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Abstract: Residue contact maps provide a condensed two-dimensional representation of three-
dimensional protein structures, serving as a foundational framework in structural modeling but also
as an effective tool in their own right in identifying inter-helical binding sites and drawing insights
about protein function. Treating contact maps primarily as an intermediate step for 3D structure
prediction, contact prediction methods have limited themselves exclusively to sequential features.
Now that AlphaFold2 predicts 3D structures with good accuracy in general, we examine (1) how well
predicted 3D structures can be directly used for deciding residue contacts, and (2) whether features
from 3D structures can be leveraged to further improve residue contact prediction. With a well-
known benchmark dataset, we tested predicting inter-helical residue contact based on AlphaFold2’s
predicted structures, which gave an 83% average precision, already outperforming a sequential
features-based state-of-the-art model. We then developed a procedure to extract features from atomic
structure in the neighborhood of a residue pair, hypothesizing that these features will be useful in
determining if the residue pair is in contact, provided the structure is decently accurate, such as
predicted by AlphaFold2. Training on features generated from experimentally determined structures,
we leveraged knowledge from known structures to significantly improve residue contact prediction,
when testing using the same set of features but derived using AlphaFold2 structures. Our results
demonstrate a remarkable improvement over AlphaFold2, achieving over 91.9% average precision
for a held-out subset and over 89.5% average precision in cross-validation experiments.

Keywords: AlphaFold; protein structure; protein structure modeling; Alpha helix; transmembrane
proteins; contact map prediction; machine learning; neural networks

1. Introduction

About 20 to 30 percent of genes in all genomes encode membrane proteins [1,2].
Transmembrane (TM) proteins are involved in essential cell processes such as catalysis,
signal transduction, protein targeting and transporting molecules and ions through the cell
membrane [3]. In the event of the dysregulation of cellular function, the manipulation of
these processes via therapeutic interventions can restore homeostasis [4]. It is therefore no
surprise that 60% of all clinically approved drugs target membrane proteins [4].

Understanding the 3D structure of TM proteins is crucial for comprehending their
functionality and facilitating the development of drugs [5]. TM proteins are largely
α-helical [6]. Generally, there has been a significant sequence-structure gap, and this
gap is particularly pronounced when it comes to TM proteins [7]. Since the extraction
of membrane proteins from their native lipid environment can alter their integrity and
their hydrophobic nature resists water dissolution, preventing crystallization is essential
for techniques like X-ray crystallography [5,8]. Though there have been several advances,
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such as attempts to map the structure while embedding them in a lookalike lipid mem-
brane [9] and making them water-soluble [10], the number of solved structures remains
disproportionately low.

When 3D structures are unavailable, a residue contact map provides a simplified
2D representation that is unchanged under translation or rotation and is easily processed
by machine learning models. The development of a 3D protein model from contact maps is
currently an area of active research. Typically, a folding engine like Rosetta [11] uses binary
contact maps as geometric constraints and turns them into folded proteins [12]. In addition,
the direct use of residue contact predictions has found applications in enhancing the speed
of molecular dynamics simulations [13], in docking simulations [14] and in predicting
protein–protein interactions as well [15,16]. TM helices have been observed to tilt and bend
when protein structures is captured in different functional states [17]. Hence, a residue
contact map could serve as a valuable tool on its own, for detection of inter-helical binding
sites, offering insights to proteins’ functions.

In the literature, a range of features derived from physio-chemical attributes, sequence
data and co-evolutionary information [7] have been employed to estimate residue contacts.
Approaches like EVFold [18] and direct coupling analysis [19], collectively termed as Evo-
lutionary coupling (EC) approaches, compute residue pair co-evolutionary propensities
(which correlate with contact propensities) from multiple sequence alignments (MSAs) and
have proved more effective than others. Several methods employed supervised learning
to combine predictions from various EC methods as input features to improve perfor-
mance. These include DeepHelicon [7], Wang et al. [20] and DeepMetaPSICOV [21] which
use deep learning approaches. Furthermore, studies have indicated that the topological
characteristics in the vicinity of a pair of residues within the contact map, including the
contact propensities of adjacent positions, can contribute to improving the accuracy of
predictions [22] even further.

The use of residual networks (ResNets) [23] with convolutional neural networks
(CNNs) greatly improved the quality of the predicted contact maps [12]. Raptor X [20],
AlphaFold [24] and TrRosetta [25] all used ResNets for residue contact prediction with
great success. An updated RaptorX system [26] predicted discretized inter-residue dis-
tances (0.5 Å increments) instead of binary contacts. AlphaFold [24] employed a similar
technique, and added components to convert predicted distribution over distances into
smooth energy potentials that could be minimized using gradient descent and folded into
a 3D structure without the use of a folding engine [12]. These methods take MSAs as direct
input and estimate the 3D coordinates of residues using deep learning, thereby delivering
an increasingly efficient end-to-end solution.

AlphaFold2 [27], with the use of transformers [28] and sufficiently deep MSAs, has
recently demonstrated the capability to achieve near-angstrom accuracy [12]. Given the
great success of AlphaFold2, it is conceivable to question whether any other efforts in
structural prediction including contact map prediction have become superfluous. Several
studies have examined AlphaFold2’s predicted structures, for example to assess the impact
of conformational diversity on its predictions [29] or to evaluate if AlphaFold2 learned
the physics of folding [30]. In particular, TmAlphaFold [31] examined if AlphaFold2’s
predicted alpha-helical TM structures are realistic. They found the quality for a majority of
cases (out of 215,844 TM proteins) to be excellent (45.16%) or good (21.51%), and for a lower
proportion of proteins, the quality to be fair (25.08%) or poor (2.21%). AlphaFold2 self
reports an all-atom accuracy of 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å ) [27].

Despite AlphaFold2’s high accuracy, there is room for improvement, especially for TM
proteins. MULTICOM3 [32] is built on top of AlphaFold2 and AlphaFold-Multimer [33].
It improved upon AlphaFold2’s performance by sampling more structural models via
the adjustment of input MSAs and incorporating protein complexes. CGAN-Cmap [34]
used a generative adversarial neural network embedded with a series of modified squeeze
and excitation residual networks to predict residue contact maps on CASP datasets and
achieved a performance gain over contact maps extracted from AlphaFold2.
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When it comes to contact map prediction, our previous work shows that information
from existing 3D structures could be leveraged to improve prediction accuracy [35]. A
classifier trained on structural features extracted from a residue pair’s neighborhood was
found to significantly outperform state-of-the-art models using non-structural features,
achieving above 90% precision for top L/2 and L inter-helical contacts. In particular, those
structural features were also found to be robust to high levels of noise, pessimistically
reliable up to 2 Å of coordinate noise [35]. It is then intriguing to explore the possibility
of applying this idea of using structural features for contact prediction to proteins that do
not have an experimentally determined structure but only have decently approximated
structures predicted by a computational tool such as AlphaFold2. Here, we explore this
idea expanding on our previous work. While AlphaFold2 is not designed for contact
map prediction per se, but rather for tertiary structure as a whole, its predicted structure
nonetheless can be used to establish a contact map as a by-product. And, therefore, we
hypothesize that a general-purpose tertiary structure prediction tool like AlphaFold2 can
be “bootstrapped” with features extracted from its predicted structure to perform better for
some special purpose tasks such as contact map prediction.

In this work, our aim is to further the utilization of structural features to improve
AlphaFold2’s performance for contact map prediction, although AlphaFold2’s performance
is typically measured for 3D structures, in terms of predicted local distance difference
test (pLDDT) [36]. As previously explained, contact maps are useful on their own; hence,
we first evaluate how well AlphaFold2’s predicted structure can deliver for contact point
prediction. We found it to be already quite accurate, achieving over 83% average precision
for the held-out datasets. We then trained a neural network based classifier on structural
features derived from experimentally determined structures and applied the trained clas-
sifier to predict residue contacts for proteins with derived features from AlphaFold2’s
predicted structures. The results from our experiments show that this method achieved
over 91.9% average precision for the held-out datasets, significantly outperforming Al-
phaFold2 predictions. This pipeline is pictorially depicted in Figure 1. Furthermore, we
compared our structure-derived features (SDFs) using 3D coordinates directly (CFs), and
found that the latter approach fails to improve upon AlphaFold2 predictions.
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Figure 1. Graphical depiction of the overall pipeline.

2. Results

To test out our hypothesis that structure-derived features (SDFs) can help improve the
residue contact prediction over AlphaFold2 structure, we designed cross-validation (cv)
experiments to train a neural network classifier on residue pairs (contact pairs as positive
and non-contact pairs as negative) represented by different types of features—including
SDFs and 3D coordinates (CFs)—and evaluated the trained classifier’s performance on
both the cv test set and a holdout set. The classification performance is evaluated with two
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commonly adopted metrics: Average Precision [37] and AUC-ROC [37,38]. For training, the
SDFs are derived from the ground truth structures as reported in PDB; whereas for testing,
the SDFs are derived from the AlphaFold2-predicted structures, with the intention to make
the classifier useful for proteins that do not have ground truth structures. Because the train
and test data are from different sources, we also conducted variance analysis based on the
statistics of these data to better understand the impact on learning and contact prediction.
In addition, a case study of a specific protein is presented with details at residue level to
shed light on how the SDF-trained classifier outperforms AlphaFold2 in contact prediction.

2.1. Contact Prediction

In Table 1, we report the average 5-fold cross validation performance (repeated 5 times)
for contact prediction from the classifier trained with using two feature types—3D coor-
dinates as features (CFs) and structure-derived features (SDFs). For comparison, we also
include the performance from AlphaFold2 binary annotations and DeepHelicon predictions.
The performance of either feature type, when constructed using experimentally determined
structures, is considered as an upper bound. Upper bound performance using our SDFs
substantially exceeds using coordinates directly (CFs) by 11.22%, 13.89% and 12.59% for
the SL, SM2 and SM1 datasets in terms of average precision; and 0.72%, 0.71% and 0.87%
in terms of AUC-ROC. For reproducibility, we report the random seeds used to create the
splits in 5-fold cross validation experiments in Supplementary File S1 Table S4.

Table 1. Classification performance—average over 5-fold cross validation (repeated 5 times).

Classifier Structure
Source

Feature
Type

SL SM1 SM2
Average

Precision AUC-ROC
Average

Precision AUC-ROC
Average
Precision AUC-ROC

NN (upperbound) Exp. SDF 0.9569 ± 0.0039 0.9980 ± 0.0004 0.9497 ± 0.0054 0.9981 ± 0.0004 0.9456 ± 0.0043 0.9983 ± 0.0002
NN AF SDF 0.8956 ± 0.0171 0.9919 ± 0.0035 0.9111 ± 0.0204 0.9957 ± 0.0016 0.9038 ± 0.0270 0.9965 ± 0.0011
NN (upperbound) Exp. CF 0.8447 ± 0.0193 0.9908 ± 0.0018 0.8238 ± 0.0341 0.9894 ± 0.0041 0.8067 ± 0.4712 0.9912 ± 0.0035
NN AF CF 0.8125 ± 0.0246 0.9846 ± 0.0046 0.8349 ± 0.0287 0.9915 ± 0.0017 0.8254 ± 0.0295 0.9927 ± 0.0014
AlphaFold2 - - 0.7920 0.9441 0.8316 0.9561 0.8473 0.9643
DeepHelicon - - - - 0.5679 ± 0.0440 0.9337 ± 0.0183 0.5678 ± 0.0479 0.9365 ± 0.0170

Exp—experimentally derived structures; AF—AlphaFold2-predicted structures; SDFs—structurally derived features;
CFs—coordinates as features; NN—neural network architecture presented in Figure 2.
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SDFs constructed using AlphaFold2-predicted structures (SDF + AF) outperform
AlphaFold2 binary annotations by 10.36%, 5.65% and 7.95% for the SL, SM2 and SM1
datasets, respectively, in terms of average precision; 4.78%, 4.72% and 3.96% respectively in
terms of AUC-ROC. Further, SDF + AF comfortably outperforms DeepHelicon by 33.6%,
34.32% for SM2 and SM1 datasets, respectively, in terms of average precision; 6.00% and
6.20%, respectively, in terms of AUC-ROC.

Prediction results for the held-out datasets (SM2 and SM1) for both feature types—CFs
and SDFs—AlphaFold2 binary annotations and DeepHelicon predictions in Table 2. The
upper bound performance using our SDFs substantially exceeds that using coordinates
directly (CFs) by 15.51% and 14.77% for the SM2 and SM1 datasets, respectively, in terms of
average precision; 0.68% and 0.79%, respectively, in terms of AUC-ROC.

Table 2. Classification performance—held-out datasets.

Classifier Structure
Source

Feature
Type

SM1 SM2
Average

Precision
AUC-ROC

Average
Precision

AUC-ROC

NN (upperbound) Exp. SDF 0.9641 0.9986 0.9618 0.9988
NN AF SDF 0.9267 0.9958 0.9197 0.9968
NN (upperbound) Exp. CF 0.8164 0.9907 0.8067 0.9920
NN AF CF 0.7710 0.9891 0.7686 0.9904
AlphaFold2 - - 0.8316 0.9561 0.8473 0.9643
DeepHelicon - - 0.5678 0.9336 0.5678 0.9366

Exp—experimentally derived structures; AF—AlphaFold2-predicted structures; SDFs—structurally derived
features; CFs—coordinates as features; NN—neural network architecture presented in Figure 2.

SDF + AF outperforms AlphaFold2 annotations by 7.25% and 9.5% for the SM2 and
SM1 datasets, respectively, in terms of average precision; 3.25% and 3.96%, respectively, in
terms of AUC-ROC. SDF + AF comfortably outperforms DeepHelicon as well by 35.19%
and 35.89% for the SM2 and SM1 datasets, respectively, in terms of average precision;
6.02% and 6.22%, respectively, in terms of AUC-ROC. Further, in nearly all sequences,
98% of the SM1 and 97.1% of the SM2 datasets (Table 3), the classification performance is
improved (measured in terms of average precision). In all experiments, SDFs outperform
the baseline CFs.

We report the performance comparison for SDF and CF , in terms of precision and recall at
L thresholds, for cross validation experiments - in Supplementary File S1 Table S5 and for held
out datasets (SM1 & SM2) in Supplementary File S1 Table S6. Further, we report per sequence
results for the held out datasets (SM1 & SM2) in Supplementary File S1 Tables S7 and S8.

Table 3. Individual sequences improved (in terms of average precision)—held-out datasets.

Dataset # Seqs (% of Total)

SM1 (49) 48 (98.0)
SM2 (34) 33 (97.1)

Recognizing that the datasets used in this study contain structures with varied resolu-
tions, which may impact how our proposed method works, we repeated the experiments
on datasets with stratified analysis: structures with high resolution (≤2.5 Å ) and struc-
tures with low resolution (2.5 Å to 3.5 Å ). The results (detailed in Supplementary File S1
Tables S12 and S13) are quite comparable and consistent improvements are seen in each
case, with a slight variation: the high resolution set had a higher baseline (AlphaFold2)
and relatively smaller improvement (5 to 6 percentage points) whereas the low resolution
set had a lower baseline and relatively larger improvement (8 to 9 percentage points). We
report the fraction of the structures with high resolution and low resolution in each dataset
(SL, SM1&SM2) in Supplementary File S1 Table S10. We also provide the random seeds
used for cross validation in this experiment in Supplementary File S1 Table S11.
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2.2. Variance Analysis

The classifier is trained on features constructed from experimentally derived structures.
However during testing, only features constructed from AlphaFold2-predicted structures will
be available to us. Consequently, the classifier’s testing performance depends on whether the
feature distributions from the two data sources (experimental vs. AlphaFold2 prediction) are
similar. In Table 4, we report the feature mean—average across all features and samples—and
feature variance—standard deviation across all features and samples—for the SL, SM1 and
SM2 datasets. The datasets were first scaled to a range of [−1,1]. It can be seen that SDFs
constructed using structures predicted by AlphaFold2 or experimentally determined structures
are very similar, differing by 0.013, 0.017, 0.035 for the SL, SM1 and SM2 datasets, respectively,
in terms of feature mean; −0.005, 0.003, −0.005, respectively, in terms of feature variance.
CFs constructed using AlphaFold2 structures or experimentally determined structures vary
more, differing by 0.207, 0.380 and 0.014 for the SL, SM1 and SM2 datasets, respectively,
in terms of feature mean; 0.142, 0.067 and 0.049, respectively, in terms of feature variance.
These statistics are helpful in gauging the distribution similarity. Using relative residue
distance and angles thus potentially has the effect of scaling for mean removal and variance
scaling. In other words, it is likely that an efficient model would need to predict relative
angles and distances that are closer in distribution to experimental determined ones; hence,
SDFs are a natural fit. CFs exhibit higher variance when generated using experimentally
determined structures, which makes intuitive sense as one would expect real residue
coordinates to exhibit more variance than predicted ones.

Table 4. Feature mean and variance of AlphaFold2-predicted and experimental structures.

SL SM1 SM2
Structure

Source Features
Feature
Mean

Feature
Variance

Feature
Mean

Feature
Variance

Feature
Mean

Feature
Variance

Exp SDF −0.1616 0.3656 −0.2487 0.3363 −0.1634 0.3653
AF SDF −0.1744 0.3707 −0.2655 0.3338 −0.1979 0.3707
Exp CF −0.1716 0.3025 −0.2293 0.3466 0.0275 0.2969
AF CF 0.0351 0.1604 0.1510 0.2799 0.0132 0.2474

Exp—experimentally derived structures; AF—AlphaFold2-predicted structures; SDF—structurally derived fea-
ture; CFs—coordinates as features; NN—neural network architecture presented in Figure 2.

We further examine this divergence (defined in Supplementary File S1 Figure S3) of
two data sources via a second auxiliary classifier’s ability to differentiate between features
generated using the two sources (AlphaFold2 and experimental) in Supplementary File S1
Section S7 [40–45]. The results reported in Supplementary File S1 Table S9 support what
the simple statistics (means and variance) have revealed.

The contact prediction performance for held-out datasets (SM1 and SM2) is higher than
corresponding cross validation experiments. We attribute this to a bigger training set size.
Performance comparison for individual sequences, recall and precision scores [46–48] at the
top L, L/2, L/5, L/10 thresholds (top k residue pair predictions set as 1 s and the rest as 0 s;
L represents the combined sequential length of transmembrane helices within a sequence)
are reported in Supplementary File S1.

DeepHelicon dataset consists of structures that were experimentally determined prior
to the release of AlphaFold DB; it is likely they were part of AlphaFold’s training, which
then bolsters our case.

2.3. Case Study

Additionally, in Supplementary File S1 Section S8 and Figure S4, we illustrate, via a
case study of the chain 4g7vS [49] from dataset SL, how using a classifier trained on SDFs
from experimentally derived features can improve AlphaFold’s predicted structure.

3. Discussion

In this study, we adopted an unorthodox approach of extracting features in the neigh-
borhood of a residue pair from experimentally determined structures and used them to
train a classifier for predicting contacts between residues located on different helices of
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α-helical TM proteins. This approach, which is in contrast to most other works that have
focused on developing methods to predict residue contact based on the primary structure,
would not be useful should the atomic structures be not available. What we demonstrated
here is that AlphaFold2 has dramatically raised the quality of predicted structures—in
our held-out experiments, we found it to be highly accurate, achieving over 83% average
precision—and can be used as a surrogate of ground truth 3D structure for providing
informative structural features. We trained on features generated from experimentally
determined structures and predicted on features constructed using AlphaFold2-predicted
structures. The results from our experiments demonstrate a significant improvement over
AlphaFold2, achieving over 91.9% average precision for both SM1 and SM2 datasets. Based
on what is demonstrated in this study, it is conceivable that more sophisticated structural
features may be extracted from AlphaFold2 structures to potentially lead to further im-
provement. It is worth noting that we also show that simply training on coordinates directly
does not lead to a performance improvement. Structurally derived features potentially
reduce distributional distance between features derived from experimentally determined
and predicted structures. This work demonstrates that a residue sequence neighborhood
is information-rich, can be used to produce more accurate structures and that features
derived from a residue’s structural neighborhood can be generalized across sequences. As
a future work, it is possible that we may leverage the improved contact map to enhance the
predicted structures even further.

4. Materials and Methods
4.1. Dataset—Experimentally Determined Structures

We adopted the widely used DeepHelicon dataset [7] for this study. It was created
with TM protein chains from the PDBTM database [50], each of the selected 5606 α-helical
chains had a resolution finer than 3.5Å . Further, the chains were non-redundantly curated
using a 23% sequence identity threshold and with a maximum TM score [51] of 0.4 to
ascertain that the protein chains were structurally dissimilar. The resulting dataset consists
of 222 protein chains, featuring a differing count of TM helices (2–17). It is segmented
into three sub-datasets: (a) TRAIN—165 sequences that serve as the training set, which
we refer to as dataset SL for clarity; (b) TEST—57 sequences that serve as a held-out set,
which we refer to as dataset SM1 for clarity; and (c) PREVIOUS—44 sequences that serve
as an additional held-out set, which we refer to as dataset SM2 for clarity [52,53]. For
every protein chain, annotations indicating which residue pairs are in contact and which
positions are within the TM region, protein sequence, and the 3D structure in PDB format,
which includes the atomic coordinates of each residue’s heavy atoms, are included with
the dataset. Additionally, DeepHelicon’s model predictions for the held-out datasets (TEST
and PREVIOUS) are included.

Given a chain’s atomic structure, a residue pair is considered to be in contact if their
heavy atoms are within a specific distance of each other. In the DeepHelicon dataset [7],
a contact point is defined as 2 residues that are separated by a minimum of 5 residues in
sequence and for which the minimum distance between any pair of their heavy atoms
measures less than 5.5 Å [7].

Following our previous work [35], a few sequences are removed—those are sequences
with no inter-helical contact points or with positions annotated to be in TM zone not
matching positions used by DeepHelicon (refer to the Supplementary File S1)—this results
in 162, 40 and 57 sequences in SL, SM2 and SM1 datasets, respectively. A summary of these
changes can be found in Table 5.
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Table 5. Dataset statistics—protein chain count and contact ratio for SL, SM1 and SM2 datasets.

Dataset #Sequences #Filtered Sequences AF Available CR × 100

SL 165 162 154 2.10
SM1 57 54 49 2.07
SM2 44 40 34 1.95

AF available—a matching AlphaFold2-predicted structure was found; CR—contact ratio.

4.2. Dataset—AlphaFold Predicted Structures

AlphaFold DB provides predicted structures for over 200 million protein sequences
in the UniProt [54] reference proteome [36,55]. These structures can be accessed via the
protein chain’s UniProtKB ID [54], and include atomic coordinates of each residue’s heavy
atoms in PDB format. We relied on the Research Collaboratory for Structural Bioinformatics
protein data bank (RCSB PDB (RCSB.org)) [56,57] to map the PDB ID of every chain in the
DeepHelicon dataset to UniProtKB ID. If a match was found, the corresponding predicted
structure was accessed via AlphaFold DB. For several protein chains, an integer offset
to PDB positions in the DeepHelicon dataset is needed to sequentially align them with
AlphaFold structures [58] (refer to Supplementary File S1 Section S2 and Tables S1–S3). In
case a UniProtKB ID match was not found in RCSB PDB or the sequences from UniProt
and DeepHelicon dataset matched partially, i.e., all positions annotated to be in TM zones
were not contiguously included, then the chain was removed from the dataset (refer to the
Supplementary File S1). This process resulted in 154, 34 and 49 sequences in the SL, SM2
and SM1 datasets, respectively.

These modifications, as well as the contact ratio (CR) (for residue pairs situated on
distinct TM helices and separated by at least 5 residues in the sequence), are presented in
Table 5. The definition of CR is provided in Equation (1).

CR =
#contact points

#residue pair positions
(1)

As mentioned in Section 4.1, the DeepHelicon dataset includes annotations indicating
residue positions located in the TM zone. For matching structures obtained from Al-
phaFold DB, we adopt the same annotations. Following the contact definition described in
Section 4.1, for matching predicted structures obtained from AlphaFold DB, we generated
annotations indicating which residue pair positions are contact points.

4.3. Methods

The methods proposed for predicting residue contact maps consist of mainly two
parts: selecting features and training a classifier. In the following, we show in detail how to
construct a feature vector from a 3D structure, which is either experimentally determined
or computationally predicted, to represent a residue pair, and how to use them to feed into
a neural network-based classifier for training.

4.3.1. Structurally Derived Features (SDFs)

Following our previous work [35], we employ structural features derived from coordi-
nate data for predicting residue contacts. For inter-helical contact, only residue pairs (i, j)
(i and j represent positions in the amino acid sequence) that are on different helices and
separated by a minimum of 5 residues are considered, which is the criterion from [7] where
we obtained the data. To predict whether (i, j) is a contact, we gather features from its
neighborhood, which comprises of 8 positions in a window of size 3 × 3 centered at (i, j):
(i, j ± 1), (i ± 1, j), (i ± 1, j ± 1); specifically, for each neighboring position in this window, a
vector of 5 features is constructed, including the relative residue distances, relative residue
angle and inter-helical tilt angle. And we concatenate features for these eight neighbors to
create a feature vector of size 40 (resulting from 8 positions each with 5 features). Features
from (i, j)) are excluded so that the classifier does not rely on the distance between residue i

https://www.rcsb.org/
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and residue j to determine contact, as this distance is how a residue pair is named as being
a contact or not. This process is illustrated in Figure 3a. More detailed descriptions of these
extracted features are provided in the following subsections.

(i, j)
(i − 1, j)

(i + 1, j)

(i, j − 1)

(i, j + 1) (i + 1, j + 1)

(i − 1, j − 1) (i + 1, j − 1)

(i − 1, j + 1)
= f(i+1,j)

1 × 5
δD1, SDD1 , Dαθ

f(i−1,j+1), f(i−1,j), . . . , f(i+1,j−1) = F(i,j)
8 × 5

(a)

(i, j)
(i − 1, j)

(i + 1, j)

(i, j − 1)

(i, j + 1) (i + 1, j + 1)

(i − 1, j − 1) (i + 1, j − 1)

(i − 1, j + 1)

Ni+1, Cα i+1, Oi+1, Cβ i+1 Nj, Cαj, Oj, Cβj = f(i+1,j)

1 × 8 × 3
f(i−1,j+1), f(i−1,j), . . . , f(i+1,j−1) = F(i,j)

8 × 24

Nj
x, Nj

y, Nj
z

1 × 3

(b)

Figure 3. Feature vectors are features derived from a 3 × 3 window of residue pairs surround-
ing and centered on a specific residue pair (i, j)(not including (i, j)). (First published in [35]).
(a) Structurally derived features—feature vector of length 40. (b) Coordinates as features—feature
vector of length 192.

Inter-Helical Tilt Angle (θ)

The inter-helical tilt angle for a pair of residues is the angle measured between the
helices on which these residues are located [59]. Within an α-helix, each spiral turn of the
backbone coil takes about 4 residues. All C = O groups are oriented in one direction while
all N − H groups are oriented in the opposite direction; thus, the dipoles are consistently
aligned. The planes of the peptide bonds are approximately parallel with the helical axis
and, at the same time, amino side chains project outwards from the central helical axis
typically oriented towards the amino-terminal end [60]. Motivated by this observation,
we determine the orientation of a helical axis by calculating the average direction of the
vector C(i) = O(i)− N(i + 4) for all residues within the helix. The inter-helical tilt angle
is the angle that describes the orientation difference between the axes of two helices, and
hence can be very informative regarding how two helices may interact with each other. We
use the Pymol package for these computations [61–63]. A diagrammatic representation is
provided in Supplementary File S1 Figure S1.

Relative Residue Distance

We detail three features that describe the relative distance between residues:

1. D1 distance (mean relative residue distance) [35,64,65]: We calculate the average
Euclidean distance between a pair of residues by considering all paired combinations
of their heavy atoms. If {A1

x, . . . AM
x } are the 3D coordinates of the residue Rx and

{A1
y, . . . AN

y } for the residue Ry. Additionally, if dist(i, j) represents the Euclidean
distance between two sets of 3D coordinates i and j then the mean relative residue
distance between a residue pair (Rx, Ry) is

D1(Rx, Ry) =
1

MN

M

∑
i=1

N

∑
j=1

dist(Ai
x, Aj

y) (2)
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2. D1 deviation (relative residue distance deviation) [35,64,65]: We consider the dis-
tances between all paired combinations of a residue pair’s heavy atoms and calculate
the standard deviation for these distances. Then, deviation of the relative residue
distances between a residue pair (Rx, Ry) is

SDD1(Rx, Ry) =

√{
1

MN ∑M
i=1 ∑N

j=1[(dist(Ai
x, Aj

y)− D1(Rx, Ry))2]
}

(3)

3. Dα (Relative Cα distance) [35,64,65]: We calculate the Euclidean distance between the
alpha carbons of a pair of residues. If the kth atom for a residue R is returned by a func-
tion atom(R, k). Additionally, if Cα is the ith atom for residue Rx, i.e., atom(Rx, i) = Cα

and the jth atom for residue Ry i.e., atom(Ry, j) = Cα. Then, relative Cα distance
between a residue pair (Rx, Ry) is

Dα(Rx, Ry) = dist(Ai
x, Aj

y) (4)

Relative Residue Angle (δ)

We define a residue’s plane using vectors formed by the Cα to N atom and the Cα

to C atom in the carboxyl group [65]. For a pair of residues, the relative residue angle is
defined as the absolute angle between the surface normals of their respective planes [35]. A
diagrammatic representation is provided in Supplementary File S1 Figure S2.

It is important to note that the definition of a residue pair being a contact point relies
on the minimum distance between paired combinations of their heavy atoms. However,
during the prediction process, we utilize structural information from the neighborhood of
the residue pair, and employ different distance functions (D1 distance and Dα distance) to
determine if it is a contact point.

4.3.2. Coordinates as Features (CFs)

To demonstrate the effectiveness of our derived features described above, we also
directly use 3D coordinates of residue pair’s heavy atoms as features. This serves as a
performance baseline. Residue pairs (i, j) ) (i and j represent positions in the amino acid
sequence) that fulfill the criteria of being sequence separated by a minimum of 5 residues
and present on different helices (inter-helical) are the only ones considered. For each of the
eight positions in the neighborhood window of size 3 centered at (i, j) (not including (i, j)),
a vector consisting of x, y, z coordinates of the heavy atoms from the residue pair of interest
(size 24) is constructed. Each residue is represented by the x, y, z coordinates of 4 heavy
atoms from its structure, namely nitrogen atom (N) from the amino group, alpha carbon
(Cα), oxygen from the carboxyl group (O) and beta carbon (Cβ). We concatenate features
for these eight neighbors to create a feature vector of size 192 (resulting from 8 positions
each with 24 features). This process is illustrated in Figure 3b.

4.3.3. Classification Experiment

We handled the prediction of an inter-helical TM residue pair position being a contact
point as a binary classification problem using supervised learning. As mentioned earlier,
we only consider residue pair positions that fulfill the criteria of being sequence separated
by a minimum of 5 residues and present on different helices (inter-helical). For structurally
derived features, we constructed a feature vector of length 40 (described in Section 4.3.1).
While using coordinates as features, a feature vector of length 192 was formed (described
in Section 4.3.2).

Features from either feature set (structurally derived or coordinates) were first nor-
malized to a [−1, 1] scale before being used for classification, such that f t

iscaled
= −1 + 2 ×

(
f t
i −min( fi)

max( fi)−min( fi)
) where the tth sample for the feature fi is denoted by f t

i , and the functions
min(.) and max(.) determine the lowest and highest observed value for the feature fi.
Additionally, for the feature fi, tth sample’s scaled value is represented by f t

iscaled
.
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We constructed a neural network classifier consisting of 6 hidden layers with leaky
Relu activation function [66] to capture the non-linearity in the features and used binary
cross entropy as the loss criterion at the output. The architecture is depicted in Figure 2. Us-
ing Adam optimizer [67] with a learning rate of 0.0001, we trained in batches of 256 samples
for a total of 400 epochs. The weights of the network were initialized using Xavier uniform
distribution [68] and gradients were clipped to the range [−1, 1] to prevent exploding and
vanishing gradients [69]. We used the PyTorch package for our implementation [70].

A static fully connected linear layer was used to project structurally derived features
from 40 to 192 dimensions; this enabled us to use the same network for both (structural
derived and coordinates) feature sets.

We assessed our performance on each dataset—SL (154 sequences), SM1 (49 sequences)
and SM2 (34 sequences) using cross validation (5 folds) [71,72]. In each fold, 20% of the
sequences were randomly selected and set aside for validation, while the remaining 80%
were used for training. Further, a model was retrained on the entire SL dataset and its
performance evaluated on the held-out SM2 and SM1 datasets.

In each experiment, we used features (SDFs or CFs) constructed from experimentally
determined structures during training and, for comparison purposes, tested the trained
classifier on two separate cases: (a) features constructed from experimental determined
structures, and (b) features constructed from AlphaFold-predicted structures.

Performance Metrics

We evaluated the classification performance with the following two widely used metrics:

1. Average precision: Average precision condenses the precision–recall curve by taking
a weighted average of precision values at various thresholds. The weight applied
to each threshold’s precision value is determined by the increase in recall from the
previous threshold [37].

Average Precision = ∑
n
(Rn − Rn−1)Pn (5)

where precision at the nth threshold is denoted by Pn and recall by Rn. For predicted
structures from AlphaFold DB, we generate binary annotations for whether a residue
pair is a contact point (described in Section 4.2). In Equation (5), this is the case when
there is only one (n = 1) threshold and, Average Precision = P × R; where P and R
are the observed precision and recall scores using these binary labels.

2. AUC-ROC: The area under the receiver operating characteristic curve is calculated
using the trapezoidal rule [37,38].

These two metrics allow us to evaluate a classifier’s predictive power without imposing
a threshold on the prediction score so that an overall assessment can be achieved, not tied to a
specific threshold choice. Once the test examples are ranked by their prediction score from
a classifier, an ROC curve can be plotted the true positive rate as a function of false positive
rate by running down the ranked list as follows: (a) at each position in the list, predict the
test examples above as positive and below as negative, (b) compare the prediction with the
ground truth label to determine true positive and false positive, and (c) calculate the rates and
move to the next position in the list. The higher the curve—more true positives predicted at a
given false positive rate—the better the performance, which is measured as the area under the
curve, a value (called ROC score) between 0 and 1, with 1 being the perfect performance and
0.5 being a performance comparable to a random toss-up. Using a similar procedure running
down the ranked list of test examples, a curve can be plotted with precision as a function of
recall. Average precision is essentially the area under the precision–recall curve. It has been
reported [73] that for skewed data with a much larger proportion of negative examples, which
is our case, ROC scores tend to be more optimistic than the actual performance is and, in
instances like this, average precision may present a more realistic picture. For both metrics,
we provide the average score across all sequences.
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