lieyanxiongxin’. Previous studies have
demonstrated that altering the structure or expression of CHS, the key enzyme gene in
the first step of flavonoid biosynthesis, can result in white flowers in petunia [32,33]. Simi-
larly, inhibiting the expression of CHS and ANS can produce white gentian flowers [34].
Post-transcriptional gene silencing of CHS is also a key factor in the formation of white
petals in Dahlia variabilis Desh. [35]. In Nelumbo nucifera Gaertn., the low expression of
the UFGT gene is a significant factor in the appearance of white petals [36]. In our study,
several down-regulated genes in the flavonoid biosynthesis pathway were identified in
HB, including four CHS, one ANS, and two UFGT, as well as several PAL, CHI, F3H, F3′H,
and DFR. That is, except for C4H, other synthesis enzyme genes that are conducive to
anthocyanin accumulation were significantly down-regulated, resulting in the loss of red
color in the leaves.

Transcription factors such as MYB have been proven to regulate anthocyanin biosyn-
thesis in plant organs [37,38]. Additionally, bHLH, NAC, bZIP, ERF, and other transcription
factors can either positively or negatively regulate anthocyanin biosynthesis [39,40]. Inter-
estingly, some transcription factors can even regulate the appearance of the white phenotype
in plant tissues. For example, PbMYB26 can degrade anthocyanin in the petals, leaves,
and pedicels of pear by activating the expression of PbLAC4, and even produce a white
phenotype [41]. In tobacco, CRISPR/Cas9-induced mutation in the RcMYB3 gene of Rubus
chingii Hu. leads to the appearance of white petals [42]. In Syringa oblata Lindl., ERF plays
an important role in the color transition period (from purple to light purple near white),
while the MBW complex participates in the whole process of color change [43]. This study
detected various transcription factors (TFs) that were differentially expressed between the
red (HH) and white (HB) leaves of cultivated caladium. Among the up-regulated TFs,
12 NAC, 12 bZIP, 11 bHLH, 11 ERF, 10 MYB-related, and others were found. Among the
down-regulated TFs, 14 FAR1, 12 ERF, 12 bHLH, nine MYB-related, six G2-like, and others
were found. These differentially expressed TFs may play important roles in regulating
anthocyanin accumulation in caladium leaves, and their functions need to be validated
by further molecular biology experiments. Interestingly, besides the commonly reported
TFs, 14 FAR1 that were significantly down-regulated in the white leaf mutant were also
detected. FAR1 transcription factors play an important role in light signal transduction
and plant growth and development [44], but there is no report on their regulation of antho-
cyanin biosynthesis, which suggests that the abnormality of the light signal pathway in
the white leaf mutant HB may lead to the obstruction of anthocyanin synthesis. A possible
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metabolic and molecular regulatory schematic diagram of the loss of red color in the leaves
of ‘Lieyanxiongxin’ white-leaf mutant is shown in Figure 9. The regulatory mechanism of
these TFs on anthocyanin synthesis in cultivated caladium leaves remains to be further
clarified. Moreover, it is worth exploring whether this white leaf mutation mechanism has
a similar effect in other cultivars.
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Figure 9. Schematic diagram of the potential metabolic and molecular regulation of the loss of red
color in the leaves of the white-leaf mutant of ‘Lieyanxiongxin’. Red font indicates higher gene
expression or metabolite content. Blue font indicates lower gene expression or metabolite content.
Red-blue gradient of ERF, bHLH and MYB_related indicates a large number of both up-regulated and
down-regulated genes in these gene families. The red numbers indicate the number of up-regulated
genes, and the blue numbers indicate the number of down-regulated genes. The information on these
key differentially expressed genes is listed in Tables S8, S10 and S11.
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4. Materials and Methods
4.1. Plant Materials

A total of 144 cultivated caladium germplasm resources were from China (42), Thai-
land (52), and the United States (50) and cultivated in a greenhouse of Baiyun Base of
Guangdong Academy of Agricultural Sciences (23.40◦ N, 113.45◦ E). The greenhouse condi-
tions were 28 ± 2 ◦C and 75–80% humidity. We extracted chlorophyll from 126 germplasms
and total anthocyanin from 136 germplasms. Some germplasms had insufficient quantity
for extraction. Table S1 lists the details of each germplasm. A red-leaf caladium variety,
‘Lieyanxiongxin’ (HH), produced a white-leaf mutant (HB) during mass tissue culture. HB
was then selected and propagated vegetatively. Apart from the leaf color, HH and HB share
almost the same traits (Figures 4A and S1).

4.2. Chlorophyll Measurement

Chlorophyll content was measured following the method of Arnon [45] with slight
modifications. A mixture of ethanol, acetone, and water (4.5:4.5:1 v/v/v) was used to extract
chlorophyll from 0.2 g of fresh leaf. The mixture was stored at approximately 4 ◦C in the dark
for 24 h. A UV-1200 spectrophotometer (MAPADA, Shanghai, China) was used to measure the
absorbance at wavelengths of 665 and 649 nm. We calculated the concentrations (µg/mL) as
follows: Chlorophyl-a content = 13.95 × A665 − 6.88 × A649; Chlorophyl-b content = 24.96 ×
A649 − 7.32 × A665. Total chlorophyll content = 6.63 × A665 + 18.08 × A649. Each experiment
was performed in triplicate.

4.3. Total Anthocyanin Measurement

The method of Zhou et al. [20] was adapted to measure the total anthocyanin content.
Fresh leaf (0.5 g) was ground into powder with liquid nitrogen and added to a 10 mL
extraction solution of HCl and methanol (1:99 v/v). The solution was stored at 4 ◦C for
24 h until the leaf tissue color faded. The solution was filtered with filter paper, and the
filtrate was collected. A UV-1200 spectrophotometer (MAPADA, Shanghai, China) was
used to measure the absorbance at wavelengths of 530 nm and 657 nm. We calculated the
anthocyanin content (U/g) by the formula total anthocyanin = A530 − 0.25 × A657. We
performed each experiment in three replicates.

4.4. Anthocyanin Metabolomics Analysis

HPLC-grade methanol (MeOH) from Merck (Darmstadt, Germany) was used with MilliQ
water (Millipore, Burlington, NJ, USA) for all experiments. All standards were purchased from
isoReag (Shanghai, China). Formic acid and hydrochloric acid were acquired from Sigma-
Aldrich (St. Louis, MO, USA) and Xinyang Chemical Reagent (Ningxiang, China), respectively.
Stock solutions of standards (1 mg/mL in 50% MeOH) were prepared and stored at –20 ◦C.
We diluted the stock solutions with 50% MeOH to obtain the working solutions before analysis.
We freeze-dried the sample, ground it (30 Hz, 1.5 min), and preserved it at –80 ◦C until use. We
weighed 50 mg of powder and extracted it with 0.5 mL of methanol/water/hydrochloric acid
(500:500:1, v/v/v). The extract was vortexed for 5 min, sonicated for 5 min, and centrifuged
at 12,000× g at 4 ◦C for 3 min. The extraction was repeated with the residue under the same
conditions. The supernatants were collected and filtered through a 0.22 µm membrane filter
(Anpel) (Millipore, Burlington, NJ, USA) before LC–MS/MS analysis.

The sample extracts were analyzed using a UPLC–ESI–MS/MS system (UPLC Ex-
ionLC™ AD; MS" Applied Biosystems 6500 Triple Quadrupole, AB Sciex, Singapore). The
analytical conditions were as follows: UPLC: column, Waters ACQUITY BEH C18 (1.7 µm,
2.1 mm × 100 mm); solvent system, water (0.1% formic acid): methanol (0.1% formic
acid); gradient program, 95:5 v/v at 0 min, 50:50 v/v at 6 min, 5:95 v/v at 12 min, hold
for 2 min, 95:5 v/v at 14 min; hold for 2 min; flow rate, 0.35 mL/min; temperature, 40 ◦C;
injection volume, 2 µL. We used a triple quadrupole-linear ion trap mass spectrometer
(QTRAP), QTRAP® 6500+ LC–MS/MS System (AB Sciex, Singapore), with an ESI Turbo
Ion-Spray interface, in positive ion mode and controlled by Analyst 1.6.3 software (Sciex) to
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acquire linear ion trap (LIT) and triple quadrupole (QQQ) scans. The ESI source operation
parameters were as follows: ion source, ESI+; source temperature 550 ◦C; ion spray voltage
(IS) 5500 V; curtain gas (CUR) was set at 35 psi. Scheduled multiple reaction monitoring
(MRM) was used to analyze anthocyanins. We acquired data using Analyst 1.6.3 software
(Sciex). We carried out three replicates for each experiment.

The metabolites detected by mass spectrometry were identified using the MWDB (Met-
ware Database, www.metware.cn, accessed on 20 December 2022) database based on the
standards. All metabolites were quantified using Multiquant 3.0.3 software (Sciex). We
adjusted the mass spectrometer parameters, including the declustering potentials (DP) and
collision energies (CE) for individual MRM transitions. A specific set of MRM transitions was
monitored for each period according to the metabolites eluted within this period. The content
of metabolites (µg/g) in the sample was calculated by the formula: content = cV/1,000,000/m.
c: the concentration value (ng/mL) obtained by substituting the peak area of the sample
into the standard curve; V: the volume (µL) of the extraction solution; m: the mass (g) of
the sample. All anthocyanins had standard curves, which are shown in Table S12. We
identified the significantly regulated metabolites between groups by absolute |Log2FC
(fold change)| > 1 and VIP (VIP > 1).

4.5. Transcriptome Analysis
4.5.1. RNA Extraction, Quantification and Qualification

We conducted RNA-seq analysis on leaves with three biological replicates for each
period, resulting in six samples. We submitted the samples to Novogene Bioinformatics
Technology Co., Ltd. (Beijing, China) for RNA sequencing. We examined RNA degradation
and contamination on 1% agarose gels. We verified RNA purity using the NanoPhotometer®

spectrophotometer (IMPLEN, Westlake Village, CA, USA). We determined RNA concentra-
tion using Qubit® RNA Assay Kit in Qubit®2.0 Flurometer (Life Technologies, Carlsbad, CA,
USA). We evaluated RNA integrity using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, Santa Clara, CA, USA).

4.5.2. Transcriptome Sequencing

The RNA samples were prepared using 1 µg of RNA per sample as input material. We
generated sequencing libraries and attributed sequences to each sample using NEBNext®

UltraTM RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA) and index codes.
Briefly, mRNA was isolated from total RNA using poly-T oligo-attached magnetic beads.
Divalent cations and high temperature in NEBNext First Strand Synthesis Reaction Buffer
(5×) (NEB, Ipswich, MA, USA) were used to cleave the mRNA. Random hexamer primer
and M-MuLV Reverse Transcriptase (RNase H-) were used to synthesize the first strand
cDNA. DNA Polymerase I and RNase H were used to synthesize the second strand cDNA.
Exonuclease/polymerase activities were used to blunt the remaining overhangs. Adenine
was added to the 3′ ends of DNA fragments and ligated NEBNext Adaptor with hairpin
loop structure for hybridization. cDNA fragments of 250~300 bp in length were selected
by purifying the library fragments with AMPure XP system (Beckman Coulter, Beverly,
CA, USA). Size-selected, adaptor-ligated cDNA was treated with 3 µL of USER Enzyme
(NEB, Ipswich, USA) at 37 ◦C for 15 min and 95 ◦C for 5 min before PCR. We performed
PCR with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X)
Primer. We purified the PCR products (AMPure XP system) and checked the library quality
on the Agilent Bioanalyzer 2100 system. The index-coded samples were clustered on a
cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina). After
cluster generation, the library preparations were sequenced on an Illumina platform and
produced 150 bp paired-end reads.

4.5.3. Assembly and Gene Annotation

Raw data were filtered using fastp, and reads removed with adapters, more than 10% N
bases, or more than 50% low-quality (Q ≤ 20) bases. We used clean reads for all subsequent
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analyses. The transcriptome was assembled using Trinity [46] and related transcripts
clustered into ‘gene’ clusters using Corset. Candidate coding regions within transcript
sequences were identified using TransDecoder (v5.7.0). Gene function was annotated based
on the following databases using diamond or HMMER: Nr, Swiss-Prot, Trembl, KEGG,
GO, KOG/COG, and Pfam. Gene expression levels were estimated by RSEM, and the
FPKM of each gene calculated based on the gene length. FPKM is a common method
to estimate gene expression levels. Differential expression between the two groups was
analyzed using DESeq2 (v1.42.0) [47]. The p value was corrected using the Benjamini and
Hochberg method. We used the corrected p value and |log2foldchange| as the threshold
for significant differential expression. Enrichment analysis was performed based on the
hypergeometric test. We used the pathway unit for KEGG and the GO term for GO. We
performed TF analysis of differentially expressed genes using iTAK (v1.6) [48].

4.6. qRT-PCR Analysis

The RNA-seq data were validated by quantitative real-time PCR (qRT-PCR) following
standard procedures. Total RNA was isolated with a HiPure Plant RNA Mini Kit (Magen,
Guangzhou, China), and its concentration was measured by a spectrophotometer according
to the manufacturer’s recommendations. cDNA was synthesized from total RNA using the
PrimeScript RT Reagent Kit (TaKaRa, Kusatsu, Japan) as per the manufacturer’s directions.
About 1 µg of total RNA was reverse transcribed with the PrimeScriptTM RT reagent kit. qRT-
PCR analysis was performed with the QTOWER3 instrument (Analytik Jena, Jena, Germany).
Each qPCR reaction consisted of 20 µL final volume, containing 10 µL SYBR Green PCR
Master Mix (Applied Biosystems), 0.5 µL of each primer (10 µM), 1 µL of cDNA template, and
8 µL of nuclease-free water. The thermal cycling profile was as follows: initial denaturation
at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s.
Fluorescence was measured at the end of each cycle. The qPCR experiments were performed
in triplicate, and the data were analyzed using qPCRsoft (v3.1) software (Analytik Jena). The
relative expression levels of the target genes were determined using the 2−∆∆Ct method [49].
The primers of 13 key genes and reference gene are listed in Table S13.

4.7. Statistical Analysis

All analyses were performed using R packages unless otherwise stated [50]. The
Shannon–Wiener index and coefficient of variation (CV) were calculated using the “vegan”
package [51]. Pearson correlation analysis was performed and visualized using the built-
in function of R language and the “corrplot” package (v0.92) [52]. Student’s t test and
a one-way analysis of variance (ANOVA) were performed using the built-in function
of R language. The mean values were compared using Duncan’s multiple range tests
at a significance level of p < 0.05. Association analysis between traits and markers was
performed using Tassel 4.3.6 software [53]. The association was considered significant
when p < 0.05 and highly significant when p < 0.01. OPLS-DA analysis and VIP value
calculation were performed using the “ropls” package (v1.34.0) [54]. Principal component
analysis (PCA) was conducted using the “mixOmics” package (v6.0.0) [55].

5. Conclusions

In this study, we elucidated the diversity and mechanism of leaf pigments in cultivated
caladium, a popular ornamental plant with various leaf colors. Chlorophyll and anthocyanin
content of 137 cultivated caladium germplasm resources were measured, and significant
differences among palegreen, green, lightpink and red leaf color groups were found. Three,
eight, three, and seven EST-SSR loci were identified as significantly associated with chlorophyll
a, chlorophyll b, total chlorophyll, and total anthocyanin content, respectively, explaining
5.12% to 11.44% of the phenotypic variation. The white leaf mutation of ‘Lieyanxiongxin’ was
primarily due to the reduced content of nine anthocyanins, namely cyanidin-3-O-rutinoside,
cyanidin-3-O-sophoroside, cyanidin-3-O-glucoside, cyanidin-3-O-sambubioside, pelargonidin-
3-O-glucoside, pelargonidin-3-O-rutinoside, peonidin-3-O-glucoside, rutin, and quercetin-3-
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O-glucoside. This reduction in anthocyanin content was caused by the decreased expression
of key genes in the anthocyanin biosynthesis pathway. The white leaf mutation might be
caused by the disruption of anthocyanin biosynthesis and regulation, involving multiple
enzyme genes (four PAL, four CHS, six CHI, eight F3H, one F3′H, one FLS, one LAR, four
DFR, one ANS and two UFGT) and transcription factors (12 NAC, 12 bZIP, 23 ERF, 23 bHLH,
19 MYB_related, etc.). This study provided insights into the physiological and molecular basis
of leaf color formation and variation in cultivated caladium, and could facilitate the selection
and breeding of cultivated caladium leaf color.
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