Advances in the Modulation of Potato Tuber Dormancy and Sprouting
Abstract
:1. Introduction
2. Environments
2.1. Temperature
2.2. Humidity
2.3. Light
2.4. Other Environmental Factors
3. Carbohydrate Metabolism
4. Hormones
4.1. Abscisic Acid
4.2. Gibberellin
4.3. Cytokinins
4.4. Auxin
4.5. Ethylene
4.6. Brassinosteroids
4.7. Jasmonates
4.8. Strigolactones
4.9. Salicylic Acid
5. Summary and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Harrison, J.G. Effects of the aerial environment on late blight of potato foliage—A review. Plant Pathol. 1992, 41, 384–416. [Google Scholar] [CrossRef]
- Muthoni, J.; Kabira, J.; Shimelis, H.; Melis, R. Regulation of potato tuber dormancy: A review. Aust. J. Crop Sci. 2014, 8, 754–759. [Google Scholar]
- Devaux, A.; Goffart, J.P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.; Olejnik, A.; Białas, W.; Rybicka, I.; Zielińska-Dawidziak, M.; Siger, A.; Kubiak, P.; Lewandowicz, G. The Nutritional Value and Biological Activity of Concentrated Protein Fraction of Potato Juice. Nutrients 2019, 11, 1523. [Google Scholar] [CrossRef] [PubMed]
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef]
- Sonnewald, S.; Sonnewald, U. Regulation of potato tuber sprouting. Planta 2014, 239, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Zierer, W.; Rüscher, D.; Sonnewald, U.; Sonnewald, S. Tuber and Tuberous Root Development. Annu. Rev. Plant Biol. 2021, 72, 551–580. [Google Scholar] [CrossRef] [PubMed]
- Daniels-Lake, B.J.; Prange, R.K. The canon of potato science: 41. Sprouting. Potato Res. 2008, 50, 379–382. [Google Scholar] [CrossRef]
- Goodwin, P.B. The Control of Branch Growth on Potato Tubers: II. THE PATTERN OF SPROUT GROWTH. J. Exp. Bot. 1967, 18, 87–99. [Google Scholar] [CrossRef]
- Wiltshire, J.J.J.; Cobb, A.H. A review of the physiology of potato tuber dormancy. Ann. Appl. Biol. 1996, 129, 553–569. [Google Scholar] [CrossRef]
- Reust, W. EAPR working group physiological age of the potato—Google Scholar. Potato Res. 1986, 29, 268–271. [Google Scholar]
- Emilsson, B. Studies on the rest period and dormant period in the potato tuber. Acta Agric. Suec. 1949, 3, 189–284. [Google Scholar]
- Lang, G.A.; Early, J.D.; Martin, G.C.; Darnell, R.L. Endo-, Para-, and Ecodormancy: Physiological Terminology and Classification for Dormancy Research. HortScience 1987, 22, 371–377. [Google Scholar] [CrossRef]
- Suttle, J.C. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: A critical assessment. J. Plant Physiol. 2004, 161, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Aksenova, N.P.; Sergeeva, L.I.; Konstantinova, T.N.; Golyanovskaya, S.A.; Kolachevskaya, O.O.; Romanov, G.A. Regulation of potato tuber dormancy and sprouting. Russ. J. Plant Physiol. 2013, 60, 301–312. [Google Scholar] [CrossRef]
- Sonnewald, U. Control of potato tuber sprouting. Trends Plant Sci. 2001, 6, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Suttle, J.C. Physiological regulation of potato tuber dormancy. Am. J. Potato Res. 2004, 81, 253–262. [Google Scholar] [CrossRef]
- Mani, F.; Hannachi, C. Physiology of Potato Sprouting. J. New Sci. 2015, 17, 591–602. [Google Scholar]
- Rykaczewska, K. The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. Am. J. Potato Res. 2015, 92, 339–349. [Google Scholar] [CrossRef]
- Magdalena, G.; Dariusz, M. Losses during Storage of Potato Varieties in Relation to Weather Conditions during the Vegetation Period and Temperatures during Long-Term Storage. Am. J. Potato Res. 2018, 95, 130–138. [Google Scholar] [CrossRef]
- Wurr, D.C.E.; Allen, E.J. Effects of cold treatments on the sprout growth of three potato varieties. J. Agric. Sci. 1976, 86, 221–224. [Google Scholar] [CrossRef]
- Wustman, R.; Struik, P.C. The canon of potato science: 35. Seed and ware potato storage. Potato Res. 2008, 50, 351–355. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds in potato (Solanum tuberosum L.) peel and their health-promoting activities. Int. J. Food Sci. Technol. 2019, 55, 2273–2281. [Google Scholar] [CrossRef]
- Joly, N.; Souidi, K.; Depraetere, D.; Wils, D.; Martin, P. Potato By-Products as a Source of Natural Chlorogenic Acids and Phenolic Compounds: Extraction, Characterization, and Antioxidant Capacity. Molecules 2020, 26, 177. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, H.; Ahmad, D.; Bao, J. Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants 2022, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- Galani, J.H.Y.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum) Varieties. Hortic. Plant J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Lin, Q.; Xie, Y.; Guan, W.; Duan, Y.; Wang, Z.; Sun, C. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chem. 2019, 297, 124991. [Google Scholar] [CrossRef] [PubMed]
- Draie, R.; Al-absi, M. Regulation and Control of Potato Tuber Dormancy and Sprouting. Int. J. Recent Adv. Multidis Ciplinary Res. 2019, 6, 4573–4583. [Google Scholar]
- Tai, H.H.; Lagüe, M.; Thomson, S.; Aurousseau, F.; Neilson, J.; Murphy, A.; Bizimungu, B.; Davidson, C.; Deveaux, V.; Bègue, Y.; et al. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. Plant Physiol. Biochem. 2020, 146, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.L.; Dusengemungu, L.; Igiraneza, C.; Rukundo, P. Molecular regulation of potato tuber dormancy and sprouting: A mini-review. Plant Biotechnol. Rep. 2021, 15, 417–434. [Google Scholar] [CrossRef]
- Nash, M.J. Humidification of potatoes ventilated by outside air cooling and by artificial cooling. J. Stored Prod. Res. 1975, 11, 195–201. [Google Scholar] [CrossRef]
- Benkeblia, N.; Alexopoulos, A.A.; Passam, H.C. Physiological and biochemical regulation of dormancy and sprouting in potato tubers (Solanum tuberosum L.). Fruit Veg. Cereal Sci. Biotechnol. 2008, 2, 54–68. [Google Scholar]
- Ezekiel, R.; Singh, B.; Gopal, J. Relationship between under water weight and specific gravity, dry matter and starch content of potatoes grown in India. J. Indian Potato Assoc. 2003, 30, 233–239. [Google Scholar]
- Peivastegan, B.; Hadizadeh, I.; Nykyri, J.; Nielsen, K.L.; Somervuo, P.; Sipari, N.; Tran, C.; Pirhonen, M. Effect of wet storage conditions on potato tuber transcriptome, phytohormones and growth. BMC Plant Biol. 2019, 19, 262. [Google Scholar] [CrossRef]
- Czerko, Z.; Grudzińska, M. Influence of weather and storage conditions on sprouting of potato tubers. Biul. Inst. Hod. i Aklim. Roślin. 2014, 271, 119127. [Google Scholar]
- Gachango, E.; Shibairo, S.I.; Kabira, J.N.; Chemining’wa, G.N.; Demo, P. Effects of light intensity on quality of potato seed tubers. Afr. J. Agric. Res. 2008, 3, 732–739. [Google Scholar]
- McGee, E.; Booth, R.H.; Jarvis, M.C.; Duncan, H.J. The inhibition of potato sprout growth by light. Ann. Appl. Biol. 1987, 2, 399–404. [Google Scholar] [CrossRef]
- Li, R.; Long, J.; Yan, Y.; Luo, J.; Xu, Z.; Liu, X. Addition of White Light to Monochromatic Red and Blue Lights Alters the Formation, Growth, and Dormancy of In Vitro-grown Solanum tuberosum L. Microtubers. HortScience 2019, 55, 71–77. [Google Scholar] [CrossRef]
- Mølmann, J.A.B.; Johansen, T.J. Sprout Growth Inhibition and Photomorphogenic Development of Potato Seed Tubers (Solanum tuberosum L.) Under Different LED Light Colours. Potato Res. 2020, 63, 199–215. [Google Scholar] [CrossRef]
- Irungu, F.G.; Ndiritu, F.G.; Mutungi, C.M.; Mathenge, S.G.; Mahungu, S.M. Static and varied magnetic fields effects on shrinkage and sprouting characteristics of stored potatoes. Cogent Food Agric. 2022, 8, 2079207. [Google Scholar] [CrossRef]
- Bahadir, A.; Sahin, N.K.; Beyaz, R.; Yildiz, M. Magnetic field effect on breaking tuber dormancy, early sprouting, seedling growth, and tuber formation in potato (Solanum tuberosum L.). Scienceasia 2020, 46, 619–625. [Google Scholar] [CrossRef]
- Shine, M.B.; Guruprasad, K.N.; Anand, A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics 2012, 33, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Irungu, F.G.; Tanga, C.M.; Ndiritu, F.G.; Mathenge, S.G.; Kiruki, F.G.; Mahungu, S.M. Enhancement of potato (Solanum tuberosum L.) postharvest quality by use of magnetic fields—A case of shangi potato variety. Appl. Food Res. 2022, 2, 100191. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, H.; Wang, R.; Zhou, J.; Zhang, Y.; Qu, G.; Wang, T.; Jia, H. Multiprocess catalyzed Cu-EDTA decomplexation by non-thermal plasma coupled with Fe/C microelectrolysis: Reaction process and mechanisms. Sep. Purif. Technol. 2022, 280, 119831. [Google Scholar] [CrossRef]
- Hemmati, V.; Garavand, F.; Khorshidian, N.; Cacciotti, I.; Goudarzi, M.; Chaichi, M.; Tiwari, B.K. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. Food Biosci. 2021, 44, 101348. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Ma, T. Properties of plasma-activated water with different activation time and its effects on the quality of button mushrooms (Agaricus bisporus). LWT 2021, 147, 111633. [Google Scholar] [CrossRef]
- Yang, X.; An, J.; Wang, X.; Wang, L.; Song, P.; Huang, J. Ar plasma jet treatment delay sprouting and maintains quality of potato tubers (Solanum tuberosum L.) by enhancing antioxidant capacity. Food Biosci. 2023, 51, 102145. [Google Scholar] [CrossRef]
- Jakubowski, T.; Królczyk, J.B. Method for the Reduction of Natural Losses of Potato Tubers During their Long-Term Storage. Sustainability 2020, 12, 1048. [Google Scholar] [CrossRef]
- Frazier, M.J.; Kleinkopf, G.E.; Brey, R.R.; Olsen, N.L. Potato sprout inhibition and tuber quality after treatment with high-energy ionizing radiation. Am. J. Potato Res. 2006, 83, 31–39. [Google Scholar] [CrossRef]
- Rezaee, M.; Almasi, M.; Farahani, A.M.; Minaei, S.; Khodadadi, M. Potato Sprout Inhibition and Tuber Quality after Post Harvest Treatment with Gamma Irradiation on Different Dates. J. Agric. Sci. Technol. 2011, 13, 829–842. [Google Scholar]
- Ionica, M.-E.; Tutulescu, F.; Vlada, I. Effect of UV-C Irradiation on The Physicochemic Al Characteristics of Potato Tubers During Storage. South-West. J. Hortic. Biol. Environ. 2023, 14, 94–109. [Google Scholar]
- Fernie, A.R.; Willmitzer, L. Molecular and Biochemical Triggers of Potato Tuber Development. Plant Physiol. 2001, 127, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, L.A.; Kolachevskaya, O.O.; Krivandin, A.V.; Filatova, A.G.; Gradov, O.V.; Plashchina, I.G.; Romanov, G.A. Changes in Structural and Thermodynamic Properties of Starch during Potato Tuber Dormancy. Int. J. Mol. Sci. 2023, 24, 8397. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Han, F.; Huang, Y.; Xiao, L.; Cao, S.; Liu, Z.; Thakur, K.; Han, L. Physicochemical Properties and Molecular Structure of Starches from Potato Cultivars of Different Tuber Colors. Starch 2022, 74, 11–12. [Google Scholar] [CrossRef]
- Jiang, S.; Cen, J.; Zhou, Y.; Wang, Y.; Wu, D.; Wang, Z.; Sun, J.; Shu, X. Physicochemical characterizations of five Dioscorea alata L. starches from China. Int. J. Biol. Macromol. 2023, 237, 124225. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, S.; Govindaraju, I.; Mazumder, N. An Insight into the Ultrastructural and Physiochemical Characterization of Potato Starch: A Review. Am. J. Potato Res. 2020, 97, 464–476. [Google Scholar] [CrossRef]
- Chakraborty, I.; Govindaraju, I.; Kunnel, S.; Managuli, V.; Mazumder, N. Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels 2023, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.L.J.; Pereira, T.d.S.; Freire, V.d.A.; Santiago, M.; Oliveira, H.M.L.; Conrado, L.d.S.; de Gusmão, R.P. Influence of enzymatic hydrolysis on the properties of red rice starch. Int. J. Biol. Macromol. 2019, 141, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Farrar, J.F.; Jones, D.L. The control of carbon acquisition by roots. New Phytol. 2008, 147, 43–53. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, N.; Wen, Y.; Jin, X.; Yang, J.; Si, H.; Wang, D. Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato. J. Biotechnol. 2015, 198, 17–30. [Google Scholar] [CrossRef]
- Si, H.; Zhang, C.; Zhang, N.; Wen, Y.; Wang, D. Control of potato tuber dormancy and sprouting by expression of sense and antisense genes of pyrophosphatase in potato. Acta Physiol. Plant. 2016, 38, 69. [Google Scholar] [CrossRef]
- Suttle, J.C. Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubers. Physiol. Plant. 1995, 95, 233–240. [Google Scholar] [CrossRef]
- Destefano-Beltrán, L.; Knauber, D.; Huckle, L.; Suttle, J.C. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol. Biol. 2006, 61, 4–5. [Google Scholar] [CrossRef]
- Krauss, A.; Marschner, H. Influence of nitrogen nutrition, daylength and temperature on contents of gibberellic and abscisic acid and on tuberization in potato plants. Potato Res. 1982, 25, 13–21. [Google Scholar] [CrossRef]
- Haider, M.W.; Amin, M.; Ahmad, I. Physiology of tuber dormancy and its mechanism of release in potato. J. Hortic. Sci. Technol. 2021, 4, 13–21. [Google Scholar] [CrossRef]
- Che, Y.; Liao, Y.-Q.; Fu, X.; Yue, Y.; Zhang, N.; Si, H.-J. Regulation of StTCP15 gene expression and tuber dormancy characteristics of potato by gibberellic acid, abscisic acid, and low temperature. Biol. Plant. 2022, 66, 96–102. [Google Scholar] [CrossRef]
- Seo, M.; Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002, 7, 41–48. [Google Scholar] [CrossRef]
- Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005, 56, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front. Plant Sci. 2018, 9, 346346. [Google Scholar] [CrossRef]
- Destefano-Beltrán, L.; Knauber, D.; Huckle, L.; Suttle, J. Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. J. Exp. Bot. 2006, 57, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, R.-J.; Zhu, W.-J.; Liu, X.-R.; Shi, K.; Chen, M.; Yang, Q. Inhibitory effect of StCYP707A1 gene on tuberization in transgenic potato. Plant Biotechnol. Rep. 2017, 11, 219–228. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, R.; Zhao, M.; Wang, F.; Zhang, N.; Si, H. NO and ABA Interaction Regulates Tuber Dormancy and Sprouting in Potato. Front. Plant Sci. 2020, 11, 498116. [Google Scholar] [CrossRef]
- Feitosa-Araujo, E.; da Fonseca-Pereira, P.; Knorr, L.S.; Schwarzländer, M.; Nunes-Nesi, A. NAD meets ABA: Connecting cellular metabolism and hormone signaling. Trends Plant Sci. 2022, 27, 16–28. [Google Scholar] [CrossRef]
- Sharief, A.E.; Kandil, A.A.; Sharief, A.E.; El-Atif, A.M.Y.A. Encouragement Germination of Potato Seed Cultivars (Solanum tuberosum L.). J. Basic Appl. Sci. 2012, 8, 223–230. [Google Scholar] [CrossRef]
- Law, R.D.; Suttle, J.C. Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiol. Plant. 2004, 120, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Deligios, P.A.; Rapposelli, E.; Mameli, M.G.; Baghino, L.; Mallica, G.M.; Ledda, L. Effects of Physical, Mechanical and Hormonal Treatments of Seed-Tubers on Bud Dormancy and Plant Productivity. Agronomy 2020, 10, 33. [Google Scholar] [CrossRef]
- Xie, Y.; Onik, J.C.; Hu, X.; Duan, Y.; Lin, Q. Effects of (S)-Carvone and Gibberellin on Sugar Accumulation in Potatoes during Low Temperature Storage. Molecules 2018, 23, 3118. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-P. Review The Molecular Mechanism and Evolution of the GA-GID1-DELLA Signaling Module in Plants. Curr. Biol. 2011, 21, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Senning, M.; Hedden, P.; Sonnewald, U.; Sonnewald, S. Reactivation of Meristem Activity and Sprout Growth in Potato Tubers Require Both Cytokinin and Gibberellin. Plant Physiol. 2011, 155, 776–796. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Agarwal, S.; Pattanayak, D.; Minhas, J.S. Post-Transcriptional Silencing of Ga20ox1 in Potato. Potato J. 2005, 32, 3–4. [Google Scholar]
- Kloosterman, B.; Navarro, C.; Bijsterbosch, G.; Lange, T.; Prat, S.; Visser, R.G.F.; Bachem, C.W.B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J. 2007, 52, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.E.; Smith, O.E. Effect of kinetin on tuber formation on isolated stolons of Solanum tuberosum L. cultured in vitro. Plant Cell Physiol. 1970, 11, 303–314. [Google Scholar] [CrossRef]
- Uranbey, S. Comparison of Kinetin and 6-benzyladenine (BA) on in vitro Microtuberization of Potato under Short Days Conditions. Yuz. Yıl Univ. J. Agric. Sci. 2005, 15, 39–41. [Google Scholar]
- Sakakibara, H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Suttle, J.C.; Banowetz, G.M. Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol. Plant. 2001, 109, 68–74. [Google Scholar] [CrossRef]
- Takei, K.; Yamaya, T.; Sakakibara, H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyse the biosynthesis of trans-Zeatin. J. Biol. Chem. 2004, 279, 41866–41872. [Google Scholar] [CrossRef] [PubMed]
- Skalický, V.; Kubeš, M.; Napier, R.; Novák, O. Auxins and Cytokinins—The Role of Subcellular Organization on Homeostasis. Int. J. Mol. Sci. 2018, 19, 3115. [Google Scholar] [CrossRef] [PubMed]
- Lomin, S.N.; Myakushina, Y.A.; Kolachevskaya, O.O.; Getman, I.A.; Savelieva, E.M.; Arkhipov, D.V.; Deigraf, S.V.; Romanov, G.A. Global View on the Cytokinin Regulatory System in Potato. Front. Plant Sci. 2020, 11, 613624. [Google Scholar] [CrossRef] [PubMed]
- Esztergályos, Á.; Polgár, Z. Effect of chemical treatments used for dormancy breaking on the number of stems and tubers of Hungarian potato varieties. Acta Agrar. Kaposváriensis 2020, 24, 61–74. [Google Scholar] [CrossRef]
- Zubko, E.; Macháčková, I.; Malbeck, J.; Meyer, P. Modification of cytokinin levels in potato via expression of the Petunia hybrida Sho gene. Transgenic Res. 2005, 14, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fujino, K.; Shimura, H. Transcriptomic Analyses Reveal the Role of Cytokinin and the Nodal Stem in Microtuber Sprouting in Potato (Solanum tuberosum L.). Int. J. Mol. Sci. 2023, 24, 17534. [Google Scholar] [CrossRef] [PubMed]
- Kolachevskaya, O.O.; Lomin, S.N.; Arkhipov, D.V.; Romanov, G.A. Auxins in potato: Molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep. 2019, 38, 681–698. [Google Scholar] [CrossRef] [PubMed]
- Sorce, C.; Lorenzi, R.; Ceccarelli, N.; Ranalli, P. Changes in free and conjugated IAA during dormancy and sprouting of potato tubers. Funct. Plant Biol. 2000, 27, 371–377. [Google Scholar] [CrossRef]
- Saidi, A.; Hajibarat, Z. Phytohormones: Plant switchers in developmental and growth stages in potato. J. Genet. Eng. Biotechnol. 2021, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Faivre-Rampant, O.; Cardle, L.; Marshall, D.; Viola, R.; Taylor, M.A. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J. Exp. Bot. 2004, 55, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, N.; Wen, Y.; Si, H.; Wang, D. Identification of differentially expressed genes in potato associated with tuber dormancy release. Mol. Biol. Rep. 2012, 39, 11277–11287. [Google Scholar] [CrossRef] [PubMed]
- Kermode, A.R. Role of Abscisic Acid in Seed Dormancy. J. Plant Growth Regul. 2005, 24, 319–344. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Zhao, Y.; Feng, Z.; Li, Q.; Yang, H.Q.; Luan, S.; Li, J.; He, Z.H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15485–15490. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Li, L.; Feng, L.; Ren, M. StABI5 Involved in the Regulation of Chloroplast Development and Photosynthesis in Potato. Int. J. Mol. Sci. 2020, 21, 1068. [Google Scholar] [CrossRef]
- Santin, F.; Bhogale, S.; Fantino, E.; Grandellis, C.; Banerjee, A.K.; Ulloa, R.M. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiol. Plant 2017, 159, 244–261. [Google Scholar] [CrossRef] [PubMed]
- Cools, K.; Chope, G.A.; Hammond, J.P.; Thompson, A.J.; Terry, L.A. Ethylene and 1-Methylcyclopropene Differentially Regulate Gene Expression during Onion Sprout Suppression. Plant Physiol. 2011, 156, 1639–1652. [Google Scholar] [CrossRef]
- Amoah, R.S.; Landahl, S.; Terry, L.A. The timing of exogenous ethylene supplementation differentially affects stored sweetpotato roots. Postharvest Biol. Technol. 2016, 120, 92–102. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Alamar, M.C.; Thompson, A.J.; Terry, L.A. Fructans redistribution prior to sprouting in stored onion bulbs is a potential marker for dormancy break. Postharvest Biol. Technol. 2019, 149, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Fu, M.; Yang, X.; Chen, Q. Ethylene inhibited sprouting of potato tubers by influencing the carbohydrate metabolism pathway. J. Food Sci. Technol. 2016, 53, 3166–3174. [Google Scholar] [CrossRef] [PubMed]
- Tosetti, R.; Waters, A.; Chope, G.; Cools, K.; Alamar, M.; McWilliam, S.; Thompson, A.; Terry, L. New insights into the effects of ethylene on ABA catabolism, sweetening and dormancy in stored potato tubers. Postharvest Biol. Technol. 2021, 173, 111420. [Google Scholar] [CrossRef] [PubMed]
- Dako, E.; Jankowski, C.K.; Gnimassou, Y.-M.; Lebeau, D. Study of inhibition of germination of potato by ethylene. Heliyon 2021, 7, e06175. [Google Scholar] [CrossRef]
- Foukaraki, S.G.; Cools, K.; Terry, L.A. Differential effect of ethylene supplementation and inhibition on abscisic acid metabolism of potato (Solanum tuberosum L.) tubers during storage. Postharvest Biol. Technol. 2016, 112, 87–94. [Google Scholar] [CrossRef]
- Foukaraki, S.G.; Cools, K.; Chope, G.A.; Terry, L.A. Impact of ethylene and 1-MCP on sprouting and sugar accumulation in stored potatoes. Postharvest Biol. Technol. 2016, 114, 95–103. [Google Scholar] [CrossRef]
- Zhang, M.; Jiao, W.; Chen, Q.; Fu, M.; Han, C. Integrative Phytohormone and Transcriptome Analyses Reveal the Inhibitory Mechanism of Ethylene on Potato Tuber Sprouting at Room Temperature. Horticulturae 2024, 10, 286. [Google Scholar] [CrossRef]
- Korableva, N.P.; Platonova, T.A.; Dogonadze, M.Z.; Evsunina, A.S. Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol. Plant 2002, 45, 39–43. [Google Scholar] [CrossRef]
- Li, L.; Deng, M.; Lyu, C.; Zhang, J.; Peng, J.; Cai, C.; Yang, S.; Lu, L.; Ni, S.; Liu, F.; et al. Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chem. 2020, 325, 126875. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Deng, M.; Li, L.; Yu, J.; Ding, F.; Huang, X.; Peng, J.; Shuai, Y.; Cai, C.; Wang, X. Expression Changes of Genes Related to Brassinosteroid Biosynthesis and Signal Transduction during Potato Storage and Its Effect on Tuber Sprouting. Acta Agron Sin. 2017, 43, 811–820. [Google Scholar] [CrossRef]
- Kim, S.Y.; Warpeha, K.M.; Huber, S.C. The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. J. Plant Physiol. 2019, 241, 153031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cai, Z.; Wang, X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA 2009, 106, 4543–4548. [Google Scholar] [CrossRef]
- Li, J.; Nam, K.H.; Vafeados, D.; Chory, J. BIN2, a New Brassinosteroid-Insensitive Locus in Arabidopsis. Plant Physiol. 2001, 127, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yu, D. BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in Arabidopsis. Plant Cell 2014, 26, 4394–4408. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cai, C.; Li, L.; Wen, H.; Liu, J.; Li, L.; Wang, Q.; Wang, X. StSN2 interacts with the brassinosteroid signaling suppressor StBIN2 to maintain tuber dormancy. Hortic. Res. 2023, 10, uhad228. [Google Scholar] [CrossRef]
- Liu, S.; Cai, C.; Li, L.; Yu, L.; Wang, Q.; Wang, X. Transcriptome Analysis Reveals the Molecular Mechanisms of BR Negative Regulatory Factor StBIN2 Maintaining Tuber Dormancy. Int. J. Mol. Sci. 2024, 25, 2244. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Demole, E.; Lederer, E.; Mercier, D. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helv. Chim. Acta 1962, 45, 675–685. [Google Scholar] [CrossRef]
- Aldridge, D.C.; Galt, S.; Giles, D.; Turner, W.B. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. C Org. 1971, 1623–1627. [Google Scholar] [CrossRef]
- Huang, H.; Liu, B.; Liu, L.; Song, S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017, 68, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef] [PubMed]
- Dogramaci, M.; Sarkar, D.; Datir, S.; Finger, F.; Shetty, K.; Fugate, K.; Anderson, J.V. Methyl jasmonate and 1,4-dimethylnaphthalene differentially impact phytohormonal and stress protective pathway regulation involved in potato tuber dormancy. Postharvest Biol. Technol. 2024, 213, 112931. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhadra, P. Mini Review on Strigolactones: Newly Discovered Plant Hormones. Biotechnol. Commun. 2020, 13. [Google Scholar] [CrossRef]
- Matusova, R.; Rani, K.; Verstappen, F.W.A.; Franssen, M.C.R.; Beale, M.H.; Bouwmeester, H.J. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiol. 2005, 139, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pagès, V.; Dun, E.A.; Pillot, J.-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.-C.; et al. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Umehara, M.; Hanada, A.; Yoshida, S.; Akiyama, K.; Arite, T.; Takeda-Kamiya, N.; Magome, H.; Kamiya, Y.; Shirasu, K.; Yoneyama, K.; et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Alder, A.; Jamil, M.; Marzorati, M.; Bruno, M.; Vermathen, M.; Bigler, P.; Ghisla, S.; Bouwmeester, H.; Beyer, P.; Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Pasare, S.A.; Ducreux, L.J.M.; Morris, W.L.; Campbell, R.; Sharma, S.K.; Roumeliotis, E.; Kohlen, W.; van der Krol, S.; Bramley, P.M.; Roberts, A.G.; et al. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol. 2013, 198, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Pokotylo, I.; Hodges, M.; Kravets, V.; Ruelland, E. A ménage à trois: Salicylic acid, growth inhibition, and immunity. Trends Plant Sci. 2022, 27, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Pusenkova, L.; Garshina, D.; Kasnak, C.; Palamutoglu, R.; Shpirnaya, I.; Mardanshin, I.; Maksimov, I. Improving the Biocontrol Potential of Endophytic Bacteria Bacillus subtilis with Salicylic Acid against Phytophthora infestans-Caused Postharvest Potato Tuber Late Blight and Impact on Stored Tubers Quality. Horticulturae 2022, 8, 117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, X.; Wang, Q.; Zhang, F.; Feng, H.; Wang, X.; Cai, C. Advances in the Modulation of Potato Tuber Dormancy and Sprouting. Int. J. Mol. Sci. 2024, 25, 5078. https://doi.org/10.3390/ijms25105078
Di X, Wang Q, Zhang F, Feng H, Wang X, Cai C. Advances in the Modulation of Potato Tuber Dormancy and Sprouting. International Journal of Molecular Sciences. 2024; 25(10):5078. https://doi.org/10.3390/ijms25105078
Chicago/Turabian StyleDi, Xueni, Qiang Wang, Feng Zhang, Haojie Feng, Xiyao Wang, and Chengcheng Cai. 2024. "Advances in the Modulation of Potato Tuber Dormancy and Sprouting" International Journal of Molecular Sciences 25, no. 10: 5078. https://doi.org/10.3390/ijms25105078
APA StyleDi, X., Wang, Q., Zhang, F., Feng, H., Wang, X., & Cai, C. (2024). Advances in the Modulation of Potato Tuber Dormancy and Sprouting. International Journal of Molecular Sciences, 25(10), 5078. https://doi.org/10.3390/ijms25105078