Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry
Abstract
:1. Introduction
2. Results
2.1. Weight Changes in Polymer Samples
2.1.1. Weight Loss of Sample in Soil
2.1.2. Weight Loss of Samples in PBS
2.2. Changes in Molecular Weight of Incubated Samples
2.2.1. Degradation of Samples in Soil
2.2.2. Degradation of Samples in PBS
2.3. Changes in Blends Compositions
2.4. Changes in Blends Crystallinity
2.5. Surface Films Erosion
2.6. Plant Growth Tests
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Polymer Films
4.3. Soil Burial Test
4.4. Incubation in PBS
4.5. Determination of the Weight Loss
4.6. pH Changes
4.7. Gel Permeation Chromatography (GPC)
4.8. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy
4.9. Differential Scanning Calorimetry (DSC)
4.10. Surface Erosion of Polymer Films
4.11. Plant Growth Test of PPC
5. Conclusions
- (i)
- The degradation rate of the PLA/PPC blends was dependent on the ratio of both components regardless of the degradation medium; however, their time degradation was not satisfied from the mulching film application point of view;
- (ii)
- PPC demonstrated the highest degradation rate compared to all the other tested samples, and its presence in the blend facilitated the degradation of PLA/PPC blends. For this reason, PPC is a highly promising material for further searching for more enzymatically degraded compatible blends;
- (iii)
- Blends consisting of amorphous PLA and PPC demonstrated a faster degradation rate compared to their analogous blends based on the PLA grade that has the ability to crystalize;
- (iv)
- The phytotoxicity test of PPC did not show any harmful effect of this polymer on monocotyledonous and dicotyledonous plants; however, the highest concentration slightly inhibited the development of oat roots, which requires attention and further research. In this respect, this polymer can be successfully used for environmental protection and agricultural purposes, including mulching films and CRFs of agrochemicals (pesticides, fertilizers).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatti-Kaul, R.; Nilsson, L.J.; Zhang, B.; Rehnberg, N.; Lundmark, S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, M.; Xu, Y.; Wang, W.; Wang, Z.; Zhang, L. Bio-based polyesters: Recent progress and future prospects. Prog. Polym. Sci. 2021, 120, 101430. [Google Scholar] [CrossRef]
- Siwek, P.; Libik, A.; Twardowska-Shmidt, K.; Ciechańska, D.; Gryza, I. Biopolymers and their applications in agriculture. Polimery 2010, 55, 806–811. Available online: http://ichp.vot.pl/index.php/p/article/view/1067 (accessed on 30 December 2010). [CrossRef]
- Szymański, Ł.; Grabowska, B.; Kaczmarska, K.; Kurleto, Ż. Celuloza i jej pochodne–zastosowanie w przemyśle. Arch. Foundry Eng. 2015, 15, 129–132. [Google Scholar]
- Kozłowski, J.; Kochański, A.; Perzyk, M.; Tryznowski, M. Zastosowanie PLA jako spoiwa w masach formierskich i rdzeniowych. Arch. Foundry Eng. 2014, 14, 51–54. [Google Scholar]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Memb. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Jain, A.; Khan, W.; Domb, A.J. Biodegradable polymers-an overview. Polym. Adv. Technol. 2014, 25, 427–435. [Google Scholar] [CrossRef]
- Andrzejewska, A.; Topoliński, T. Polimery biodegradowalne do zastosowań biomedycznych. Postępy W Inżynierii Mech. 2015, 6, 5–12. [Google Scholar]
- Qiu, H.; Feng, K.; Gapeeva, A.; Meurisch, K.; Kaps, S.; Li, X.; Yu, L.; Mishra, Y.K.; Adelung, R.; Baum, M. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 2022, 127, 101516. [Google Scholar] [CrossRef]
- Ugbolue, S.C. (Ed.) Polyolefin Fibres: Structure, Properties and Industrial Applications; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Bauer, K.N.; Tee, H.T.; Velencoso, M.M.; Wurm, F.R. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61–122. [Google Scholar] [CrossRef]
- Moraczewski, K.; Pawłowska, A.; Stepczyńska, M.; Malinowski, R.; Kaczor, D.; Budner, B.; Gocman, K.; Rytlewski, P. Plant extracts as natural additives for environmentally friendly polylactide films. Food Packag. Shelf Life 2020, 26, 100593. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127. [Google Scholar] [CrossRef]
- Bora, D.; Dutta, H.; Saha, B.; Reddy, Y.A.K.; Patel, R.; Verma, S.K.; Sellamuthu, P.S.; Sadiku, R.; Jayaramudu, J. A Review on Modification of Polypropylene Carbonate (PPC) Using Different types of Blends/Composites and Its Advanced Uses. Mater. Today Commun. 2023, 10, 107304. [Google Scholar] [CrossRef]
- Luinstra, G.; Borchardt, E. Material properties of poly(propylene carbonates). In Synthetic Biodegradable Polymers; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–48. [Google Scholar] [CrossRef]
- Manavitehrani, I.; Fathi, A.; Wang, Y.; Maitz, P.K.; Dehghani, F. Reinforced poly (propylene carbonate) composite with enhanced and tunable characteristics, an alternative for poly (lactic acid). ACS Appl. Mater. Interfaces 2015, 7, 22421–22430. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Gao, F.; Cao, H.; Zhou, Q.; Wang, X. Biodegradable and resilient poly (propylene carbonate) based foam from high pressure CO2 foaming. Polym. Degrad. Stab. 2019, 165, 12–19. [Google Scholar] [CrossRef]
- Wang, D.; Yu, J.; Zhang, J.; He, J.; Zhang, J. Transparent bionanocomposites with improved properties from poly (propylene carbonate)(PPC) and cellulose nanowhiskers (CNWs). Compos. Sci. Technol. 2013, 85, 83–89. [Google Scholar] [CrossRef]
- Choo, J.E.; Park, T.H.; Jeon, S.M.; Hwang, S.W. The Effect of Epoxidized Soybean Oil on the Physical and Mechanical Properties of PLA/PBAT/PPC Blends by the Reactive Compatibilization. J. Polym. Environ. 2023, 31, 4007–4021. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Wang, N. Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 94–101. [Google Scholar] [CrossRef]
- Haneef, I.N.H.M.; Buys, Y.F.; Shaffiar, N.M.; Shaharuddin, S.I.S.; Khairusshima, M.N. Miscibility, mechanical, and thermal properties of polylactic acid/polypropylene carbonate (PLA/PPC) blends prepared by melt-mixing method. Mater. Today Proc. 2019, 17, 534–542. [Google Scholar] [CrossRef]
- Cvek, M.; Paul, U.C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable films of PLA/PPC and curcumin as packaging materials and smart indicators of food spoilage. ACS Appl. Mater. Interfaces 2022, 14, 14654–14667. [Google Scholar] [CrossRef] [PubMed]
- Rychter, P.; Biczak, R.; Herman, B.; Smyłła, A.; Kurcok, P.; Adamus, G.; Kowalczuk, M. Environmental degradation of polyester blends containing atactic poly (3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules 2006, 7, 3125–3131. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Fortunati, E.; Puglia, D.; Petrucci, R.; Kenny, J.M.; Torre, L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym. Degrad. Stab. 2015, 121, 105–115. [Google Scholar] [CrossRef]
- Rychter, P.; Kawalec, M.; Sobota, M.; Kurcok, P.; Kowalczuk, M. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact. Biomacromolecules 2010, 11, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Madras, G.; Sathiskumar, P.S. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polym. Degrad. Stab. 2011, 96, 1695–1704. [Google Scholar] [CrossRef]
- Khoryani, Z.; Seyfi, J.; Nekoei, M. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films. Appl. Surf. Sci. 2018, 428, 933–940. [Google Scholar] [CrossRef]
- Da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef]
- Trofimchuk, E.S.; Moskvina, M.A.; Nikonorova, N.I.; Efimov, A.V.; Garina, E.S.; Grokhovskaya, T.E.; Ivanova, O.A.; Bakirov, A.V.; Sedush, N.G.; Chvalun, S.N. Hydrolytic degradation of polylactide films deformed by the environmental crazing mechanism. Eur. Polym. J. 2020, 139, 110000. [Google Scholar] [CrossRef]
- Limsukon, W.; Auras, R.; Selke, S. Hydrolytic degradation and lifetime prediction of poly (lactic acid) modified with a multifunctional epoxy-based chain extender. Polym. Test. 2019, 80, 106108. [Google Scholar] [CrossRef]
- Duda, A.; Penczek, S. Polilaktyd [poli(kwas mlekowy)]: Synteza, właściwości i zastosowania. Polimery 2003, 48, 16–27. Available online: http://ichp.vot.pl/index.php/p/article/view/1832 (accessed on 17 September 2022). [CrossRef]
- Álvarez-Méndez, S.J.; Ramos-Suárez, J.L.; Ritter, A.; González, J.M.; Pérez, Á.C. Anaerobic digestion of commercial PLA and PBAT biodegradable plastic bags: Potential biogas production and 1H NMR and ATR-FTIR assessed biodegradation. Heliyon 2023, 9, e16691. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Shukla, P.; Gaur, M. Thermal analysis of polymer blends and double layer by DSC. Polym. Polym. Compos. 2021, 29, 11–18. [Google Scholar] [CrossRef]
- Capitain, C.; Ross-Jones, J.; Möhring, S.; Tippkötter, N. Differential scanning calorimetry for quantification of polymer biodegradability in compost. Int. Biodeterior. Biodegrad. 2020, 149, 104914. [Google Scholar] [CrossRef]
- Slezak, R.; Krzystek, L.; Puchalski, M.; Krucińska, I.; Sitarski, A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 2023, 866, 161401. [Google Scholar] [CrossRef]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef]
- Chenard, C.H.; Kopsell, D.A.; Kopsell, D.E. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J. Plant Nutr. 2005, 28, 285–297. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Padamati, R.B.; O’connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441. [Google Scholar] [CrossRef]
- Han, L.; Han, C.; Zhang, H.; Chen, S.; Dong, L. Morphology and properties of biodegradable and biosourced polylactide blends with poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Compos. 2012, 33, 850–859. [Google Scholar] [CrossRef]
- Rychter, P.; Lewicka, K.; Pastusiak, M.; Domański, M.; Dobrzyński, P. PLGA–PEG terpolymers as a carriers of bioactive agents, influence of PEG blocks content on degradation and release of herbicides into soil. Polym. Degrad. Stab. 2019, 161, 95–107. [Google Scholar] [CrossRef]
- Pan, H.; Hao, Y.; Zhao, Y.; Lang, X.; Zhang, Y.; Wang, Z.; Zhang, H.; Dong, L. Improved mechanical properties, barrier properties and degradation behavior of poly (butylenes adipate-co-terephthalate)/poly (propylene carbonate) films. Korean J. Chem. Eng. 2017, 34, 1294–1304. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Li, T.; Wang, Y.; Xia, B.; Jiang, J.; Chen, M.; Dong, W. A novel biodegradable poly (propylene carbonate) with enhanced thermal and mechanical properties by incorporating tannic acid. Polym. Adv. Technol. 2022, 33, 1341–1347. [Google Scholar] [CrossRef]
- Phillips, O.; Schwartz, J.M.; Kohl, P.A. Thermal decomposition of poly (propylene carbonate): End-capping, additives, and solvent effects. Polym. Degrad. Stab. 2016, 125, 129–139. [Google Scholar] [CrossRef]
- Varghese, J.K.; Na, S.J.; Park, J.H.; Woo, D.; Yang, I.; Lee, B.Y. Thermal and weathering degradation of poly (propylene carbonate). Polym. Degrad. Stab. 2010, 95, 1039–1044. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Ovyn, R.; Malinconico, M.; Rubino, P.; Grohens, Y. Peculiar crystallization kinetics of biodegradable poly (lactic acid)/poly (propylene carbonate) blends. Polym. Eng. Sci. 2015, 55, 2698–2705. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Liu, Z.; Zhang, S.; Cao, Z.; Yang, W.; Yang, M. Compatibilization of the poly (lactic acid)/poly (propylene carbonate) blends through in situ formation of poly (lactic acid)-b-poly (propylene carbonate) copolymer. J. Appl. Polym. Sci. 2018, 135, 46009. [Google Scholar] [CrossRef]
- Araújo, A.; Oliveira, M.; Oliveira, R.; Botelho, G.; Machado, A.V. Biodegradation assessment of PLA and its nanocomposites. Environ. Sci. Pollut. Res. 2014, 21, 9477–9486. [Google Scholar] [CrossRef]
- Backes, E.H.; Pires, L.D.N.; Costa, L.C.; Passador, F.R.; Pessan, L.A. Analysis of the degradation during melt processing of PLA/Biosilicate® composites. J. Compos. Sci. 2019, 3, 52. [Google Scholar] [CrossRef]
- Du, L.C.; Meng, Y.Z.; Wang, S.J.; Tjong, S.C. Synthesis and degradation behavior of poly (propylene carbonate) derived from carbon dioxide and propylene oxide. J. Appl. Polym. Sci. 2004, 92, 1840–1846. [Google Scholar] [CrossRef]
- Flores, I.; Etxeberria, A.; Irusta, L.; Calafel, I.; Vega, J.F.; Martínez-Salazar, J.; Sardon, H.; Müller, A.J. PET-ran-PLA partially degradable random copolymers prepared by organocatalysis: Effect of poly (l-lactic acid) incorporation on crystallization and morphology. ACS Sustain. Chem. Eng. 2019, 7, 8647–8659. [Google Scholar] [CrossRef]
- Jalali, A.; Huneault, M.A.; Elkoun, S.J. Effect of Thermal History on Nucleation and Crystallization of Poly(lactic acid). Mater. Sci. 2016, 51, 7768–7779. [Google Scholar] [CrossRef]
- Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. 2017, 7, 579. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Androsch, R. Influence of α’-/α-crystal polymorphism on properties of poly(l-lactic acid). Polym. Int. 2019, 68, 320–334. [Google Scholar] [CrossRef]
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Pyda, M.; Czerniecka-Kubicka, A. Thermal Properties and Thermodynamics of Poly(L-lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid); Advances in Polymer Science; Springer: Cham, Switzerland, 2017; Volume 279, pp. 153–193. [Google Scholar] [CrossRef]
- Struik, L.C.E. Multiple Component Materials. In Physical Aging in Amorphous Polymers and Other Materials; Elsevier Science: Amsterdam, The Netherlands, 1980; pp. 705–776. [Google Scholar] [CrossRef]
- Struik, L.C.E. Physical aging: Influence on the deformation behavior of amorphous polymers. In Failure of Plastics; Macmillan: New York, NY, USA, 1986; pp. 209–258. [Google Scholar]
- Jin, Y.; Cai, F.; Song, C.; Liu, G.; Chen, C. Degradation of biodegradable plastics by anaerobic digestion: Morphological, micro-structural changes and microbial community dynamics. Sci. Total Environ. 2022, 834, 155167. [Google Scholar] [CrossRef] [PubMed]
- Mistry, A.N.; Kachenchart, B.; Pinyakong, O.; Assavalapsakul, W.; Jitpraphai, S.M.; Somwangthanaroj, A.; Luepromchai, E. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting. Bioresour. Technol. 2023, 367, 128237. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. Phytotoxicity assessment of biodegradable and non-biodegradable plastics using seed germination and early growth tests. Chemosphere 2022, 289, 133132. [Google Scholar] [CrossRef]
- Manzano, V.; García, N.L.; Ramírez, C.R.; D’Accorso, N.; Goyanes, S. Mulch plastic systems: Recent advances and applications. In Polymers for Agri-Food Applications; Springer: Cham, Switzerland, 2019; pp. 265–290. [Google Scholar] [CrossRef]
- Rychter, P.; Lewicka, K.; Rogacz, D. Environmental usefulness of PLA/PEG blends for controlled-release systems of soil-applied herbicides. J. Appl. Polym. Sci. 2019, 136, 47856. [Google Scholar] [CrossRef]
- Rychter, P.; Christova, D.; Lewicka, K.; Rogacz, D. Ecotoxicological impact of selected polyethylenimines toward their potential application as nitrogen fertilizers with prolonged activity. Chemosphere 2019, 226, 800–808. [Google Scholar] [CrossRef]
- Rychter, P.; Rogacz, D.; Lewicka, K.; Lacik, I. Poly (methylene-co-cyanoguanidine) as an Eco-friendly Nitrogen Fertilizer with Prolonged Activity. J. Polym. Environ. 2019, 27, 1317–1332. [Google Scholar] [CrossRef]
- OECD Guidelines for the Testing of Chemicals—Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test; OECD/OCDE 208; Organization for Economic Co-Operation and Development: Paris, France, 2006.
- Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011, 5, 849–858. [Google Scholar] [CrossRef]
- Flodberg, G.; Helland, I.; Thomsson, L.; Fredriksen, S.B. Barrier properties of polypropylene carbonate and poly(lactic acid) cast films. Eur. Polym. J. 2015, 63, 217–226. [Google Scholar] [CrossRef]
- Oren, A.; Kühl, M.; Karsten, U. An endoevaporitic microbial mat within a gypsum crust: Zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 1995, 128, 151–159. [Google Scholar] [CrossRef]
Incubation in Soil | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Before Incubation | 3 Months | 9 Months | 18 Months | 24 Months | ||||||||||
Mw [g/mol] | Mn [g/mol] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | |
PPC | 211,200 | 40,000 | 5.28 | 99.0 | 103.0 | 5.09 | 88.8 | 81.5 | 5.76 | 93.2 | 85.5 | 5.75 | 69.3 | 80.8 | 4.54 |
crystPLA | 249,200 | 125,500 | 1.99 | 95.5 | 98.7 | 1.91 | 100.4 | 128.6 | 1.55 | 89.5 | 120.5 | 1.47 | 46.8 | 50.9 | 1.82 |
amorphPLA | 173,700 | 91,500 | 1.90 | 92.8 | 92.0 | 1.91 | 92.6 | 120.8 | 1.46 | 85.7 | 116.1 | 1.40 | 43.1 | 42.8 | 1.90 |
crystPLA/PPC 75/25 | 240,300 | 90,500 | 2.66 | 94.9 | 96.4 | 2.62 | 80.0 | 36.4 | 5.87 | 97.1 | 114.4 | 2.26 | 59.3 | 76.8 | 2.05 |
crystPLA/PPC 50/50 | 231,400 | 65,500 | 3.53 | 96.8 | 97.7 | 3.50 | 88.0 | 55.7 | 5.58 | 87.3 | 59.1 | 5.21 | 67.4 | 103.5 | 2.30 |
crystPLA/PPC 25/75 | 223,000 | 52,000 | 4.29 | 100.2 | 102.1 | 4.20 | 97.7 | 65.6 | 6.40 | 95.3 | 49.6 | 5.95 | 78.7 | 142.5 | 2.37 |
amorphPLA/PPC 75/25 | 185,700 | 78,400 | 2.37 | 92.1 | 93.6 | 2.33 | 102.8 | 71.9 | 3.39 | 106.1 | 111.4 | 2.26 | 49.2 | 50.9 | 2.29 |
amorphPLA/PPC 50/50 | 195,400 | 62,100 | 3.15 | 98.2 | 97.8 | 3.16 | 100.3 | 53.0 | 5.95 | 102.8 | 77.8 | 4.16 | 69.1 | 85.5 | 2.54 |
amorphPLA/PPC 25/75 | 206,300 | 48,200 | 4.28 | 96.8 | 95.2 | 4.35 | 99.1 | 65.6 | 6.47 | 99.9 | 68.0 | 6.25 | 74.6 | 119.3 | 2.68 |
Incubation in PBS | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Before Incubation | 1 Month | 3 Months | 6 Months | 12 Months | ||||||||||
Mw [g/mol] | Mn [g/mol] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | Mw [%] | Mn [%] | Đ [−] | |
PPC | 211,200 | 40,000 | 5.28 | 83.4 | 81.0 | 5.43 | 83.4 | 72.0 | 6.11 | 84.1 | 81.8 | 5.43 | 62.6 | 100.8 | 3.28 |
crystPLA | 249,200 | 125,500 | 1.99 | 92.5 | 124.9 | 1.47 | 69.7 | 78.2 | 1.77 | 53.0 | 54.1 | 1.95 | 4.4 | 4.9 | 1.76 |
amorphPLA | 173,700 | 91,500 | 1.90 | 90.7 | 77.7 | 2.22 | 66.0 | 76.6 | 1.64 | 42.2 | 50.5 | 1.59 | N/D* | N/D* | N/D* |
crystPLA/PPC 75/25 | 240,300 | 90,500 | 2.66 | 93.6 | 72.7 | 3.42 | 88.8 | 91.4 | 2.58 | 72.5 | 67.5 | 2.85 | 24.0 | 21.4 | 3.02 |
crystPLA/PPC 50/50 | 231,400 | 65,500 | 3.53 | 104.8 | 97.1 | 3.81 | 92.8 | 74.1 | 4.43 | 88.8 | 84.7 | 3.71 | 46.3 | 57.4 | 2.85 |
crystPLA/PPC 25/75 | 223,000 | 52,000 | 4.29 | 99.5 | 85.8 | 4.97 | 96.6 | 87.3 | 4.75 | 93.3 | 84.4 | 4.73 | 62.6 | 92.7 | 2.90 |
amorphPLA/PPC 75/25 | 185,700 | 78,400 | 2.37 | 106.7 | 56.5 | 4.47 | 95.0 | 66.8 | 3.37 | 88.2 | 62.0 | 3.37 | 21.1 | 10.7 | 4.65 |
amorphPLA/PPC 50/50 | 195,400 | 62,100 | 3.15 | 109.4 | 69.9 | 4.92 | 105.2 | 76.5 | 4.33 | 102.1 | 73.4 | 4.37 | 51.6 | 21.1 | 7.70 |
amorphPLA/PPC 25/75 | 206,300 | 48,200 | 4.28 | 92.3 | 59.9 | 6.59 | 93.3 | 68.3 | 5.84 | 95.3 | 80.3 | 5.08 | 60.7 | 57.9 | 4.50 |
Incubation in Soil | |||||
---|---|---|---|---|---|
Sample | Before Incubation | 3 Months | 9 Months | 18 Months | 24 Months |
crystPLA/PPC 75/25 | 79/21 | 78/22 | 83/17 | 84/16 | 78/22 |
crystPLA/PPC 50/50 | 56/44 | 56/44 | 60/40 | 62/38 | 57/43 |
crystPLA/PPC 25/75 | 31/69 | 31/69 | 29/71 | 30/70 | 33/67 |
amorphPLA/PPC 75/25 | 79/21 | 79/21 | 78/22 | 77/23 | 80/20 |
amorphPLA/PPC 50/50 | 56/44 | 56/44 | 55/45 | 54/46 | 56/44 |
amorphPLA/PPC 25/75 | 31/69 | 31/69 | 29/71 | 19/81 | 33/67 |
Incubation in PBS | |||||
Sample | Before incubation | 1 month | 3 months | 6 months | 12 months |
crystPLA/PPC 75/25 | 79/21 | 78/22 | 79/21 | 79/21 | 77/23 |
crystPLA/PPC 50/50 | 56/44 | 57/43 | 56/44 | 59/41 | 55/45 |
crystPLA/PPC 25/75 | 31/69 | 31/69 | 33/67 | 34/66 | 39/61 |
amorphPLA/PPC 75/25 | 79/21 | 79/21 | 81/19 | 80/20 | 76/24 |
amorphPLA/PPC 50/50 | 56/44 | 56/44 | 57/43 | 56/44 | 54/46 |
amorphPLA/PPC 25/75 | 31/69 | 30/70 | 29/71 | 31/69 | 29/71 |
(°C) | (°C) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) | χC (%) | |
---|---|---|---|---|---|---|---|
Before Incubation | |||||||
PPC | N/D | 11.8 | N/D | N/D | N/D | N/D | N/D |
crystPLA | 44.6 | N/D | 104.6 | 22.6 | 139.8 144.4 | −25.0 | 2.58 |
amorphPLA | 38.5 | N/D | N/D | N/D | N/D | N/D | N/D |
crystPLA/PPC 75/25 | 38.6 | 19.1 | 103.8 | 19.9 | 137.2 143.4 | −21.1 | 1.79 |
crystPLA/PPC 50/50 | 35.5 | 14.3 | 101.6 | 13.7 | 135.5 143.0 | −14.9 | 2.58 |
crystPLA/PPC 25/75 | 36.8 | 17.1 | 101.8 | 7.41 | 137.6 144.6 | −8.48 | 4.60 |
amorphPLA/PPC 75/25 | 35.0 | 16.1 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 50/50 | 32.3 | 15.1 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 25/75 | 31.9 | 14.6 | N/D | N/D | N/D | N/D | N/D |
3 months | |||||||
PPC | N/D | 18.6 | N/D | N/D | N/D | N/D | N/D |
crystPLA | 45.5 | N/D | 106.1 | 23.5 | 140.1 145.2 | −27.5 | 4.39 |
amorphPLA | 41.5 | N/D | N/D | N/D | N/D | N/D | N/D |
crystPLA/PPC 75/25 | 40.4 | 19.0 | 105.8 | 19.8 | 138.1 144.4 | −20.2 | 0.66 |
crystPLA/PPC 50/50 | 41.0 | 19.1 | 105.5 | 15.4 | 139.7 145.2 | −15.8 | 0.80 |
crystPLA/PPC 25/75 | 41.5 | 21.3 | 112.0 | 5.09 | 143.2 | −5.70 | 2.62 |
amorphPLA/PPC 75/25 | 39.0 | 21.8 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 50/50 | 37.2 | 18.1 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 25/75 | 39.1 | 21.2 | N/D | N/D | N/D | N/D | N/D |
9 months | |||||||
PPC | N/D | 20.9 | N/D | N/D | N/D | N/D | N/D |
crystPLA | 43.8 | N/D | 104.0 | 27.1 | 138.5 146.2 | −27.7 | 0.66 |
amorphPLA | 41.9 | N/D | N/D | N/D | N/D | N/D | N/D |
crystPLA/PPC 75/25 | 42.4 | 21.0 | 107.6 | 22.4 | 139.8 146.0 | −23.4 | 1.51 |
crystPLA/PPC 50/50 | 42.3 | 19.4 | 106.4 | 15.3 | 140.1 146.1 | −16.0 | 1.38 |
crystPLA/PPC 25/75 | 44.1 | 26.3 | 112.6 | 4.50 | 144.2 149.9 | −4.81 | 1.33 |
amorphPLA/PPC 75/25 | 41.4 | 23.1 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 50/50 | 40.4 | 22.0 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 25/75 | 44.4 | 27.9 | N/D | N/D | N/D | N/D | N/D |
18 months | |||||||
PPC | N/D | 21.8 | N/D | N/D | N/D | N/D | N/D |
crystPLA | 54.9 | N/D | 114.7 | 31.7 | 146.5 | −31.7 | 0.00 |
amorphPLA | 40.6 | N/D | N/D | N/D | N/D | N/D | N/D |
crystPLA/PPC 75/25 | 46.3 | 24.6 | 106.2 | 24.7 | 141.2 148.1 | −24.7 | 0.00 |
crystPLA/PPC 50/50 | 40.3 | 20.1 | 103.4 | 18.6 | 138.9 146.8 | −18.6 | 0.00 |
crystPLA/PPC 25/75 | 43.9 | 25.0 | 112.7 | 7.5 | 143.8 149.8 | −7.5 | 0.00 |
amorphPLA/PPC 75/25 | 39.8 | 20.3 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 50/50 | 40.6 | 22.6 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 25/75 | 42.6 | 24.8 | N/D | N/D | N/D | N/D | N/D |
24 months | |||||||
PPC | N/D | 22.8 | N/D | N/D | N/D | N/D | N/D |
crystPLA | 45.2 | N/D | 101.1 | 38.6 | 136.9 146.6 | −33.1 | 0.00 |
amorphPLA | 42.1 | N/D | N/D | N/D | N/D | N/D | N/D |
crystPLA/PPC 75/25 | 42.1 | 20.4 | 104.3 | 27.60 | 137.8 145.9 | −25.18 | 0.00 |
crystPLA/PPC 50/50 | 41.9 | 20.3 | 102.1 | 19.25 | 138.5 146.6 | −17.86 | 0.00 |
crystPLA/PPC 25/75 | 45.9 | 26.9 | 114.4 | 6.69 | 144.5 * | −6.34 | 0.00 |
amorphPLA/PPC 75/25 | 40.1 | 21.8 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 50/50 | 39.7 | 21.8 | N/D | N/D | N/D | N/D | N/D |
amorphPLA/PPC 25/75 | 43.7 | 27.4 | N/D | N/D | N/D | N/D | N/D |
PPC Concentration in Soil (mg/kg of Soil Dry Weight) | OAT | RADISH | ||
---|---|---|---|---|
Number of Emerged Seedlings | Germination % | Number of Emerged Seedlings | Germination % | |
Control | 18 | 100 | 18 | 100 |
100 | 19 | 104 | 18 | 96 |
250 | 19 | 104 | 17 | 93 |
500 | 19 | 104 | 17 | 95 |
1000 | 19 | 104 | 17 | 93 |
LSDS = 1 LSDC = 2 | LSDS = 1 LSDC = 1 |
PPC Conc. (mg/kg of Soil) | ||||||||
---|---|---|---|---|---|---|---|---|
Fresh Mass (g/pot) | Fresh Mass Related to Control [%] | Dry Weight (mg/g of Fresh Weight) | Dry Mass Related to Control [%] | Average Shoot Height [cm] | Average Shoot Height Related to Control [%] | Average Root Length [cm] | Average Root Length Related to Control [%] | |
Oat | ||||||||
0 | 2.34 | 100 | 0.2264 | 100 | 20.0 | 100 | 11.5 | 100 |
250 | 2.36 | 100.7 ± 5.3 | 0.2282 | 100.8 ± 4.1 | 19.6 | 98 ± 1.1 | 11.4 | 99.1 ± 2.2 |
500 | 2.30 | 98.4 ± 6.5 | 0.2190 | 96.7 ± 5.8 | 19.1 | 95.5 ± 0.9 | 10.9 | 94.8 ± 2.6 |
750 | 2.41 | 102.9 ± 3.7 | 0.2158 | 95.3 ± 2.6 | 19.5 | 97.5 ± 0.8 | 10.5 | 91.3 ± 3.4 |
1000 | 2.36 | 100.7 ± 2.2 | 0.1908 | 84.3 ± 7.4 | 19.2 | 96 ± 1.3 | 9.8 | 85.2 ± 1.9 |
Radish | ||||||||
0 | 2.42 | 100 | 0.1679 | 100 | 9.1 | 100 | 8.5 | 100 |
250 | 2.94 | 121.4 ± 3.7 | 0.2005 | 119.4 ± 6.0 | 8.9 | 97.8 ± 1.6 | 8.8 | 103.5 ± 1.5 |
500 | 2.89 | 119.6 ± 12.4 | 0.2012 | 119.8 ± 14.5 | 9.2 | 101.1 ± 3.3 | 8.8 | 103.5 ± 1.8 |
750 | 3.17 | 131.3 ± 10.4 | 0.2151 | 128.1 ± 20.0 | 8.8 | 96.7 ± 1.2 | 8.6 | 101.2 ± 2.5 |
1000 | 3.10 | 128.2 ± 5.4 | 0.2186 | 130.0 ± 4.9 | 8.8 | 96.7 ± 1.5 | 8.4 | 98.8 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymanek, I.; Cvek, M.; Rogacz, D.; Żarski, A.; Lewicka, K.; Sedlarik, V.; Rychter, P. Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry. Int. J. Mol. Sci. 2024, 25, 653. https://doi.org/10.3390/ijms25010653
Szymanek I, Cvek M, Rogacz D, Żarski A, Lewicka K, Sedlarik V, Rychter P. Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry. International Journal of Molecular Sciences. 2024; 25(1):653. https://doi.org/10.3390/ijms25010653
Chicago/Turabian StyleSzymanek, Izabela, Martin Cvek, Diana Rogacz, Arkadiusz Żarski, Kamila Lewicka, Vladimir Sedlarik, and Piotr Rychter. 2024. "Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry" International Journal of Molecular Sciences 25, no. 1: 653. https://doi.org/10.3390/ijms25010653
APA StyleSzymanek, I., Cvek, M., Rogacz, D., Żarski, A., Lewicka, K., Sedlarik, V., & Rychter, P. (2024). Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry. International Journal of Molecular Sciences, 25(1), 653. https://doi.org/10.3390/ijms25010653