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Abstract: Dopamine is a key neurotransmitter involved in physiological processes such as motor
control, motivation, reward, cognitive function, and maternal and reproductive behaviors. Therefore,
dysfunctions of the dopaminergic system are related to a plethora of human diseases. Dopamine, via
different circuitries implicated in compulsive behavior, reward, and habit formation, also represents
a key player in substance use disorder and the formation and perpetuation of mechanisms leading to
addiction. Here, we propose dopamine as a model not only of neurotransmission but also of neuro-
modulation capable of modifying neuronal architecture. Abuse of substances like methamphetamine,
cocaine, and alcohol and their consumption over time can induce changes in neuronal activities.
These modifications lead to synaptic plasticity and finally to morphological and functional changes,
starting from maladaptive neuro-modulation and ending in neurodegeneration.
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1. Introduction

Since the study by Carlsson and colleagues [1,2], dopamine, and the neurotransmitter
system in which it is involved, has become the subject of numerous studies. They discovered
it in the late 1950s, and its discovery was worth the Nobel Prize for Physiology and Medicine
in 2000.

Dopamine and the dopaminergic system were initially only associated with motor
function “as an antagonist of the akinetic effects induced by reserpine”. These systems over
the years have become the main field of studies to frame Parkinson’s disease, schizophrenia,
drug addiction, attention deficit hyperactivity disorder, mood disorders, and cognitive
disorders both in initial and advanced stages [3].

In addition to clinical studies, there are numerous preclinical insights derived from the
study of dopamine receptors that modulate fundamental aspects of human physiology [4].

Our working group previously investigated the function of the dopaminergic system,
also in its molecular components [5]. The novelty and main purpose of this review is to
integrate preclinical and clinical knowledge regarding the dopaminergic system and to
explore dopaminergic neuromodulation capable of modifying neuronal architecture.

The most recent acquisitions in this field indicate the need to move from monophasic
receptor–neurotransmitter vision. The dopaminergic system is involved in many domains
of both motor and cognitive encephalic functions. In the microdomains that underlie
the dopaminergic function as a whole, there are much more complex connections that
contribute to the formation of a “dopaminergic layer” within the brain. This work in-
tends to review the knowledge of the topic and lay the foundations for future research
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regarding the prospects of new acquisitions in this field. As a consequence, we specu-
late the basis for identifying drugs that are modifiers of the pathological trajectories of
neurodegenerative diseases.

2. The Dopamine System

Although dopaminergic neurons represent less than 1% of cell subtypes in the brain [6],
dopamine embodies 80% of catecholamines in the central nervous system (CNS) [7].
Dopaminergic neurotransmission is involved in pleasurable reward, behavior, cognition,
attention, learning, sleep, and emotion [8]. It is also involved in motor function since
dopaminergic neurons correspond to 3–5% of substantia nigra [6]. Its complex role pro-
vides an explanation to its implication in many different diseases such as Parkinson’s,
schizophrenia, attention deficit hyperactivity disorder (ADHD), autism spectrum disorders,
obsessive compulsive disorder, substance dependency, and others [9]. Such heterogeneity
of physiological functions and involvement in the pathophysiology of human disorders
is entailed by an equal heterogeneity of dopamine receptors and brain areas in which
these receptors are expressed. In turn, these brain areas are involved in a dopaminergic
macrosystem that comprehends areas that are spatially very distant from each other [3].

There are five subtypes of dopamine receptors described, all belonging to the G
protein–coupled receptors (GPCR) family. These five receptors (D1 dopamine receptor,
D2 dopamine receptor, D3 dopamine receptor, D4 dopamine receptor, and D5 dopamine
receptor) are further divided into two main subclasses. The “D1-like” group includes the
D1 dopamine receptor and D5 dopamine receptor, while the “D2-like” group includes the
D2 dopamine receptor, D3 dopamine receptor, and D4 dopamine receptor. Structure and
sensitivity to drugs are known to be similar in the same subclasses [10].

The signal transduction downstream of dopamine receptors makes use of Gs and
Gi proteins, typical of the GPCR family. The major second messenger in the dopamine
receptor signaling cascade is cyclic adenosine monophosphate (cAMP) [11].

The final effect of dopaminergic stimulation on the target neuron depends on the
receptor subtype and on the capacity to increase or decrease the intracellular cAMP con-
centration of that given neuron [12]. At a general level, the effect of D1-like receptors is
both excitatory (if coupled to the opening of sodium channels) and inhibitory (if coupled
to the opening of potassium channels). The associated signal transduction is generally
implicated in postsynaptic inhibition. On the other hand, the effect of D2-like receptors
is inhibitory with regard to the potential of the membrane, both at the presynaptic and
postsynaptic levels [13]. D1-like and D2-like receptors differ in several aspects: the response
to the different agonists and antagonists and the effectors downstream of the cascade that
underlie this response, the distribution in the different brain areas, and the mechanisms in
which the release of dopamine and the signal cascade are interrupted [14]. D1 dopamine
receptors are the most expressed dopamine receptor in the central nervous system [15].

Dopamine receptors are mainly expressed in the mesolimbic, nigrostriatal, and meso-
cortical areas, particularly in the substantia nigra, olfactory nucleus, and nucleus accumbens.
There is evidence of their expression in the basal nuclei system (caudate, putamen, and
striatum) [15]. Their stimulation regulates the voluntary control of movements, the sense
of satiety and hunger, attention, affective behavior, sexual behavior, learning, and work-
ing memory [16]. D2 dopamine receptors are the second most abundant dopaminergic
receptor expressed in the central nervous system. They are also expressed in the substantia
nigra, olfactory bulb, ventral tegmental area (VTA), and nucleus accumbens. They are
involved in working memory, reward-motivation functions, and a lot of parasympathetic
functions [17]. D3, D4, and D5 dopamine receptors are expressed at significantly lower
levels. The D3 dopamine receptor is expressed only in the CNS and not outside it. It is
found in the olfactory bulb and nucleus accumbens and is involved in the modulation of
neuroendocrine function, emotions, and drug addiction [18]. The D4 dopamine receptor is
less expressed in the CNS, mostly found outside. In CNS, it is expressed in the substantia
nigra, hippocampus, amygdala, thalamus, hypothalamus, and frontal cortex. It is involved
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in modulations of cognitive functions but primarily in regulations of sympathetic and
parasympathetic functions [19].

Finally, the D5 dopamine receptor is also expressed in the substantia nigra, hypotha-
lamus, dental gyrus, and hippocampus and is involved in the pain process, regulation
of endocrine function, affective behavior, and hypertension [20]. Besides structural and
expression differences, a functional difference should also be noted. Preclinical receptor
affinity studies have highlighted profound differences in terms of affinity for dopamine
between dopamine receptors: receptors belonging to the D2-like receptor family have
an affinity for dopamine that is 10 to 100 times greater than the receptors of the D1-like
group. This difference is due to the ability of the receptors to recognize a different mode of
dopamine release which underlies different neurobiological meanings: the D1-like recep-
tors are activated by high concentrations of released dopamine, while the D2-like receptors
are activated by low levels of dopamine [6,21,22]. It is evident that this variety of integration
of the dopaminergic signal underlies a greater characterization of the information conveyed
via the different modes of firing pattern at the level of the dopaminergic circuits [4]. It
is important to underline that dopaminergic neurotransmission is not only characterized
by biological differences in the receptors and by the electrophysiological properties of
dopaminergic neurons but also by the postsynaptic effects of dopamine and its clearance at
the extracellular level [23]. Evolution has selected ways to carefully control the extracellular
handling of dopamine. Dopamine uptake is controlled by a specific transporter (DAT),
the target of drugs of abuse such as amphetamine and cocaine. There are other regulators
of the extracellular concentration of dopamine such as monoamine oxidases, which de-
grade dopamine, or catecholoxy methyltransferases, which deactivate it. There are also
monoamine transporters selectively capable of transporting dopamine as well [24]. It is
known that alterations in this careful dopamine-handling system can be the predisposing
cause of psychiatric disorders [14].

Dopamine neurons represent approximately 1% of the neurons present within the human
brain, and the majority of these are located at the level of the ventral midbrain, in particular at
the level of the substantia nigra [25]. Overall, in the human brain, 135 thousand dopaminergic
neurons have been described at the level of the substantia nigra and 35 thousand at the level
of the ventral tegmental area [7]. The projections arising from these brain areas constitute
the fundamental framework of the human dopaminergic system. Two main mechanisms
modulate dopamine release and its extracellular levels: phasic and tonic. Phasic dopamine
neuronal firing leads to a fast and transient increase in dopamine concentration while tonic
release generates a milder and less intense increase [26,27]. Four main functionally and
anatomically interconnected pathways of the dopaminergic system are as follows: the
mesolimbic, the nigrostriatal, the mesocortical, and the tuberoinfundibular pathways. The
first two are markedly dopaminergic, and the last two also make use of the contribution of
serotonergic transmission [3]. The mesolimbic pathway arises from the ventral tegmental
area (VTA) and projects to the amygdala, pyriform cortex, lateral septal nuclei, and the nu-
cleus accumbens. It is deeply connected to pleasure in the brain: pleasurable situations and
experiences such as food, sex, or drugs of abuse stimulate mesolimbic dopamine release.
Dysfunctions in this pathway lead to craving behavior in drug addiction and cognitive
impairment [28–31]. The nigro-striatal pathway originates from substantia nigra (pars com-
pacta) and spreads in the basal ganglia (caudate nucleus and the putamen). Nigro-striatal
dopamine is central in motor control, and it is also implicated in central pain modulation.
Blockage of nigro-striatal dopamine receptors is the cause of the extrapyramidalic effects
of antipsychotic drugs [32–35]. The mesocortical pathway, which originates from VTA
and projects to the frontal cortex and septohippocampal regions, modulates cognitive and
emotional behavior and processes. It also describes its associated with the glutamatergic
pathway [36–38]. The tubero-infundibular pathway, in which fibers originate from the
hypothalamus (arcuate and paraventricular nuclei) and project to the median eminence of
the pituitary gland, is related to the lactation phenomenon via prolactin inhibition [39,40].
In conclusion, various parts of the dopamine system are linked both anatomically and



Int. J. Mol. Sci. 2024, 25, 5293 4 of 15

physiologically, and this connection allows for appropriate functionality. On the other hand,
any alteration of these networks could be a predisposition to various diseases [41–43].

3. Dopamine System and Human Disease

The dopamine system is implicated in the development and progression of various
human disorders, altogether in the up- and downregulation of its pathways (as shown in
Figure 1).
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conditions. In some diseases such as schizophrenia, dopaminergic action can be upregulated or
downregulated depending on the brain area considered.

Schizophrenia is a relatively common and debilitating psychiatric disease with a het-
erogenous combination of three types of symptoms (positive, negative, and cognitive).
Positive symptoms include hallucinations, disorganized speech, and behavior; negative
symptoms include impaired motivation and social withdrawal, and cognitive symptoms
include memory dysfunction. Three different hypotheses, namely neurodevelopment,
glutamate, and finally dopamine have been proposed to explain the physiopathology of
this disorder. The dopamine hypothesis, developed in the 1960s, evolved from two obser-
vations: dopamine blockers could reduce psychotic symptoms, and amphetamines increase
dopamine, exacerbate schizophrenic symptoms. Patients with schizophrenia show higher
levels of post-mortem levels of dopamine and metabolites corroborating the dopamine
hypothesis [44,45]. Dopamine plays a central role in the pathogenesis of ADHD [46].
Parkinson’s disease is the most common type of Parkinsonism. Parkinsonism refers to a
group of neurological disorders with Parkinson’s disease-like movements and problems
(rigidity, bradykinesia, and tremor). Other types of Parkinsonism include neurodegenera-
tive disease, drug-induced Parkinsonism, and vascular parkinsonism. A key feature in the
pathophysiology of Parkinsonism is a loss of dopaminergic functions [47–49]. Dopamine is
also implicated in mood disorders. In particular, the decrease in dopamine activity has been
involved in depression while the increase in dopamine levels exacerbates mania and manic
episodes [50]. Dopaminergic system dysfunction is linked to the physiopathology of purely
neurodegenerative diseases. It is well known that this dysregulation of the dopaminergic
system is found both in early (motoric–cognitive risk syndrome) [5] and advanced stages
of dementia (such as Alzheimer’s disease) [51,52].



Int. J. Mol. Sci. 2024, 25, 5293 5 of 15

Dysfunctions of dopamine signaling are central in Huntington’s disease, an auto-
somal dominant disorder caused by the repletion of CAG of the huntingtin gene. This
disease, which is a typical movement disorder, may later present cognitive and psychiatric
disturbances. Neurodegeneration occurs in the caudate and putamen [53–57].

Dopamine is also a key player in substance use disorder. Addiction is characterized by
compulsive drug intake, the disability to restrict drug intake, and the withdrawal syndrome.
Alterations of synaptic plasticity in the mesolimbic pathway of the dopamine system lead
to the dysfunction of the reward system, a pathognomonic feature of drug addiction. Those
who are drug-addicted show alterations in the expression of D2 dopamine receptors (low
D2 dopamine receptor levels) in the striatal area. There is clinical and preclinical evidence
for low levels of D2 dopamine receptors in patients with obesity where there is radiologic
evidence (PET) of less availability of D2 dopamine receptors in the same areas. Moreover,
preclinical trials have investigated the modulation of neuroplasticity in the dopaminergic
system. Drug addiction is promoted and carried by the transient downregulation of
autoreceptor sensitivity and D1 dopamine receptor superactivity [58–67].

4. Dopamine as a Neuromodulator

Drug consumption and its transition to addiction are driven not only by drugs‘ phar-
macological effects but also influenced by genetic variability, social environments and
social support, childhood exposure, and drug accessibility [25]. Drugs of abuse, via their
pharmacological effects, increase the release of dopamine in the Nucleus Accumbens mim-
icking the phasic dopamine neuronal firing. This fast and transient peak in concentration
of dopamine levels stimulates D1 dopamine receptors and activates the direct striatal
pathway. The subject of using drugs as a reward perceives this phenomenon. When the
drug-induced release of dopamine is sufficiently large and fast, it could stimulate both D1
and D2 dopamine receptors, leading to activation of the direct pathway and inhibition of
the indirect pathway. While the direct pathway leads to reward, the indirect pathway is as-
sociated with punishment. We have three circuits involved in the addiction: the mesolimbic
(NAc, amygdala, and hippocampus), the mesocortical (cingulate gyrus and orbito-frontal
cortex), and the nigro-striatal circuit (dorsal striatum). The mesolimbic circuit is associated
with reward via the stimulation of D1-receptors in NAc. The mesolimbic circuit is also
associated with association learning and conditioning explaining drug-related memories
and conditioned responses. The reinforcing effect of drugs of abuse is linked to these
conditioned responses that shape the expectation that the subject has of the drug effect. It is
also well-known that drug consumption is perceived as more pleasurable when the subject
expects to receive it. This mechanism is also demonstrated in preclinical trials [68].

The mesocortical circuit is associated with compulsive behavior resulting in poor
inhibitory control. Activation of this circuit is reported to be involved during craving.
The nigrostriatal circuit, particularly the dorsal striatum, is involved in habit formation.
The involvement of different regions, from reward mechanisms in the mesolimbic circuit
to habit formation in the nigrostriatal circuit, explains the transition from controlled con-
sumption to addiction [69]. Addiction processes are complex, and we are aware of the
importance of a plethora of other neurotransmitters involved (such as glutamate, GABA,
norepinephrine, and serotonin), but we would like to explore the relevance of dopamine
and dopamine system in drug addiction as a model not only of neurotransmission but also
of neuromodulation. It is known that neurotransmission is influenced by factors acting
on the dopamine system. Drugs of abuse and their consumption over time can induce
change in neuronal activities leading to synaptic plasticity and finally to morphological and
functional changes. As demonstrated by Robinson and colleagues in a preclinical in vivo
trial, acute administration of cocaine in naive animals induces transcription and epigenetic
modulatory events involving genes like fosB, FosB, NFB, CdK5, and MEF2, all associated
with regulation and signaling.

This process is reported to happen 1 h after the administration of the drug [70].
If cocaine administration stays consistent, these changes could pass from transient to
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permanent. This is further shown in a previous preclinical trial where the medium term
of assumption (days) reveals changes in neuronal signaling (i.e., long-term potentiation).
In the long term (months), there are neuroadaptation phenomena like increased dendritic
spine density that lead to cytoskeletal and circuit remodeling.

Finally, in chronic drug exposure (months to years), this remodeling and rearrange-
ments are linked to the persistence of compulsive behaviors in addiction [71]. Because of
the long-term consumption of cocaine in terms of remodeling and rearrangements, not
only functional but also morphological, we could refer to a clinical trial of 29 subjects
(16 naive and 13 cocaine-addicted). The study demonstrated dissimilarities in brains of
patients with a cocaine addiction and naive subjects; differences were detected in areas that
control decision-making and behavior inhibition, typical of addiction behavior as shown in
imaging studies (MRI) that documented decreased gray matter in the orbital–frontal cortex
(OFC) [72]. Many factors sustain neuromodulation, as shown in Figure 2 [73,74].
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Amphetamine and methamphetamine have an affinity for DAT and can evoke re-
sponses like that of cocaine, even if the pharmacokinetics are different [75].

Even alcohol consumption differently influences levels of dopamine. In fact, while
drinking acutely increases dopamine levels [76], the brain adapts to the dopamine overload
with continued alcohol use, especially at high dosages (for example more than six drinks
per day). Under chronic alcohol exposure, there is less production of neurotransmitters,
reduction in the number of dopamine receptors in the body, and increasing dopamine
transporters, which carry away the excess dopamine [77]. There is a lot of evidence
indicating that alcohol can increase brain levels of monoamines independently of the
action on transporters (like DAT) [78]. Furthermore, it has been demonstrated that alcohol
consumption is able to modify both the gene expression of neurons that make up the
nuclei of the reward system [79] and to modify their synaptic plasticity [80]. It is therefore
possible to hypothesize that even in response to chronic alcohol consumption, maladaptive
neuromodulatory responses can be triggered which can then generate behavioral disorders
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like addiction. This hypothesis is confirmed by preclinical evidence indicating that the
reward system is strongly influenced by alcohol consumption. In fact, alcohol consumption
triggers anticipatory responses, which are specific to the reward system, and leads to
a modification of behavior with a shift towards aggression [81]. Furthermore, it has
been shown that alcohol consumption can induce maladaptive decision-making processes
supported by a dysfunction of the dopaminergic system and in particular of the ventral
tegmental area [82]. These maladaptive neuro-modulatory processes occur more easily the
earlier the contact with alcohol [83].

It is also important to underline that the neuromodulation of the dopaminergic sys-
tem triggered by alcohol consumption is also due to its action on the endogenous opioid
system [84]. Numerous evidence highlights how chronic alcohol consumption leads to a hy-
podopaminergic state in the nucleus accumbens and can cause striatal dysfunction [85,86].
This evidence is so important that clinical trials have begun regarding the possible use of
partial agonists of endogenous opioid receptors in alcohol use disorders [87].

The opioid system is also capable of having a neuromodulatory effect on the re-
ward system [88]. Substances such as amphetamine and cocaine also elicit their effect
via interaction with the endogenous opioid system, triggering maladaptive neuromodu-
lation processes in the reward system [89,90]. Morphological changes in brain structure
are established after a period of years, therefore after an addiction has been established.
As mentioned above, the transition from occasional consumption to addiction is strictly
influenced by genetic factors. Genetic polymorphism can play a significant role in in-
terindividual differences in addition to risk, and some studies show that nearly 50% of
addiction risk is determined by one’s genetic profile [91,92]. The predisposition to taking
a substance of abuse is also influenced by genotype. In a study on 1.2 million subjects, it
was highlighted how different stages of tobacco addiction and the time spent in a stage
(initiation, cessation, and heaviness) were influenced by genetic loci that were actively
involved in dopaminergic transmission [93].

Other apparently less influential factors can modify the reward system. For example,
the pleiotropic effects of physical exercise are not only expressed at a systemic level [94]
but also with a direct action on the reward system. It has been abundantly demonstrated
that physical exercise is able to act with a neuromodulating action on the reward system, so
much so that physical exercise protocols have been proposed in the treatment of addictions
and behavioral disorders linked to substance abuse [95–98].

All the studies presented in this review show the enormous progress made in un-
derstanding the functions of dopamine. Dopamine is changing its role from a simple
neurotransmitter to a neuromodulator capable of modifying the function and response
to stimuli of numerous brain areas [99,100]. Numerous aspects of dopaminergic function
have been studied in relation to not simply receptor activities. There is evidence of the
typical firing pattern in relation to prediction error [101] and the anatomical and functional
connection with other neuroreceptor systems such as the serotoninergic and endocannabi-
noid systems [102]. Both anatomical (coexistence of different neuronal types in certain
brain areas) and functional interactions between different neurotransmitter systems that
integrate dopaminergic function explain the involvement of dopamine in high cognitive
functions [103]. The novelty, recently supported by studies, is that the high cognitive
functions are not only supported by interconnected functional macrodomains [5] but also
by functional microdomains strongly and structurally integrated [103,104]. Even if the
molecular bases of these interactions are to be fully elucidated, it seems that neuromodu-
lation mediated by “classic” neurotransmitters can modify the biophysical properties of
action potentials. By these mechanisms, the integration of the neuronal signals of cerebral
areas apparently functionally segregated is reached [105–107]. An important role in these
neuromodulation processes is played by dopamine [108,109]. Very recently, it has been
shown that the topographic distribution of dopamine receptors constitutes a functional ar-
chitecture within the brain and is one of the main determinants of high cognitive functions.
The discovery of this “dopaminergic layer” in the topographical and functional organiza-
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tion of the brain lays the foundations for innovative approaches to numerous psychiatric
and neurodegenerative diseases [104]. This dopaminergic layer is also supported by a
functional organization and a specific receptor density of dopamine receptors within the
different brain areas as confirmed by recent studies [110–113].

We have already seen how minimal genetic differences in receptor structure or expres-
sion can be a predisposition to the establishment of pathological addictions [93]. It has been
shown that individual differences in dopaminergic receptors can influence brain architec-
ture and connections within the dopaminergic layer [114,115]. The receptor organization
is not only closely connected to major cognitive functions but also in different periods of
life, there are shifts in their density. These changes can lay the foundation for innovative
approaches to the difficult learning of cognitive decline in the elderly [116,117]. This recent
evidence integrates knowledge of dopaminergic function and the ability of dopamine to
function as a modulator of synaptic plasticity in both cognitive and motor domains of the
brain [9,118,119].

A very recent trial published on April 3 demonstrates that the action of Lixisenatide, a
glucagon-like peptide-1 receptor agonist used for the treatment of diabetes, is somehow
neuroprotective in patients with early onset of Parkinson’s disease [120]. These recent data
suggest the usefulness of GLP-1 agonists as possible disease modifiers in neurodegenerative
disease [121–123]. These drugs not only show neuroprotective function but can also
contribute to the symptomatic relief of patients [124]. Although the molecular pathways
underlying these neuroprotective effects are yet to be completely elucidated, numerous
preclinical studies indicate that glucagon-like peptide-1 receptors may directly regulate
components of the dopaminergic system [125].

These innovative and recent acquisitions, combined with the study of the topography
of the brain dopaminergic system, are potentially very important in the reconceptualization
and treatment of addictions, psychoses, and neurodegenerative diseases.

5. From Bad Neuromodulation to Neurotoxicity

Dysfunctional dopaminergic neurotransmission has been associated with cell death.
An intrastriatal injection of dopamine can cause DNA damage and apoptosis in the rat
brain [126,127]. Furthermore, in preclinical models, striatal cells undergo cell death when
exposed to high concentrations of dopamine [128–131]. Dopamine was found to be toxic,
at different concentrations, and also in other cytotypes [132–137]. Dopamine metabolism
generates numerous reactive oxygen species, and this has been indicated as the main
pathogenetic step in dopamine-induced neurodegeneration [138–140].

Toxic effects have also been found at the mitochondrial level [141]. But the toxic effects
of dopamine are not only indirect but also direct: it seems that the interaction with the D1
dopamine receptor is responsible for the neurodegeneration caused by dopamine [142].
A complementary experiment demonstrated that the toxic effects of dopamine were com-
pletely reversed in the presence of antioxidant substances and hyper-specific D1 dopamine
receptor antagonists [143]. Analyzing the effects of methamphetamine highlights a sig-
nificant increase in dopamine levels in the brain [144]. Furthermore, there is preclinical
evidence of the neurotoxic effects of methamphetamine [145,146] due to a dysfunction of
apoptosis, stress of the endoplasmic reticulum, and also to interaction with the dopamine
D1 dopamine receptor. Treatment with a hyper-specific D1 dopamine receptor antagonist
blocks the neurotoxic effects of methamphetamine [147,148]. Neurodegenerative effects
are not only ascribed to methamphetamine but also to other substances of abuse and
alcohol [149–151] (Figure 3).
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For example, palatable substances also activate the reward circuit through gustatory stimulation.

Chronic alcohol use, as with methamphetamine, alters neuron gene expression and
activates gene patterns that promote mitochondrial dysfunction [152]. Furthermore, it has
been widely described that chronic alcohol use promotes neuroinflammation and conse-
quently neurodegeneration [153–156]. In detail, the acute assumption of alcohol, like most
addictive drugs, activates the mesolimbic dopamine system and releases dopamine [157],
while chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine
system. However, the molecular mechanisms underlying ethanol’s interaction with this
system remain to be elucidated, given the complexity of the actions of alcohol on nervous
systems in general and on the dopamine system in particular [158]. Alcohol is even asso-
ciated with macroscopic alterations of brain volume, even gray or white matter volume,
specifically when alcohol intake is noted as more than two or more units (or drinks) daily.
This seems to be protective assuming only one drink is taken daily [159,160].

6. Conclusions

The aim of this review is to analyze dopaminergic transmission and the effects of the
dopaminergic pathway as a neuromodulator. There is numerous and increasing evidence
indicating that pathological neuromodulation, in subjects genetically predisposed or hyper-
exposed to environmental factors, can evolve towards addiction or even neurodegeneration.
Thus, we underline the importance of prevention campaigns and further studies to better
elucidate the molecular mechanisms involved in pathological neuromodulation in order to
identify possible therapeutic targets.
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