In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates
Abstract
:1. Introduction
2. Results
2.1. Genome Assessment and Synteny
2.2. Pan-Genome Analysis
Functional Annotation and Carbohydrate-Active Enzyme (CAZyme) Profiling
2.3. Probiotic- and Stress-Related Genes
2.4. Genome Plasticity Analysis and Safety Assessment
Insertion Sequences
2.5. Safety-Associated Genes
2.5.1. Determination of Toxins, Biogenic Amines, and Undesirable Genes
2.5.2. Antimicrobial Peptides and Secondary Metabolites Analysis
3. Discussion
4. Materials and Methods
4.1. Genomic Sequences
4.2. Genome Synteny and Completeness
4.3. Pan-Genome Analysis
4.4. Probiogenomics Analysis
4.4.1. Functional Annotation and Carbohydrate-Active Enzyme (CAZyme) Profiling
4.4.2. Genome Plasticity Analysis and Safety Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winston, M.L. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1987; ISBN 0674074092. [Google Scholar]
- Giampieri, F.; Quiles, J.L.; Cianciosi, D.; Forbes-Hernández, T.Y.; Orantes-Bermejo, F.J.; Alvarez-Suarez, J.M.; Battino, M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabri, A.A. Honey, Milk and Antibiotics. Afr. J. Biotechnol. 2013, 4, 1580–1587. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [PubMed]
- Battino, M.; Giampieri, F.; Cianciosi, D.; Ansary, J.; Chen, X.; Zhang, D.; Gil, E.; Forbes-Hernández, T. The Roles of Strawberry and Honey Phytochemicals on Human Health: A Possible Clue on the Molecular Mechanisms Involved in the Prevention of Oxidative Stress and Inflammation. Phytomedicine 2021, 86, 153170. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Giampieri, F.; Cordero, M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Afrin, S.; Beltrán-Ayala, P.; González-Paramás, A.M.; Santos-Buelga, C.; et al. Activation of AMPK/Nrf2 Signalling by Manuka Honey Protects Human Dermal Fibroblasts against Oxidative Damage by Improving Antioxidant Response and Mitochondrial Function Promoting Wound Healing. J. Funct. Foods 2016, 25, 38–49. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Maouche, N.; Otmani, A.; Terrab, A.; Madani, K.; Ouchemoukh, S. Evaluation of Algerian’s Honey in Terms of Quality and Authenticity Based on the Melissopalynology and Physicochemical Analysis and Their Antioxidant Powers. Med. J. Nutr. Metab. 2021, 14, 305–324. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Cianciosi, D.; Pistollato, F.; Ansary, J.; Pacetti, M.; Amici, A.; Reboredo-Rodríguez, P.; Simal-Gandara, J.; Quiles, J.L.; et al. Strawberry Tree Honey as a New Potential Functional Food. Part 1: Strawberry Tree Honey Reduces Colon Cancer Cell Proliferation and Colony Formation Ability, Inhibits Cell Cycle and Promotes Apoptosis by Regulating EGFR and MAPKs Signaling Pathways. J. Funct. Foods 2019, 57, 439–452. [Google Scholar] [CrossRef]
- Afrin, S.; Forbes-Hernández, T.Y.; Cianciosi, D.; Pistollato, F.; Zhang, J.J.; Pacetti, M.; Amici, A.; Reboredo-Rodríguez, P.; Simal-Gandara, J.; Bompadre, S.; et al. Strawberry Tree Honey as a New Potential Functional Food. Part 2: Strawberry Tree Honey Increases ROS Generation by Suppressing Nrf2-ARE and NF-KB Signaling Pathways and Decreases Metabolic Phenotypes and Metastatic Activity in Colon Cancer Cells. J. Funct. Foods 2019, 57, 477–487. [Google Scholar] [CrossRef]
- Osés, S.M.; Nieto, S.; Rodrigo, S.; Pérez, S.; Rojo, S.; Sancho, M.T.; Fernández-Muiño, M.Á. Authentication of Strawberry Tree (Arbutus unedo L.) Honeys from Southern Europe Based on Compositional Parameters and Biological Activities. Food Biosci. 2020, 38, 100768. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and Bee Bread as New Health-Oriented Products: A Review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Snowdon, J.A.; Cliver, D.O. Microorganisms in Honey. Int. J. Food Microbiol. 1996, 31, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Bin Hafeez, A.; Pełka, K.; Buzun, K.; Worobo, R.; Szweda, P. Whole-Genome Sequencing and Antimicrobial Potential of Bacteria Isolated from Polish Honey. Appl. Microbiol. Biotechnol. 2023, 107, 6389–6406. [Google Scholar] [CrossRef] [PubMed]
- Pajor, M.; Worobo, R.W.; Milewski, S.; Szweda, P. The Antimicrobial Potential of Bacteria Isolated from Honey Samples Produced in the Apiaries Located in Pomeranian Voivodeship in Northern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2002. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics 2021, 10, 551. [Google Scholar] [CrossRef]
- Pełka, K.; Otłowska, O.; Worobo, R.W.; Szweda, P. Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics 2021, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Kafantaris, I.; Dimitriou, T.G.; Mitsagga, C.; Karatasou, K.; Giavasis, I.; Stagos, D.; Amoutzias, G.D.; Hatjina, F.; Mossialos, D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics 2021, 10, 555. [Google Scholar] [CrossRef]
- Kostić, A.; Milinčić, D.D.; Barać, M.B.; Shariati, M.A.; Tešić, Ž.L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient-The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef]
- Fatrcová-Šramková, K.; Nôžková, J.; Máriássyová, M.; Kačániová, M. Biologically Active Antimicrobial and Antioxidant Substances in the Helianthus annuus L. Bee Pollen. J. Environ. Sci. Health. B 2016, 51, 176–181. [Google Scholar] [CrossRef]
- Gilliam, M. Microbiology of Pollen and Bee Bread: The Yeasts. Apidologie 1979, 10, 43–53. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. Based. Complement. Alternat. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef] [PubMed]
- Mărgăoan, R.; Strant, M.; Varadi, A.; Topal, E.; Yücel, B.; Cornea-Cipcigan, M.; Campos, M.G.; Vodnar, D.C. Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants 2019, 8, 568. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, S.A.M.; Elashal, M.H.; Yosri, N.; Du, M.; Musharraf, S.G.; Nahar, L.; Sarker, S.D.; Guo, Z.; Cao, W.; Zou, X.; et al. Bee Pollen: Current Status and Therapeutic Potential. Nutrients 2021, 13, 1876. [Google Scholar] [CrossRef]
- Suleiman, J.B.; Mohamed, M.; Bakar, A.B.A.; Zakaria, Z.; Othman, Z.A.; Nna, V.U. Therapeutic Effects of Bee Bread on Obesity-Induced Testicular-Derived Oxidative Stress, Inflammation, and Apoptosis in High-Fat Diet Obese Rat Model. Antioxidants 2022, 11, 255. [Google Scholar] [CrossRef]
- Malihah Mohammad, S.; Mahmud-Ab-Rashid, N.-K.; Zawawi, N.; Jembrek, J.; Juszczak, L. Molecules Stingless Bee-Collected Pollen (Bee Bread): Chemical and Microbiology Properties and Health Benefits. Molecules 2021, 26, 957. [Google Scholar] [CrossRef] [PubMed]
- Pełka, K.; Bin Hafeez, A.; Worobo, R.W.; Szweda, P. Probiotic Potential of Bacillus Isolates from Polish Bee Pollen and Bee Bread. Probiotics Antimicrob. Proteins 2023, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pełka, K.; Worobo, R.W.; Walkusz, J.; Szweda, P. Bee Pollen and Bee Bread as a Source of Bacteria Producing Antimicrobials. Antioxidants 2021, 10, 713. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Food Nutr. 2006, 85, 1–56. [Google Scholar]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef]
- Zulkhairi Amin, F.A.; Sabri, S.; Ismail, M.; Chan, K.W.; Ismail, N.; Mohd Esa, N.; Mohd Lila, M.A.; Zawawi, N. Probiotic Properties of Bacillus Strains Isolated from Stingless Bee (Heterotrigona Itama) Honey Collected across Malaysia. Int. J. Environ. Res. Public Health 2019, 17, 278. [Google Scholar] [CrossRef] [PubMed]
- Abdelsamad, N.O.; Esawy, M.A.; Mahmoud, Z.E.; El-Shazly, A.I.; Elsayed, T.R.; Gamal, A.A. Evaluation of Different Bacterial Honey Isolates as Probiotics and Their Efficient Roles in Cholesterol Reduction. World J. Microbiol. Biotechnol. 2022, 38, 106. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.B.; Roobia, R.R.; Karthikeyan, M.; Murugappan, R.M. Validation of Nutraceutical Properties of Honey and Probiotic Potential of Its Innate Microflora. LWT-Food Sci. Technol. 2015, 60, 743–750. [Google Scholar] [CrossRef]
- Hasali, N.H.M.; Zamri, A.I.; Lani, M.N.; Mubarak, A.; Suhaili, Z. Identification of Lactic Acid Bacteria from Meliponine Honey and Their Antimicrobial Activity against Pathogenic Bacteria. Am. J. Sustain. Agric. 2015, 9, 1–7. [Google Scholar]
- Vergalito, F.; Testa, B.; Cozzolino, A.; Letizia, F.; Succi, M.; Lombardi, S.J.; Tremonte, P.; Pannella, G.; Di Marco, R.; Sorrentino, E.; et al. Potential Application of Apilactobacillus Kunkeei for Human Use: Evaluation of Probiotic and Functional Properties. Foods 2020, 9, 1535. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.M.; Mahmud-Ab-Rashid, N.K.; Zawawi, N. Probiotic Properties of Bacteria Isolated from Bee Bread of Stingless Bee Heterotrigona Itama. J. Apic. Res. 2020, 60, 172–187. [Google Scholar] [CrossRef]
- Toutiaee, S.; Mojgani, N.; Harzandi, N.; Moharrami, M.; Mokhberosafa, L. In Vitro Probiotic and Safety Attributes of Bacillus spp. Isolated from Beebread, Honey Samples and Digestive Tract of Honeybees Apis Mellifera. Lett. Appl. Microbiol. 2022, 74, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Dabiré, Y.; Somda, N.S.; Somda, M.K.; Compaoré, C.B.; Mogmenga, I.; Ezeogu, L.I.; Traoré, A.S.; Ugwuanyi, J.O.; Dicko, M.H. Assessment of Probiotic and Technological Properties of Bacillus spp. Isolated from Burkinabe Soumbala. BMC Microbiol. 2022, 22, 228. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wu, C.Y.; Huang, H.T.; Lu, M.K.; Hu, W.S.; Lee, K.T. Bacillus Subtilis Natto Derivatives Inhibit Enterococcal Biofilm Formation via Restructuring of the Cell Envelope. Front. Microbiol. 2021, 12, 785351. [Google Scholar] [CrossRef]
- Li, A.; Wang, M.; Zhang, Y.; Lin, Z.; Xu, M.; Wang, L.; Kulyar, M.F.-e.-A.; Li, J. Complete Genome Analysis of Bacillus Subtilis Derived from Yaks and Its Probiotic Characteristics. Front. Vet. Sci. 2023, 9, 1099150. [Google Scholar] [CrossRef]
- Shangpliang, H.N.J.; Tamang, J.P. Genome Analysis of Potential Probiotic Levilactobacillus Brevis AcCh91 Isolated from Indian Home-Made Fermented Milk Product (Chhurpi). Probiotics Antimicrob. Proteins 2023, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Khullar, G.; Det-udom, R.; Prombutar, P.; Prakitchaiwattana, C. Probiogenomic Analysis and Safety Assessment of Bacillus Isolates Using Omics Approach in Combination with In-Vitro. LWT 2022, 159, 113216. [Google Scholar] [CrossRef]
- Kim, S.H.; Yehuala, G.A.; Bang, W.Y.; Yang, J.; Jung, Y.H.; Park, M.K. Safety Evaluation of Bacillus Subtilis IDCC1101, Newly Isolated from Cheonggukjang, for Industrial Applications. Microorganisms 2022, 10, 2494. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Chastanet, A.; Fert, J.; Msadek, T. Comparative Genomics Reveal Novel Heat Shock Regulatory Mechanisms in Staphylococcus Aureus and Other Gram-Positive Bacteria. Mol. Microbiol. 2003, 47, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Gerth, U.; Wipat, A.; Harwood, C.R.; Carter, N.; Emmerson, P.T.; Hecker, M. Sequence and Transcriptional Analysis of ClpX, a Class-III Heat-Shock Gene of Bacillus Subtilis. Gene 1996, 181, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.A.; Hubbard, T.J.P.; Travers, A.A.; Ellar, D.J. Heat-Shock Proteins during Growth and Sporulation of Bacillus Subtilis. FEBS Lett. 1985, 188, 209–214. [Google Scholar] [CrossRef]
- Fabisiewicz, A.; Piechowska, M. Heat-Shock Proteins in Membrane Vesicles of Bacillus Subtilis. Acta Biochim. Pol. 1988, 35, 367–376. [Google Scholar]
- Ghafoori, H.; Askari, M.; Sarikhan, S. Molecular Cloning, Expression and Functional Characterization of the 40-KDa Heat Shock Protein, DnaJ, from Bacillus Halodurans. Process Biochem. 2017, 54, 33–40. [Google Scholar] [CrossRef]
- Endo, A.; Sasaki, M.; Maruyama, A.; Kurusu, Y. Temperature Adaptation of Bacillus Subtilis by Chromosomal GroEL Replacement. Biosci. Biotechnol. Biochem. 2006, 70, 2357–2362. [Google Scholar] [CrossRef]
- Graumann, P.L.; Marahiel, M.A. Cold Shock Proteins CspB and CspC Are Major Stationary-Phase-Induced Proteins in Bacillus Subtilis. Arch. Microbiol. 1999, 171, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, R.; Hao, L.; Wang, C.; Li, M. CspB and CspC Are Induced upon Cold Shock in Bacillus Cereus Strain D2. Can. J. Microbiol. 2021, 67, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Akanuma, G.; Tagana, T.; Sawada, M.; Suzuki, S.; Shimada, T.; Tanaka, K.; Kawamura, F.; Kato-Yamada, Y. C-Terminal Regulatory Domain of the ε Subunit of FoF1 ATP Synthase Enhances the ATP-Dependent H+ Pumping That Is Involved in the Maintenance of Cellular Membrane Potential in Bacillus Subtilis. Microbiologyopen 2019, 8, e00815. [Google Scholar] [CrossRef] [PubMed]
- Keis, S.; Kaim, G.; Dimroth, P.; Cook, G.M. Cloning and Molecular Characterization of the Atp Operon Encoding for the F1F0–ATP Synthase from a Thermoalkaliphilic Bacillus Sp. Strain TA2.A1. Biochim. Biophys. Acta-Gene Struct. Expr. 2004, 1676, 112–117. [Google Scholar] [CrossRef]
- Cheng, J.; Guffanti, A.A.; Krulwich, T.A. The Chromosomal Tetracycline Resistance Locus of Bacillus Subtilis Encodes a Na+/H+ Antiporter That Is Physiologically Important at Elevated PH. J. Biol. Chem. 1994, 269, 27365–27371. [Google Scholar] [CrossRef] [PubMed]
- Kosono, S.; Morotomi, S.; Kitada, M.; Kudo, T. Analyses of a Bacillus Subtilis Homologue of the Na+/H+ Antiporter Gene Which Is Important for PH Homeostasis of Alkaliphilic bacillus sp. C-125. Biochim. Biophys. Acta-Bioenerg. 1999, 1409, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, M.; Kusumoto, A.; Wada, Y.; Tsuchiya, T.; Ito, M. NhaK, a Novel Monovalent Cation/H+ Antiporter of Bacillus Subtilis. Arch. Microbiol. 2005, 183, 411–420. [Google Scholar] [CrossRef]
- Devkota, S.R.; Kwon, E.; Ha, S.C.; Chang, H.W.; Kim, D.Y. Structural Insights into the Regulation of Bacillus Subtilis SigW Activity by Anti-Sigma RsiW. PLoS ONE 2017, 12, e0174284. [Google Scholar] [CrossRef]
- Wiegert, T.; Homuth, G.; Versteeg, S.; Schumann, W. Alkaline Shock Induces the Bacillus SubtilisσW Regulon. Mol. Microbiol. 2001, 41, 59–71. [Google Scholar] [CrossRef]
- Zweers, J.C.; Nicolas, P.; Wiegert, T.; van Dijl, J.M.; Denham, E.L. Definition of the ΣW Regulon of Bacillus Subtilis in the Absence of Stress. PLoS ONE 2012, 7, e48471. [Google Scholar] [CrossRef]
- Masahiro, I.; Guffanti, A.A.; Oudega, B.; Krulwich, T.A. Mrp, A Multigene, Multifunctional Locus in Bacillus Subtilis with Roles in Resistance to Cholate and to Na+ and in PH Homeostasis. J. Bacteriol. 1999, 181, 2394–2402. [Google Scholar] [CrossRef]
- Chi, B.K.; Gronau, K.; Mäder, U.; Hessling, B.; Becher, D.; Antelmann, H. S-Bacillithiolation Protects against Hypochlorite Stress in Bacillus Subtilis as Revealed by Transcriptomics and Redox Proteomics. Mol. Cell. Proteom. 2011, 10, M111.009506. [Google Scholar] [CrossRef] [PubMed]
- Chi, B.K.; Roberts, A.A.; Huyen, T.T.T.; Bäsell, K.; Becher, D.; Albrecht, D.; Hamilton, C.J.; Antelmann, H. S-Bacillithiolation Protects Conserved and Essential Proteins against Hypochlorite Stress in Firmicutes Bacteria. Antioxid. Redox Signal. 2013, 18, 1273–1295. [Google Scholar] [CrossRef] [PubMed]
- Sleator, R.D.; Gahan, C.G.M.; Hill, C. A Postgenomic Appraisal of Osmotolerance in Listeria Monocytogenes. Appl. Environ. Microbiol. 2003, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, D.; Ma, X.; An, H.; Zhai, Z.; Ren, F.; Hao, Y. Functional Role of OppA Encoding an Oligopeptide-Binding Protein from Lactobacillus Salivarius Ren in Bile Tolerance. J. Ind. Microbiol. Biotechnol. 2015, 42, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- McMillan, L.J.; Hepowit, N.L.; Maupin-Furlow, J.A. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents. Appl. Environ. Microbiol. 2016, 82, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Horn, C.; Bremer, E.; Schmitt, L. Nucleotide Dependent Monomer/Dimer Equilibrium of OpuAA, the Nucleotide-Binding Protein of the Osmotically Regulated ABC Transporter OpuA from Bacillus Subtilis. J. Mol. Biol. 2003, 334, 403–419. [Google Scholar] [CrossRef]
- Horn, C.; Bremer, E.; Schmitt, L. Functional Overexpression and In Vitro Re-Association of OpuA, an Osmotically Regulated ABC-Transport Complex from Bacillus Subtilis. FEBS Lett. 2005, 579, 5765–5768. [Google Scholar] [CrossRef]
- Hoffmann, T.; Bremer, E. Guardians in a Stressful World: The Opu Family of Compatible Solute Transporters from Bacillus Subtilis. Biol. Chem. 2017, 398, 193–214. [Google Scholar] [CrossRef]
- Hamon, M.A.; Lazazzera, B.A. The Sporulation Transcription Factor Spo0A Is Required for Biofilm Development in Bacillus Subtilis. Mol. Microbiol. 2001, 42, 1199–1209. [Google Scholar] [CrossRef]
- Arnaouteli, S.; Bamford, N.C.; Stanley-Wall, N.R.; Kovács, Á.T. Bacillus Subtilis Biofilm Formation and Social Interactions. Nat. Rev. Microbiol. 2021, 19, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, M.; Sam, S.; Mustafa, S.; Hashim, A.M.; Yusof, T.; Zulkifly, S.; Zuhairi, A.; Malek, A.; Akhmal, M.; Roslan, H.; et al. Mining the Genome of Bacillus Velezensis FS26 for Probiotic Markers and Secondary Metabolites with Antimicrobial Properties against Aquaculture Pathogens. Microb. Pathog. 2023, 181, 106161. [Google Scholar] [CrossRef]
- Van Pijkeren, J.P.; Canchaya, C.; Ryan, K.A.; Li, Y.; Claesson, M.J.; Sheil, B.; Steidler, L.; O’Mahony, L.; Fitzgerald, G.F.; Van Sinderen, D.; et al. Comparative and Functional Analysis of Sortase-Dependent Proteins in the Predicted Secretome of Lactobacillus Salivarius UCC118. Appl. Environ. Microbiol. 2006, 72, 4143–4153. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Pérez Montoro, B.; Casimiro-Soriguer, C.S.; Pérez Pulido, A.J.; Knapp, C.W.; Caballero Gómez, N.; Castillo-Gutiérrez, S.; Estudillo-Martínez, M.D.; Gálvez, A.; Benomar, N. Insight into Potential Probiotic Markers Predicted in Lactobacillus Pentosus MP-10 Genome Sequence. Front. Microbiol. 2017, 8, 891. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jaatinen, A.; Rintahaka, J.; Hynönen, U.; Lyytinen, O.; Kant, R.; Åvall-Jääskeläinen, S.; Von Ossowski, I.; Palva, A. Human Gut-Commensalic Lactobacillus Ruminis ATCC 25644 Displays Sortase-Assembled Surface Piliation: Phenotypic Characterization of Its Fimbrial Operon through In Silico Predictive Analysis and Recombinant Expression in Lactococcus Lactis. PLoS ONE 2015, 10, e0145718. [Google Scholar] [CrossRef] [PubMed]
- Von, I.; Id, O. Novel Molecular Insights about Lactobacillar Sortase-Dependent Piliation. Int. J. Mol. Sci. 2017, 18, 1551. [Google Scholar] [CrossRef]
- Roux, D.; Cywes-Bentley, C.; Zhang, Y.F.; Pons, S.; Konkol, M.; Kearns, D.B.; Little, D.J.; Howell, P.L.; Skurnik, D.; Pier, G.B. Identification of Poly-N-Acetylglucosamine as a Major Polysaccharide Component of the Bacillus Subtilis Biofilm Matrix. J. Biol. Chem. 2015, 290, 19261–19272. [Google Scholar] [CrossRef]
- Guttenplan, S.B.; Blair, K.M.; Kearns, D.B. The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Bacillus Subtilis Biofilm Formation. PLOS Genet. 2010, 6, e1001243. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Lee, K.H.; Kang, H.B.; Kim, J.E.; Oh, M.H.; Ham, J.S. Probiogenomic In-Silico Analysis and Safety Assessment of Lactiplantibacillus Plantarum DJF10 Strain Isolated from Korean Raw Milk. Int. J. Mol. Sci. 2022, 23, 14494. [Google Scholar] [CrossRef]
- Zivkovic, M.; Miljkovic, M.; Ruas-Madiedo, P.; Strahinic, I.; Tolinacki, M.; Golic, N.; Kojic, M. Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus Paraplantarum BGCG11. Appl. Environ. Microbiol. 2015, 81, 1387–1396. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Li, H.; Zhu, J.; Liu, Z.; Hu, X.; Yi, J. Assessments of Probiotic Potentials of Lactiplantibacillus Plantarum Strains Isolated From Chinese Traditional Fermented Food: Phenotypic and Genomic Analysis. Front. Microbiol. 2022, 13, 895132. [Google Scholar] [CrossRef] [PubMed]
- Scharf, C.; Riethdorf, S.; Ernst, H.; Engelmann, S.; Völker, U.; Hecker, M. Thioredoxin Is an Essential Protein Induced by Multiple Stresses in Bacillus Subtilis. J. Bacteriol. 1998, 180, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Smits, W.K.; Dubois, J.Y.F.; Bron, S.; Van Dijl, J.M.; Kuipers, O.P. Tricksy Business: Transcriptome Analysis Reveals the Involvement of Thioredoxin A in Redox Homeostasis, Oxidative Stress, Sulfur Metabolism, and Cellular Differentiation in Bacillus Subtilis. J. Bacteriol. 2005, 187, 3921–3930. [Google Scholar] [CrossRef] [PubMed]
- Tossounian, M.A.; Baczynska, M.; Dalton, W.; Peak-Chew, S.Y.; Undzenas, K.; Korza, G.; Filonenko, V.; Skehel, M.; Setlow, P.; Gout, I. Bacillus Subtilis YtpP and Thioredoxin A Are New Players in the Coenzyme-A-Mediated Defense Mechanism against Cellular Stress. Antioxidants 2023, 12, 938. [Google Scholar] [CrossRef]
- Capuano, V.; Galleron, N.; Pujic, P.; Sorokin, A.; Ehrlich, S.D. Organization of the Bacillus Subtilis 168 Chromosome between Kdg and the Attachment Site of the SPβ Prophage: Use of Long Accurate PCR and Yeast Artificial Chromosomes for Sequencing. Microbiology 1996, 142, 3005–3015. [Google Scholar] [CrossRef]
- Gioia, J.; Yerrapragada, S.; Qin, X.; Jiang, H.; Igboeli, O.C.; Muzny, D.; Dugan-Rocha, S.; Ding, Y.; Hawes, A.; Liu, W.; et al. Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus Pumilus SAFR-032. PLoS ONE 2007, 2, e928. [Google Scholar] [CrossRef]
- Dhanya Raj, C.; Suryavanshi, M.V.; Kandaswamy, S.; Priyan Ramasamy, K.; Arthur James, R. Whole Genome Sequence Analysis and In-Vitro Probiotic Characterization of Bacillus Velezensis FCW2 MCC4686 from Spontaneously Fermented Coconut Water. Genomics 2023, 115, 110637. [Google Scholar] [CrossRef]
- Broden, N.J.; Flury, S.; King, A.N.; Schroeder, B.W.; Coe, G.D.; Faulkner, M.J. Insights into the Function of a Second, Nonclassical Ahp Peroxidase, AhpA, in Oxidative Stress Resistance in Bacillus Subtilis. J. Bacteriol. 2016, 198, 1044–1057. [Google Scholar] [CrossRef]
- Basu Thakur, P.; Long, A.R.; Nelson, B.J.; Kumar, R.; Rosenberg, A.F.; Gray, M.J. Complex Responses to Hydrogen Peroxide and Hypochlorous Acid by the Probiotic Bacterium Lactobacillus Reuteri. mSystems 2019, 4, 10-1128. [Google Scholar] [CrossRef]
- Engelmann, S.; Hecker, M. Impaired Oxidative Stress Resistance of Bacillus Subtilis SigB Mutants and the Role of KatA and KatE. FEMS Microbiol. Lett. 1996, 145, 63–69. [Google Scholar] [CrossRef]
- Rochat, T.; Miyoshi, A.; Gratadoux, J.J.; Duwatt, P.; Sourice, S.; Azevedo, V.; Langella, P. High-Level Resistance to Oxidative Stress in Lactococcus Lactis Conferred by Bacillus Subtilis Catalase KatE. Microbiology 2005, 151, 3011–3018. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.Q.; Ritter, A.C.; Cibulski, S.; Brandelli, A. Functional Genome Annotation Depicts Probiotic Properties of Bacillus Velezensis FTC01. Gene 2019, 713, 143971. [Google Scholar] [CrossRef] [PubMed]
- Inaoka, T.; Matsumura, Y.; Tsuchido, T. SodA and Manganese Are Essential for Resistance to Oxidative Stress in Growing and Sporulating Cells of Bacillus Subtilis. J. Bacteriol. 1999, 181, 1939–1943. [Google Scholar] [CrossRef] [PubMed]
- Carroll, I.M.; Andrus, J.M.; Bruno-Bárcena, J.M.; Klaenhammer, T.R.; Hassan, H.M.; Threadgill, D.S. Anti-Inflammatory Properties of Lactobacillus Gasseri Expressing Manganese Superoxide Dismutase Using the Interleukin 10-Deficient Mouse Model of Colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, 729–738. [Google Scholar] [CrossRef]
- Bruno-Bárcena, J.M.; Andrus, J.M.; Libby, S.L.; Klaenhammer, T.R.; Hassan, H.M. Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Appl. Environ. Microbiol. 2004, 70, 4702–4710. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, P.; Lata, J.; Devi, N.; Chand, D. Thermostable Fe/Mn Superoxide Dismutase from Bacillus Licheniformis SPB-13 from Thermal Springs of Himalayan Region: Purification, Characterization and Antioxidative Potential. Int. J. Biol. Macromol. 2018, 115, 1026–1032. [Google Scholar] [CrossRef]
- Belaouni, H.A.; Compant, S.; Antonielli, L.; Nikolic, B.; Zitouni, A.; Sessitsch, A. In-Depth Genome Analysis of Bacillus sp. BH32, a Salt Stress-Tolerant Endophyte Obtained from a Halophyte in a Semiarid Region. Appl. Microbiol. Biotechnol. 2022, 106, 3113–3137. [Google Scholar] [CrossRef]
- You, C.; Sekowska, A.; Francetic, O.; Martin-Verstraete, I.; Wang, Y.; Danchin, A. Spx Mediates Oxidative Stress Regulation of the Methionine Sulfoxide Reductases Operon in Bacillus Subtilis. BMC Microbiol. 2008, 8, 128. [Google Scholar] [CrossRef]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite Genome Sequence of Bacillus Clausii, a Probiotic Commercially Available as Enterogermina®, and Insights into Its Probiotic Properties. BMC Microbiol. 2019, 19, 307. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Yang, R.S.; Lin, Y.C.; Xin, W.G.; Zhou, H.Y.; Wang, F.; Zhang, Q.L.; Lin, L.B. Assessment of the Safety and Probiotic Characteristics of Lactobacillus Salivarius CGMCC20700 Based on Whole-Genome Sequencing and Phenotypic Analysis. Front. Microbiol. 2023, 14, 1120263. [Google Scholar] [CrossRef]
- Novick, R.P. Pathogenicity and Other Genomic Islands. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 240–242. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLoS ONE 2013, 8, 77302. [Google Scholar] [CrossRef]
- Burdock, G.A.; Carabin, I.G. Generally Recognized as Safe (GRAS): History and Description. Toxicol. Lett. 2004, 150, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Chang, H.C. Assessment of Bacillus Subtilis SN7 as a Starter Culture for Cheonggukjang, a Korean Traditional Fermented Soybean Food, and Its Capability to Control Bacillus Cereus in Cheonggukjang. Food Control 2017, 73, 946–953. [Google Scholar] [CrossRef]
- Ouoba, L.I.I. Traditional Alkaline Fermented Foods. In Starter Cultures in Food Production; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 370–383. [Google Scholar] [CrossRef]
- Ma, S.; Cao, J.; Liliu, R.; Li, N.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Effects of Bacillus Coagulans as an Adjunct Starter Culture on Yogurt Quality and Storage. J. Dairy Sci. 2021, 104, 7466–7479. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, F. Characterization of Lactobacillus, Bacillus and Saccharomyces Isolated from Iranian Traditional Dairy Products for Potential Sources of Starter Cultures. AIMS Microbiol. 2017, 3, 815. [Google Scholar] [CrossRef]
- Chokesajjawatee, N.; Santiyanont, P.; Chantarasakha, K.; Kocharin, K.; Thammarongtham, C.; Lertampaiporn, S.; Vorapreeda, T.; Srisuk, T.; Wongsurawat, T.; Jenjaroenpun, P.; et al. Safety Assessment of a Nham Starter Culture Lactobacillus Plantarum BCC9546 via Whole-Genome Analysis. Sci. Rep. 2020, 10, 10241. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Siles, L.; Karlsson, R.; Schmidt, P.; Salvà-Serra, F.; Jaén-Luchoro, D.; Skovbjerg, S.; Moore, E.R.B.; Gomila, M. A Pangenome Approach for Discerning Species-Unique Gene Markers for Identifications of Streptococcus Pneumoniae and Streptococcus Pseudopneumoniae. Front. Cell. Infect. Microbiol. 2020, 10, 531410. [Google Scholar] [CrossRef]
- Costa, S.S.; Guimarães, L.C.; Silva, A.; Soares, S.C.; Baraúna, R.A. First Steps in the Analysis of Prokaryotic Pan-Genomes. Bioinform. Biol. Insights 2020, 14, 1177932220938064. [Google Scholar] [CrossRef]
- Fu, X.; Gong, L.; Liu, Y.; Lai, Q.; Li, G.; Shao, Z. Bacillus Pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation. Front. Microbiol. 2021, 12, 571212. [Google Scholar] [CrossRef]
- Brito, P.H.; Chevreux, B.; Serra, C.R.; Schyns, G.; Henriques, A.O.; Pereira-Leal, J.B. Genetic Competence Drives Genome Diversity in Bacillus Subtilis. Genome Biol. Evol. 2018, 10, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. Genomic and Metabolic Features of the Bacillus Amyloliquefaciens Group—B. amyloliquefaciens, B. velezensis, and B. Siamensis—Revealed by Pan-Genome Analysis. Food Microbiol. 2019, 77, 146–157. [Google Scholar] [CrossRef]
- Alenezi, F.N.; Ben Slama, H.; Bouket, A.C.; Cherif-Silini, H.; Silini, A.; Luptakova, L.; Nowakowska, J.A.; Oszako, T.; Belbahri, L. Bacillus Velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. Forests 2021, 12, 1714. [Google Scholar] [CrossRef]
- Park, Y.J.; Jeong, Y.U.; Kong, W.S. Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina Elastica. Int. J. Mol. Sci. 2018, 19, 2379. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, G.; Xu, H.; Xin, H.; Zhang, Y. Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Holstein Cows Fed Different Forage-to-Concentrate Ratios. Front. Microbiol. 2019, 10, 441658. [Google Scholar] [CrossRef]
- Subin, S.R.; Okolie, C.L.; Udenigwe, C.C.; Mason, B. Structural Features Underlying Prebiotic Activity of Conventional and Potential Prebiotic Oligosaccharides in Food and Health. J. Food Biochem. 2017, 41, e12389. [Google Scholar] [CrossRef]
- Egan, M.; Van Sinderen, D. Carbohydrate Metabolism in Bifidobacteria. In The Bifidobacteria and Related Organisms, Biology, Taxonomy, Applications; Academic Press: Cambridge, MA, USA, 2018; pp. 145–164. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhu, Y.; Zhan, Y.; Zhang, Y.; Sha, Y.; Xu, Z.; Li, S.; Feng, X.; Xu, H. Systematic Unravelling of the Inulin Hydrolase from Bacillus Amyloliquefaciens for Efficient Conversion of Inulin to Poly-(γ-Glutamic Acid). Biotechnol. Biofuels 2019, 12, 145. [Google Scholar] [CrossRef]
- Scott, K.P.; Martin, J.C.; Chassard, C.; Clerget, M.; Potrykus, J.; Campbell, G.; Mayer, C.D.; Young, P.; Rucklidge, G.; Ramsay, A.G.; et al. Substrate-Driven Gene Expression in Roseburia Inulinivorans: Importance of Inducible Enzymes in the Utilization of Inulin and Starch. Proc. Natl. Acad. Sci. USA 2011, 108, 4672–4679. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarangi, A.N.; Mukherjee, M.; Bhowmick, S.; Tripathy, S. Reanalysis of Lactobacillus Paracasei Lbs2 Strain and Large-Scale Comparative Genomics Places Many Strains into Their Correct Taxonomic Position. Microorganisms 2019, 7, 487. [Google Scholar] [CrossRef]
- Chung, W.H.; Kang, J.; Lim, M.Y.; Lim, T.J.; Lim, S.; Roh, S.W.; Nam, Y. Do Complete Genome Sequence and Genomic Characterization of Lactobacillus Acidophilus LA1 (11869BP). Front. Pharmacol. 2018, 9, 311400. [Google Scholar] [CrossRef] [PubMed]
- Boraston, A.B.; Bolam, D.N.; Gilbert, H.J.; Davies, G.J. Carbohydrate-Binding Modules: Fine-Tuning Polysaccharide Recognition. Biochem. J. 2004, 382, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Amaretti, A.; Raimondi, S. Folate Production by Probiotic Bacteria. Nutrients 2011, 3, 118–134. [Google Scholar] [CrossRef]
- Zhu, T.; Pan, Z.; Domagalski, N.; Koepsel, R.; Ataai, M.M.; Domach, M.M. Engineering of Bacillus Subtilis for Enhanced Total Synthesis of Folic Acid. Appl. Environ. Microbiol. 2005, 71, 7122–7129. [Google Scholar] [CrossRef] [PubMed]
- De Crécy-Lagard, V. Variations in Metabolic Pathways Create Challenges for Automated Metabolic Reconstructions: Examples from the Tetrahydrofolate Synthesis Pathway. Comput. Struct. Biotechnol. J. 2014, 10, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.R.; Pattison, J.R.; Foster, M.A. Folic Acid and the Methylation of Homocysteine by Bacillus Subtilis. Biochem. J. 1972, 126, 993–1004. [Google Scholar] [CrossRef]
- AFRC, R.F. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low PH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.M.; Hill, C. The Interaction between Bacteria and Bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef]
- Ventura, M.; Canchaya, C.; Zink, R.; Fitzgerald, G.F.; Van Sinderen, D. Characterization of the GroEL and GroES Loci in Bifidobacterium Breve UCC 2003: Genetic, Transcriptional, and Phylogenetic Analyses. Appl. Environ. Microbiol. 2004, 70, 6197–6209. [Google Scholar] [CrossRef]
- Susin, M.F.; Baldini, R.L.; Gueiros-Filho, F.; Gomes, S.L. GroES/GroEL and DnaK/DnaJ Have Distinct Roles in Stress Responses and during Cell Cycle Progression in Caulobacter Crescentus. J. Bacteriol. 2006, 188, 8044–8053. [Google Scholar] [CrossRef] [PubMed]
- Veinger, L.; Diamant, S.; Buchner, J.; Goloubinoff, P. The Small Heat-Shock Protein IbpB from Escherichia Coli Stabilizes Stress-Denatured Proteins for Subsequent Refolding by a Multichaperone Network. J. Biol. Chem. 1998, 273, 11032–11037. [Google Scholar] [CrossRef] [PubMed]
- Narberhaus, F. α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network. Microbiol. Mol. Biol. Rev. 2002, 66, 64–93. [Google Scholar] [CrossRef] [PubMed]
- Jakob, U.; Gaestel, M.; Engel, K.; Buchner, J. Small Heat Shock Proteins Are Molecular Chaperones. J. Biol. Chem. 1993, 268, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Adams, Z.; Liu, R.; Hepowit, N.L.; Wu, Y.; Bowmann, C.F.; Moskovitz, J.; Maupin-Furlow, J.A. Methionine Sulfoxide Reductase a (MsrA) and Its Function in Ubiquitin-like Protein Modification in Archaea. MBio 2017, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Nachin, L.; Nannmark, U.; Nyström, T. Differential Roles of the Universal Stress Proteins of Escherichia Coli in Oxidative Stress Resistance, Adhesion, and Motility. J. Bacteriol. 2005, 187, 6265–6272. [Google Scholar] [CrossRef]
- Seifart Gomes, C.; Izar, B.; Pazan, F.; Mohamed, W.; Mraheil, M.A.; Mukherjee, K.; Billion, A.; Aharonowitz, Y.; Chakraborty, T.; Hain, T. Universal Stress Proteins Are Important for Oxidative and Acid Stress Resistance and Growth of Listeria Monocytogenes EGD-e In Vitro and In Vivo. PLoS ONE 2011, 6, e24965. [Google Scholar] [CrossRef]
- Berkowitz, F.E. Hemolysis and Infection: Categories and Mechanisms of Their Interrelationship. Rev. Infect. Dis. 1991, 13, 1151–1162. [Google Scholar] [CrossRef]
- Jeon, H.L.; Lee, N.K.; Yang, S.J.; Kim, W.S.; Paik, H.D. Probiotic Characterization of Bacillus Subtilis P223 Isolated from Kimchi. Food Sci. Biotechnol. 2017, 26, 1641–1648. [Google Scholar] [CrossRef]
- Gueimonde, M.; Sánchez, B.; de los Reyes-Gavilán, C.G.; Margolles, A. Antibiotic Resistance in Probiotic Bacteria. Front. Microbiol. 2013, 4, 51661. [Google Scholar] [CrossRef]
- Salmond, G.P.C.; Fineran, P.C. A Century of the Phage: Past, Present and Future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Brüssow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed]
- Canchaya, C.; Fournous, G.; Chibani-Chennoufi, S.; Dillmann, M.L.; Brüssow, H. Phage as Agents of Lateral Gene Transfer. Curr. Opin. Microbiol. 2003, 6, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Brown-Jaque, M.; Calero-Cáceres, W.; Muniesa, M. Transfer of Antibiotic-Resistance Genes via Phage-Related Mobile Elements. Plasmid 2015, 79, 1–7. [Google Scholar] [CrossRef]
- Berg, J.A.; Merrill, B.D.; Crockett, J.T.; Esplin, K.P.; Evans, M.R.; Heaton, K.E.; Hilton, J.A.; Hyde, J.R.; McBride, M.S.; Schouten, J.T.; et al. Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages. PLoS ONE 2016, 11, e0156838. [Google Scholar] [CrossRef] [PubMed]
- Merrill, B.D.; Grose, J.H.; Breakwell, D.P.; Burnett, S.H. Characterization of Paenibacillus Larvae Bacteriophages and Their Genomic Relationships to Firmicute Bacteriophages. BMC Genomics 2014, 15, 745. [Google Scholar] [CrossRef] [PubMed]
- Tirumalai, M.R.; Stepanov, V.G.; Wünsche, A.; Montazari, S.; Gonzalez, R.O.; Venkateswaran, K.; Fox, G.E. Bacillus Safensis FO-36b and Bacillus Pumilus SAFR-032: A Whole Genome Comparison of Two Spacecraft Assembly Facility Isolates. BMC Microbiol. 2018, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Minnullina, L.; Pudova, D.; Shagimardanova, E.; Shigapova, L.; Sharipova, M.; Mardanova, A. Comparative Genome Analysis of Uropathogenic Morganella Morganii Strains. Front. Cell. Infect. Microbiol. 2019, 9, 458792. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, M.; Mao, C.; Wang, C.; Yuan, P.; Wang, T.; Sun, D. A Type I Restriction Modification System Influences Genomic Evolution Driven by Horizontal Gene Transfer in Paenibacillus Polymyxa. Front. Microbiol. 2021, 12, 709571. [Google Scholar] [CrossRef]
- Diabankana, R.G.C.; Shulga, E.U.; Validov, S.Z.; Afordoanyi, D.M. Genetic Characteristics and Enzymatic Activities of Bacillus Velezensis KS04AU as a Stable Biocontrol Agent against Phytopathogens. Int. J. Plant Biol. 2022, 13, 201–222. [Google Scholar] [CrossRef]
- Niazi, A.; Manzoor, S.; Asari, S.; Bejai, S.; Meijer, J.; Bongcam-Rudloff, E. Genome Analysis of Bacillus amyloliquefaciens subsp. Plantarum UCMB5113: A Rhizobacterium That Improves Plant Growth and Stress Management. PLoS ONE 2014, 9, e104651. [Google Scholar] [CrossRef]
- Nanjani, S.; Soni, R.; Paul, D.; Keharia, H. Genome Analysis Uncovers the Prolific Antagonistic and Plant Growth-Promoting Potential of Endophyte Bacillus Velezensis K1. Gene 2022, 836, 146671. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Silva, J.; de Oliveira, B.F.R.; Vigoder, F.d.M.; Muricy, G.; Dobson, A.D.W.; Laport, M.S. Peeling the Layers Away: The Genomic Characterization of Bacillus Pumilus 64-1, an Isolate with Antimicrobial Activity From the Marine Sponge Plakina Cyanorosea (Porifera, Homoscleromorpha). Front. Microbiol. 2021, 11, 592735. [Google Scholar] [CrossRef] [PubMed]
- Takami, H.; Matsuki, A.; Takaki, Y. Wide-Range Distribution of Insertion Sequences Identified in B. halodurans among Bacilli and a New Transposon Disseminated in Alkaliphilic and Thermophilic Bacilli. DNA Res. 2004, 11, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, J.; Quintais, L.; Garcillán-Barcia, M.P.; de la Cruz, F.; Rocha, E.P.C. The Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation. PLOS Genet. 2011, 7, e1002222. [Google Scholar] [CrossRef] [PubMed]
- Auchtung, J.M.; Lee, C.A.; Monson, R.E.; Lehman, A.P.; Grossman, A.D. Regulation of a Bacillus Subtilis Mobile Genetic Element by Intercellular Signaling and the Global DNA Damage Response. Proc. Natl. Acad. Sci. USA 2005, 102, 12554–12559. [Google Scholar] [CrossRef] [PubMed]
- Bardócz, S.; Grant, G.; Brown, D.S.; Ralph, A.; Pusztai, A. Polyamines in Food—Implications for Growth and Health. J. Nutr. Biochem. 1993, 4, 66–71. [Google Scholar] [CrossRef]
- Silla Santos, M.H. Biogenic Amines: Their Importance in Foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Ladero, V.; Calles-Enriquez, M.; Fernandez, M.; Alvarez, M.A. Toxicological Effects of Dietary Biogenic Amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Daniel Collins, J.; Noerrung, B.; Budka, H.; Andreoletti, O.; Buncic, S.; Griffin, J.; Hald, T.; Havelaar, A.; Hope, J.; Klein, G.; et al. Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef]
- Hobley, L.; Li, B.; Wood, J.L.; Kim, S.H.; Naidoo, J.; Ferreira, A.S.; Khomutov, M.; Khomutov, A.; Stanley-Wall, N.R.; Michael, A.J. Spermidine Promotes Bacillus Subtilis Biofilm Formation by Activating Expression of the Matrix Regulator SlrR. J. Biol. Chem. 2017, 292, 12041–12053. [Google Scholar] [CrossRef] [PubMed]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol. Biol. 2019, 1962, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Cabanettes, F.; Klopp, C. D-GENIES: Dot Plot Large Genomes in an Interactive, Efficient and Simple Way. PeerJ 2018, 2018, e4958. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, Y.; Fan, G.; Sun, D.; Zhang, X.; Yu, Z.; Wang, J.; Wu, L.; Shi, W.; Ma, J. IPGA: A Handy Integrated Prokaryotes Genome and Pan-Genome Analysis Web Service. iMeta 2022, 1, e55. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.K.; Xu, Y.; Yin, Y. DbCAN2: A Meta Server for Automated Carbohydrate-Active Enzyme Annotation. Nucleic Acids Res. 2018, 46, W95–W101. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The Reference Centre for Bacterial Insertion Sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded Prediction of Genomic Islands for Larger-Scale Datasets. Nucleic Acids Res. 2017, 45, W30. [Google Scholar] [CrossRef]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an Update of CRISRFinder, Includes a Portable Version, Enhanced Performance and Integrates Search for Cas Proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wei, Y.; Shen, Y.; Li, X.; Zhou, H.; Tai, C.; Deng, Z.; Ou, H.Y. TADB 2.0: An Updated Database of Bacterial Type II Toxin–Antitoxin Loci. Nucleic Acids Res. 2018, 46, D749–D753. [Google Scholar] [CrossRef] [PubMed]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An Open Online Resource for Identification of Antimicrobial Resistance Genes in next-Generation Sequencing Data and Prediction of Phenotypes from Genotypes. Microb. Genomics 2022, 8, 000748. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Res. 2022, 50, D912. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Liu, M.; Tai, C.; Sun, J.; Deng, Z.; Ou, H.Y. OriTfinder: A Web-Based Tool for the Identification of Origin of Transfers in DNA Sequences of Bacterial Mobile Genetic Elements. Nucleic Acids Res. 2018, 46, W229–W234. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Zheng, L.; Li, J.; Hong, Y.; Liang, P.; Kwok, L.Y.; Zuo, Y.; Zhang, W.; Zhang, H. IProbiotics: A Machine Learning Platform for Rapid Identification of Probiotic Properties from Whole-Genome Primary Sequences. Brief. Bioinform. 2022, 23, bbab477. [Google Scholar] [CrossRef]
BUSCO Groups Searched against Bacilli_odb10 Lineage | BB10.1 | BP20.15 | PY2.3 |
---|---|---|---|
Complete BUSCOs (C) | 449 (99.6%) | 448 (99.5%) | 302 (100.0%) |
Complete and single-copy BUSCOs (S) | 448 (99.6%) | 447 (99.3%) | 301 (99.7%) |
Complete and duplicated BUSCOs (D) | 1 (0.2%) | 1 (0.2%) | 1 (0.3%) |
Fragmented BUSCOs (F) | 1 (0.2%) | 2 (0.4%) | 0 (0.0%) |
Missing BUSCOs (M) | 0 (0%) | 0 (0.1%) | 0 (0.0%) |
Total BUSCO groups searched | 450 | 450 | 302 |
Gene | Product Description | Uniprot ID |
---|---|---|
Heat stress | ||
htpX | Protease HtpX homolog; heat shock protein | O31657 |
hrcA | Heat-inducible transcription repressor | P25499 |
hslO | 33 kDa chaperonin | P37565 |
dnaK | Chaperone protein DnaK | P17820 |
dnaJ | Chaperone protein DnaJ | P17631 |
ctsR | Transcriptional regulator of stress and heat shock response | P37568 |
grpE | Olecular chaperone GrpE | P15874 |
groL | 60 kDa chaperonin GroEL | P28598 |
groS | 10 kDa chaperonin GroES | A7Z206 |
lon1 | ATP-dependent Lon protease | P37945 |
lon2 | ATP-dependent Lon protease | P42425 |
clpC | ATP-dependent Clp protease ATP-binding subunit ClpC | P37571 |
clpE | ATP-dependent Clp protease ATP-binding subunit ClpE | O31673 |
clpP | ATP-dependent Clp protease proteolytic subunit clpP | P80244 |
clpQ | ATP-dependent protease subunit ClpQ | P39070 |
clpX | ATP-dependent Clp protease ATP-binding subunit ClpX | P50866 |
clpY | ATP-dependent protease ATPase subunit ClpY | P39778 |
Cold | ||
cspB | Cold shock protein CspB | P32081 |
cspC | Cold shock protein CspC | P39158 |
cspD | Cold shock protein CspD | P51777 |
Acid stress | ||
atpA | ATP synthase subunit alpha | P37808 |
atpB | ATP synthase subunit beta | P37809 |
atpC | ATP synthase epsilon chain | P37812 |
atpD | ATP synthase subunit beta | P37809 |
atpE | ATP synthase subunit c | A7Z9Q5 |
atpF | ATP synthase subunit b | P37814 |
atpG | ATP synthase gamma chain | P37810 |
atpH | ATP synthase subunit delta | P37811 |
atpI | ATP synthase protein I | P37816 |
nhaC | Na(+)/H(+) antiporter NhaC | O07553 |
nhaK | Sodium, potassium, lithium, and rubidium/H(+) antiporter | O32212 |
nhaX | Stress response protein NhaX | O07552 |
sigW | RNA polymerase sigma factor SigW | Q45585 |
rsiW | Anti-sigma-W factor RsiW | Q45588 |
Bile tolerance | ||
mrpA | Na(+)/H(+) antiporter subunit A | Q9K2S2 |
mrpB | Na(+)/H(+) antiporter subunit B | O05259 |
mrpC | Na(+)/H(+) antiporter subunit C | O05260 |
mrpD | Na(+)/H(+) antiporter subunit D | O05229 |
mrpE | Na(+)/H(+) antiporter subunit E | Q7WY60 |
mrpF | Na(+)/H(+) antiporter subunit F | O05228 |
mrpG | Na(+)/H(+) antiporter subunit G | O05227 |
ppaC | Manganese-dependent inorganic pyrophosphatase | P37487 |
ppaX | Pyrophosphatase PpaX | Q9JMQ2 |
oppA | Oligopeptide-binding protein OppA | P24141 |
Osmoprotectant | ||
opuD | Glycine betaine transporter OpuD | P54417 |
opuBD | Choline transport system permease protein OpuBD | P39775 |
opuBC | Choline-binding protein | Q45462 |
opuBB | Choline transport system permease protein OpuBB | Q45461 |
opuBA | Choline transport ATP-binding protein OpuBA | Q45460 |
opuCD | Glycine betaine/carnitine/choline transport system permease protein OpuCD | O34742 |
opuCC | Glycine betaine/carnitine/choline-binding protein OpuCC | O32243 |
opuCB | Glycine betaine/carnitine/choline transport system permease protein OpuCB | O34878 |
opuCA | Glycine betaine/carnitine/choline transport ATP-binding protein OpuCA | O34992 |
opuE | Osmoregulated proline transporter OpuE | O06493 |
opuAA | Glycine betaine transport ATP-binding protein OpuAA | P46920 |
opuAB | Glycine betaine transport system permease protein OpuAB | P46921 |
opuAC | Glycine betaine-binding protein OpuAC | P46922 |
Adhesion | ||
lspA | Lipoprotein signal peptidase | Q45479 |
spo0A | Stage 0 sporulation protein A | P06534 |
Tuf | Elongation factor Tu | P33166 |
tpiA | Triosephosphate isomerase | P27876 |
gapA | Glyceraldehyde-3-phosphate dehydrogenase 1 | P09124 |
ganA | Beta-galactosidase GanA | O07012 |
srtD | Sortase D | P54603 |
mdxK | Maltose phosphorylase | O06993 |
Eno | Enolase | P37869 |
Pgi | Glucose-6-phosphate isomerase | P80860 |
EpsH | Putative glycosyltransferase | P71057 |
Antioxidant | ||
katA | Vegetative catalase | P26901 |
katE | Catalase-2 | P42234 |
fnr | Anaerobic regulatory protein | P46908 |
ytnI | Putative glutaredoxin YtnI | O34639 |
ggt | Glutathione hydrolase proenzyme | P54422 |
bsaA | Glutathione peroxidase homolog BsaA | P52035 |
mntH | Divalent metal cation transporter MntH | P96593 |
mntD | Manganese transport system membrane protein | O34500 |
mntC | Manganese transport system membrane protein | O35024 |
mntB | Manganese transport system ATP-binding protein | O34338 |
mntA | Manganese-binding lipoprotein | O34385 |
ahpF | NADH dehydrogenase | P42974 |
tpx | Thiol peroxidase | P80864 |
trxA | Thioredoxin | P14949 |
trxB | Thioredoxin reductase | P80880 |
msrA | Peptide methionine sulfoxide reductase | P54154 |
msrB | Peptide methionine sulfoxide reductase | P54155 |
sodF | Probable superoxide dismutase [Fe] | O35023 |
sodA | Superoxide dismutase [Mn] | P54375 |
yojM | Superoxide dismutase-like protein | O31851 |
ytnI | Putative glutaredoxin YtnI | O34639 |
Immunomodulation | ||
dltA | Alanine–D-alanyl carrier protein ligase | P39581 |
dltB | Teichoic acid D-alanyltransferase | P39580 |
dltC | Alanyl carrier protein | P39579 |
dltD | Protein DltD | P39578 |
Additional stress response genes | ||
ykoL | Stress response protein YKoL | O34763 |
yhaX | Stress response protein YhaX | O07539 |
nhaX | Stress response protein NhaX | O07552 |
yhbH | Stress response UPF0229 protein YhbH | P45742 |
ctc | General stress protein CTC | P14194 |
yocK | General stress protein 16O | P80872 |
yocM | Salt-stress-responsive protein YocM | O34321 |
ysnF | Stress response protein YsnF | P94560 |
dps | General stress protein 20U | P80879 |
yugI | General stress protein 13 | P80870 |
mrgA | Metalloregulation DNA-binding stress protein | P37960 |
yvgO | Stress response protein YvgO | O32211 |
ywrO | General stress protein 14 | P80871 |
csbD | Stress response protein CsbD | P70964 |
yfkM | General stress protein 18 | P80876 |
yflT | General stress protein 17M | P80241 |
gspA | General stress protein A | P25148 |
yxiE | Universal stress protein YxiE | P42297 |
ydaD | General stress protein 39 | P80873 |
CRISPR Id/Cas Type | Start | End | Spacer/ Gene | Repeat Consensus/ Cas Genes | Repeat Length | No. of CRISPRs with Same Repeat (Crisprdb) | Direction | Evidence Level |
---|---|---|---|---|---|---|---|---|
Isolate BB10.1 | ||||||||
NODE2_B. subtilis_chromosome | 1,042,827 | 1,042,934 | 1 | TGATGGGAATCGAACCCACGACAT | 24 | 0 | ND | 1 |
NODE3_B. subtilis_chromosome | 536,583 | 536,695 | 1 | GAAGATTTTAGTGATCGTTTAGATGATTTTGA | 32 | 0 | ND | 1 |
NODE4_B. subtilis_chromosome | 8684 | 8789 | 1 | CAGCTGATTGCTGGTTTTGTTTTCT | 25 | 0 | ND | 1 |
Isolate BP20.15 | ||||||||
NODE6_B. subtilis_chromosome | 72,057 | 72,169 | 1 | GAAGATTTTAGTGATCGTTTAGATGATTTTGA | 32 | 0 | ND | 1 |
NODE8_B. subtilis_chromosome | 64,916 | 65,023 | 1 | TGATGGGAATCGAACCCACGACAT | 24 | 0 | ND | 1 |
NODE25_B. subtilis_chromosome | 8546 | 8651 | 1 | CAGCTGATTGCTGGTTTTGTTTTCT | 25 | 0 | ND | 1 |
NODE41_CAS type | 3600 | 4991 | 2 | cas3_TypeI, cas3_TypeI | -- | -- | -- | -- |
NODE75_B. subtilis_chromosome | 55 | 162 | 1 | GTCGCAATTGCATCCACTTTACTCATG | 27 | 0 | ND | 1 |
Isolate PY2.3 | ||||||||
NODE13_B. velezensis_CAS cluster | 45,589 | 46,974 | 2 | cas3_TypeI, cas3_TypeI | -- | -- | -- | -- |
Region | Region Length | Completeness | Score | Total Proteins | Region Position | Most Common Phage | GC% |
---|---|---|---|---|---|---|---|
Isolate 10.1 | |||||||
1 | 32.4 Kb | questionable | 80 | 44 | 84,936–117,366 | PHAGE_Bacill_phi105_NC_048631(16) | 40.13% |
2 | 31.7 Kb | incomplete | 30 | 15 | 107,047–138,752 | PHAGE_Bacill_BM5_NC_029069(4) | 39.18% |
3 | 33.7 Kb | intact | 110 | 46 | 662,637–696,369 | PHAGE_Brevib_Osiris_NC_028969(8) | 44.85% |
4 | 9.5 Kb | incomplete | 10 | 18 | 60,849–70,358 | PHAGE_Bacill_SPbeta_NC_001884(7) | 33.61% |
5 | 40.6 Kb | incomplete | 40 | 55 | 531,669–572,327 | PHAGE_Bacill_vB_BtS_BMBtp14_NC_048640(7) | 39.50% |
6 | 11.7 Kb | incomplete | 10 | 15 | 270,249–282,042 | PHAGE_Thermu_OH2_NC_021784(2) | 45.09% |
Isolate 20.15 | |||||||
1 | 25.7 Kb | incomplete | 40 | 35 | 230,224–255,996 | PHAGE_Bacill_SPP1_NC_004166(13) | 41.94% |
2 | 11.7 Kb | incomplete | 10 | 15 | 5540–17,317 | PHAGE_Thermu_OH2_NC_021784(2) | 45.18% |
3 | 20.3 Kb | incomplete | 20 | 28 | 32,616–52,954 | PHAGE_Brevib_Osiris_NC_028969(5) | 45.48% |
4 | 19.4 Kb | incomplete | 30 | 32 | 1–19,441 | PHAGE_Anoxyb_A403_NC_048701(4) | 42.37% |
Isolate PY2.3 | |||||||
1 | 31.7 Kb | intact | 100 | 42 | 262,623–294,418 | PHAGE_Brevib_Jimmer1_NC_029104(8) | 47.00% |
2 | 47.4 Kb | questionable | 70 | 57 | 334,721–382,135 | PHAGE_Bacill_SPP1_NC_004166(15) | 41.90% |
3 | 23 Kb | incomplete | 20 | 15 | 58,603–81,625 | PHAGE_Clostr_phi3626_NC_003524(2) | 37.85% |
Resistance Gene | Identity% | Alignment Length/Gene Length | Position in Reference | Contig or Depth | Position in Contig | Phenotype | PMID | Accession No. |
---|---|---|---|---|---|---|---|---|
Isolate BB10.1 | ||||||||
aadK | 100.0 | 855/855 | 1..855 | NODE2 | 606,252–607,106 | streptomycin | 2550327 | M26879 |
mph(K) | 100.0 | 921/921 | 1..921 | NODE7 | 99,651–100,571 | spiramycin, telithromycin | 29317655 | NC_000964 |
tet(L) | 100.0 | 1377/1377 | 1..1377 | NODE8 | 90,607–91,983 | doxycycline, tetracycline | 2844262 | X08034 |
Isolate BP20.15 | ||||||||
aadK | 100.0 | 855/855 | 1..855 | NODE2 | 606,252–607,106 | streptomycin | 2550327 | M26879 |
tet(L) | 100.0 | 1377/1377 | 1..1377 | NODE8 | 90,607–91,983 | doxycycline, tetracycline | 2844262 | X08034 |
mph(K) | 100.0 | 921/921 | 1..921 | NODE7 | 99,651–100,571 | spiramycin, telithromycin | 29317655 | NC_000964 |
Region | Type | From | To | Most Similar Known Cluster | Similarity |
---|---|---|---|---|---|
Region 1.1 | NRPS, betalactone | 1 | 27,989 | Fengycin; NRP | 86% |
Region 1.2 | NRPS, transAT-PKS, T3PKS | 141,809 | 247,055 | Bacillaene; Polyketide + NRP | 100% |
Region 1.3 | terpene | 840,077 | 860,880 | --- | --- |
Region 2.1 | NRPS | 1 | 22,938 | Plipastatin; NRP | 38% |
Region 2.2 | terpene | 97,150 | 119,048 | --- | --- |
Region 2.3 | T3PKS | 167,536 | 208,633 | 1-carbapen-2-em-3-carboxylic acid; Other | 16% |
Region 3.1 | NRP-metallophore, NRPS | 82,076 | 133,853 | Bacillibactin; NRP | 100% |
Region 3.1 | NRP-metallophore, NRPS | 82,076 | 133,853 | Bacillibactin; NRP | 100% |
Region 3.2 | CDPS | 415,378 | 436,124 | Pulcherriminic acid; Other | 100% |
Region 3.3 | Sactipeptide | 647,652 | 669,263 | Subtilosin A; RiPP:Thiopeptide | 100% |
Region 5.1 | other | 1 | 35,524 | Bacilysin; Other | 100% |
Region 6.1 | NRPS | 1 | 26,533 | Surfactin; NRP:Lipopeptide | 43% |
Region 7.1 | sactipeptide, ranthipeptide | 27,754 | 50,707 | Sporulation killing factorRiPP:Head-to-tailcyclized peptide | 100% |
Region 7.2 | NRPS | 180,780 | 208,793 | Surfactin; NRP:Lipopeptide | 43% |
Region 8.1 | epipeptide | 18,667 | 40,365 | Thailanstatin A; NRP + Polyketide | 10% |
Region 12.1 | NRPS | 1 | 14,431 | Fengycin; NRP | 20% |
Region 13.1 | NRPS | 1 | 11,532 | Plipastatin; NRP | 23% |
Region 14.1 | NRPS | 1 | 10,548 | Surfactin; NRP:Lipopeptide | 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin Hafeez, A.; Pełka, K.; Worobo, R.; Szweda, P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int. J. Mol. Sci. 2024, 25, 666. https://doi.org/10.3390/ijms25010666
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. International Journal of Molecular Sciences. 2024; 25(1):666. https://doi.org/10.3390/ijms25010666
Chicago/Turabian StyleBin Hafeez, Ahmer, Karolina Pełka, Randy Worobo, and Piotr Szweda. 2024. "In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates" International Journal of Molecular Sciences 25, no. 1: 666. https://doi.org/10.3390/ijms25010666
APA StyleBin Hafeez, A., Pełka, K., Worobo, R., & Szweda, P. (2024). In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. International Journal of Molecular Sciences, 25(1), 666. https://doi.org/10.3390/ijms25010666