Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures
Abstract
:1. Introduction
- Low process costs;
- Environmentally friendly processes;
- Ease of process scale-up;
- Prevention of pollution and waste generation;
- Energy efficiency;
- Economic viability [8].
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.; Li, Y.; Wang, S. ABC triblock copolymer-stabilized gold nanoparticles for catalytic reduction of 4-nitrophenol. J. Catal. 2015, 329, 425–430. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mohanta, Y.K.; Pohl, P.; Nayak, D.; Messaoudi, M. Facile phytosynthesis of gold nanoparticles using Nepeta bodeana Bunge: Evaluation of its therapeutics and potential catalytic activities. J. Photochem. Photobiol. A Chem. 2024, 446, 115150. [Google Scholar] [CrossRef]
- Francis, S.; Nair, K.M.; Paul, N.; Koshy, E.P.; Mathew, B. Catalytic activities of green synthesized silver and gold nanoparticles. Mater. Today Proc. 2019, 9, 97–104. [Google Scholar] [CrossRef]
- Tim, B.; Błaszkiewicz, P.; Kotkowiak, M. Altering model cell membranes by means of photoactivated organic functionalized gold nanorods. J. Mol. Liq. 2021, 349, 118179. [Google Scholar] [CrossRef]
- Kaur, V.; Tanwar, S.; Kaur, G.; Sen, T. DNA-origami-based assembly of Au@Ag nanostar dimer nanoantennas for label-free sensing of pyocyanin. Chem. Phys. Chem. 2021, 22, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Bai, X.; Li, P.; Wang, C.; Guo, M.; Zhang, Y.; Ding, P.; Chen, S.; Wu, Y.; Wang, Q. Silver nanocubes monolayers as a SERS substrate for quantitative analysis. Chin. Chem. Lett. 2020, 32, 1497–1501. [Google Scholar] [CrossRef]
- Tim, B.; Kotkowiak, M.; Kowalska, N.; Nowicka, A.B.; Lewandowski, W. Influence of Gold Nanoparticle Assembly in Langmuir–Schaefer Monolayers on the Surface-Enhanced Spectroscopy Response of a Nanoplatform. J. Phys. Chem. C 2023, 127, 15978–15987. [Google Scholar] [CrossRef]
- Hasan, M.; Ullah, I.; Zulfiqar, H.; Naeem, K.; Iqbal, A.; Gul, H.; Ashfaq, M.; Mahmood, N. Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective. Mater. Today Chem. 2018, 8, 13–28. [Google Scholar] [CrossRef]
- Muddapur, U.M.; Alshehri, S.; Ghoneim, M.M.; Mahnashi, M.H.; Alshahrani, M.A.; Khan, A.A.; Iqubal, S.M.S.; Bahafi, A.; More, S.S.; Shaikh, I.A.; et al. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules 2022, 27, 1391. [Google Scholar] [CrossRef]
- Kitching, M.; Ramani, M.; Marsili, E. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol. 2014, 8, 904–917. [Google Scholar] [CrossRef]
- Nejad, M.S.; Najafabadi, N.S.; Aghighi, S.; Pakina, E.; Zargar, M. Evaluation of Phoma sp. Biomass as an Endophytic Fungus for Synthesis of Extracellular Gold Nanoparticles with Antibacterial and Antifungal Properties. Molecules 2022, 27, 1181. [Google Scholar] [CrossRef] [PubMed]
- Konował, E.; Modrzejewska-Sikorska, A.; Milczarek, G. Synthesis and multifunctional properties of lignosulfonate-stabilized gold nanoparticles. Mater. Lett. 2015, 159, 451–454. [Google Scholar] [CrossRef]
- Jannoo, K.; Teerapatsakul, C.; Punyanut, A.; Pasanphan, W. Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies. Radiat. Phys. Chem. 2015, 112, 177–188. [Google Scholar] [CrossRef]
- Jebril, S.; Sierra-Padilla, A.; García-Guzmán, J.J.; Cubillana-Aguilera, L.; Palacios-Santander, J.M.; Dridi, C. Highly sensitive nanoplatform based on green gold sononanoparticles for phenol determination in olive oil. J. Appl. Electrochem. 2021, 51, 879–892. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, M.; Thakur, P.; Chaudhary, V.; Kaushik, A.; Furukawa, H.; Khosla, A. Exploring phytochemical composition, photocatalytic, antibacterial, and antifungal efficacies of Au NPs supported by Cymbopogon flexuosus essential oil. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Selvanayakam, S.; Esakkidurai, S.P.; Kalaiyar, S. Conductivity-based gas sensors using Tamarindus indica polysaccha-ride-capped gold nanoparticles for the detection of volatile gases. ACS Omega 2024, 9, 10640–10649. [Google Scholar]
- Kamala Nalini, S.P.; Vijayaraghavan, K. Green synthesis of silver and gold nanoparticles using Aloe vera gel and determining its antimicrobial properties on nanoparticle impregnated cotton fabric. J. Nanotechnol. 2020, 2, 42–50. [Google Scholar] [CrossRef]
- Fahmy, H.M.; El-Feky, A.S.; El-Daim, T.M.A.; El-Hameed, M.M.A.; Gomaa, D.A.; Hamad, A.M.; Elfky, A.A.; Elkomy, Y.H.; Farouk, N.A. Eco-Friendly Methods of Gold Nanoparticles Synthesis. Nanosci. Nanotechnol. Asia 2019, 9, 311–328. [Google Scholar] [CrossRef]
- Ahmeda, A.; Zangeneh, A.; Zangeneh, M.M. Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl. Organomet. Chem. 2020, 34, e5290. [Google Scholar] [CrossRef]
- Andeani, J.K.; Kazemi, H.; Mohsenzadeh, S.; Safavi, A. Biosynthesis of gold nanoparticles using dried flowers extract of Achillea wilhelmsii plant. Dig. J. Nanomater. Bios. 2011, 6, 1011–1017. [Google Scholar]
- Basavegowda, N.; Idhayadhulla, A.; Lee, Y.R. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind. Crop. Prod. 2014, 52, 745–751. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crop. Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem. 2017, 10, S3029–S3039. [Google Scholar] [CrossRef]
- Reddy, G.B.; Madhusudhan, A.; Ramakrishna, D.; Ayodhya, D.; Venkatesham, M.; Veerabhadram, G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. Nanostructure Chem. 2015, 5, 185–193. [Google Scholar] [CrossRef]
- Ankamwar, B. Biosynthesis of Gold Nanoparticles (Green-gold) Using Leaf Extract of Terminalia Catappa. E-J. Chem. 2010, 7, 1334–1339. [Google Scholar] [CrossRef]
- Parida, U.; Bindhani, B.K.; Nayak, P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. WJNSE. 2011, 1, 93–98. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef]
- Tikariha, S.; Banerjee, S.; Dev, A.; Singh, S. Growth Phase-Dependent Synthesis of Gold Nanoparticles Using Bacillus lichen-iformis. In Applications of Biotechnology for Sustainable Development; Mukhopadhyay, K., Sachan, A., Kumar, M., Eds.; Springer: Singapore, 2017; pp. 121–128. [Google Scholar]
- Bega, L.; Singlu, A.K.; Fan, Z.; Ran, P.C. Chemically attached gold nanoparticle-carbon nanotube hybrids for highly sensitive SERS substrate. Chem. Phys. Lett. 2011, 512, 237–242. [Google Scholar]
- Karbowska, B.; Rębiś, T.; Milczarek, G. Mercury-modified Lignosulfonate-stabilized Gold Nanoparticles as an Alternative Material for Anodic Stripping Voltammetry of Thallium. Electroanalysis 2017, 29, 2090–2097. [Google Scholar] [CrossRef]
- Tanaka, M.; Takahashi, Y.; Roach, L.; Critchley, K.; Evans, S.D.; Okochi, M. Rational screening of biomineralisation peptides for colour-selected one-pot gold nanoparticle syntheses. Nanoscale Adv. 2018, 1, 71–75. [Google Scholar] [CrossRef]
- Naapuri, J.M.; Losada-Garcia, N.; Deska, J.; Palomo, J.M. Synthesis of silver and gold nanoparticles–enzyme–polymer conju-gate hybrids as dual-activity catalysts for chemoenzymatic cascade reactions. Nanoscale 2022, 14, 5701–5715. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xue, X.; Karmakar, B.; Eltantawy, W.; El-Kott, A.F.; Nashar, E.M.E.; Abd-Ella, E.M. Sonochemical synthesis of gold nanoparticles mediated by potato starch: Its performance in the treatment of esophageal cancer. Open Chem. 2024, 22, 20230193. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, W.; Cai, J.; Li, J.; Zhong, L.; Pu, S.; Li, A. Morphology-controlled synthesis of gold nanoparticles with chitosan for catalytic reduction of nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128471. [Google Scholar] [CrossRef]
- Madruga, M.S.; de Albuquerque, F.S.M.; Silva, I.R.A.; Amaral, D.S.D.; Magnani, M.; Neto, V.Q. Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch. Food Chem. 2014, 143, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Cornejo-Ramírez, Y.I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. CyTA J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Tian, Y. Ionic liquids as novel solvents for biosynthesis of octenyl succinic anhydride-modified waxy maize starch. Int. J. Biol. Macromol. 2016, 86, 119–125. [Google Scholar] [CrossRef]
- Pienpinijtham, P.; Thammacharoen, C.; Ekgasit, S. Green synthesis of size controllable and uniform gold nanospheres using alkaline degradation intermediates of soluble starch as reducing agent and stabilizer. Macromol. Res. 2012, 20, 1281–1288. [Google Scholar] [CrossRef]
- Zeng, S.; Du, L.; Huang, M.; Feng, J.-X. Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase. Bioprocess Biosyst. Eng. 2016, 39, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Runguo, W.; Tahir, K.; Jichuan, Z.; Zhang, L. Catalytic reduction of 4-nitrophenol and photo inhibition of Pseudo-monas aeruginosa using gold nanoparticles as photocatalyst. J. Photochem. Photobiol. B 2017, 170, 181–187. [Google Scholar] [CrossRef]
- Wongmanee, K.; Khuanamkam, S.; Chairam, S. Gold nanoparticles stabilized by starch polymer and their use as catalyst in homocoupling of phenylboronic acid. J. King Saud. Univ. Sci. 2017, 29, 547–552. [Google Scholar] [CrossRef]
- Castillo-López, D.N.; Pal, U. Green synthesis of Au nanoparticles using potato extract: Stability and growth mechanism. J. Nanoparticle Res. 2014, 16, 2571. [Google Scholar] [CrossRef]
- Das, S.; Pandey, A.; Pal, S.; Kolya, H.; Tripathy, T. Green synthesis, characterization and antibacterial activity of gold nanoparticles using hydroxyethyl starch-g-poly (methylacrylate-co-sodium acrylate): A novel biodegradable graft copolymer. J. Mol. Liq. 2015, 212, 259–265. [Google Scholar]
- Malathi, S.; Ezhilarasu, T.; Abiraman, T.; Balasubramanian, S. One pot green synthesis of Ag, Au and Au–Ag alloy nanopar-ticles using isonicotinic acid hydrazide and starch. Carbohyd. Polym. 2014, 114, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, S.; Chen, S.; Wang, C.; Liu, D.; Li, X. Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. Int. J. Biol. Macromol. 2020, 159, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Krstonošić, V.; Dokić, L.; Nikolić, I.; Milanović, M. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll. 2015, 45, 9–17. [Google Scholar] [CrossRef]
- Whitney, K.; Reuhs, B.L.; Martinez, M.O.; Simsek, S. Analysis of octenylsuccinate rice and tapioca starches: Distribution of octenylsuccinic anhydride groups in starch granules. Food Chem. 2016, 211, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Ćirin, D.; Pavlović, N.; Nikolić, I.; Krstonošić, V. Assessment of soy protein acid hydrolysate—Xanthan gum mixtures on the stability, disperse and rheological properties of oil-in-water emulsions. Polymers 2023, 15, 2195. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Tan, C.; Chen, J.; Xu, Z.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2014, 8, 40–55. [Google Scholar] [CrossRef]
- Poojary, M.M.; Passamonti, P.; Adhikari, A.V. Green Synthesis of Silver and Gold Nanoparticles Using Root Bark Extract of Mammea suriga: Characterization, Process Optimization, and Their Antibacterial Activity. BioNanoScience 2016, 6, 110–120. [Google Scholar] [CrossRef]
- Mirrahimi, M.; Beik, J.; Mirrahimi, M.; Alamzadeh, Z.; Teymouri, S.; Mahabadi, V.P.; Eslahi, N.; Tazehmahalleh, F.E.; Ghaznavi, H.; Shakeri-Zadeh, A.; et al. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int. J. Biol. Macromol. 2020, 158, 617–626. [Google Scholar] [CrossRef]
- Mirrahimi, M.; Khateri, M.; Beik, J.; Ghoreishi, F.S.; Dezfuli, A.S.; Ghaznavi, H.; Shakeri-Zadeh, A. Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2658–2663. [Google Scholar] [CrossRef] [PubMed]
- Ghobashy, M.M.; Alkhursani, S.A.; Alqahtani, H.A.; El-Damhougy, T.K.; Madani, M. Gold nanoparticles in microelectronics advancements and biomedical applications. Mater. Sci. Eng. B 2024, 301, 117191. [Google Scholar] [CrossRef]
- Malik, S.; Niazi, M.; Khan, M.; Rauff, B.; Anwar, S.; Amin, F.; Hanif, R. Cytotoxicity study of gold nanoparticle synthesis using aloe Vera, honey, and Gymnema sylvestre leaf extract. ACS Omega 2023, 8, 6325–6336. [Google Scholar] [CrossRef] [PubMed]
- Elbagory, A.M.; Cupido, C.N.; Meyer, M.; Hussein, A.A. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles Using Microtitre-Plate Method. Molecules 2016, 21, 1498. [Google Scholar] [CrossRef] [PubMed]
- Haroon, N.; Stine, K.J. Electrochemical Detection of Hormones Using Nanostructured Electrodes. Coatings 2023, 13, 2040. [Google Scholar] [CrossRef]
- Ban, D.K.; Pratihar, S.K.; Paul, S. Controlled modification of starch in the synthesis of gold nanoparticles with tunable optical properties and their application in heavy metal sensing. RSC Adv. 2015, 5, 81554–81564. [Google Scholar] [CrossRef]
- Chairam, S.; Konkamdee, W.; Parakhun, R. Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction. J. Saudi Chem. Soc. 2017, 21, 656–663. [Google Scholar] [CrossRef]
- Prochaska, K.; Kędziora, P.; Le Thanh, J.; Lewandowicz, G. Surface properties of enzymatic hydrolysis products of octenylsuc-cinate starch derivatives. Food Hydrocoll. 2007, 21, 654–659. [Google Scholar] [CrossRef]
- Prochaska, K.; Kędziora, P.; Le Thanh, J.; Lewandowicz, G. Surface activity of commercial food grade modified starches. Colloids Surf. B Biointerfaces 2007, 60, 187–194. [Google Scholar] [CrossRef]
- Modrzejewska-Sikorska, A.; Robakowska, M.; Konował, E.; Gojzewski, H.; Gierz, L.; Wieczorek, B.; Warguła, L.; Łykowski, W. Lignin and Starch Derivatives with Selenium Nanoparticles for the Efficient Reduction of Dyes and as Polymer Fillers. Coatings 2023, 13, 1185. [Google Scholar] [CrossRef]
Element | % wt | % at |
C | 55.62 | 63.89 |
O | 41.65 | 35.91 |
Au | 2.73 | 0.19 |
Total | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tim, B.; Konował, E.; Modrzejewska-Sikorska, A. Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures. Int. J. Mol. Sci. 2024, 25, 5116. https://doi.org/10.3390/ijms25105116
Tim B, Konował E, Modrzejewska-Sikorska A. Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures. International Journal of Molecular Sciences. 2024; 25(10):5116. https://doi.org/10.3390/ijms25105116
Chicago/Turabian StyleTim, Beata, Emilia Konował, and Anna Modrzejewska-Sikorska. 2024. "Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures" International Journal of Molecular Sciences 25, no. 10: 5116. https://doi.org/10.3390/ijms25105116
APA StyleTim, B., Konował, E., & Modrzejewska-Sikorska, A. (2024). Starch Sodium Octenylsuccinate as a New Type of Stabilizer in the Synthesis of Catalytically Active Gold Nanostructures. International Journal of Molecular Sciences, 25(10), 5116. https://doi.org/10.3390/ijms25105116