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Protein crystallography is the discipline concerned with the determination of the
three-dimensional structure of biological macromolecules in a crystalline state. It took
its first steps in the 1950s [1], and today, we can confidently assert that it has reached a
phase of complete development [2]. Technically, bio-crystallography has undergone an
extraordinary evolution in its more than seventy years of existence, but it could not have
made the grand strides that have led it to be a technically mature discipline without the
tumultuous parallel development of computing systems and related software [3–6]. Much
water has passed under the bridge since computers were the size of cabinets that occupied
numerous rooms and received their input data through punched cards; today’s tools are a
little larger than a tablet and have computing and data storage power unimaginable at the
beginning. Crystallography has not only benefited from the developments of computer
tools, both hardware and software, but it has also been strongly aided by the development
of X-ray sources, particularly synchrotrons [7], X-ray detectors [8], and the improvement
in crystallization methods (contribution 1). To give an immediate idea of the progress
in the field, we recall that at the time of its foundation, the Protein Data Bank (PDB,
http://www.rcsb.org, accessed on 9 May 2024), a database in which the coordinates and
data of all resolved three-dimensional structures of macromolecules in the world are
deposited, contained 12 structures. Today this number has exceeded 218,000, the vast
majority of which (more than 84%) were determined using X-ray diffraction [9].

At this point, we must mention the development of what is defined as cryo-Electron
Microscopy (cryo-EM), a technique that allows the determination of the three-dimensional
structure of biological macromolecules at nearly atomic level from an ultra-thin frozen
layer of the protein solution, without the need for the protein to be present in crystalline
form [10–12]. This, in addition to the absence of the phase problem, has opened up the field
to the determination of structures of huge macromolecular complexes, almost impossible
to obtain in crystalline form and generally present in very small quantities within the cell.

In this context, it is understandable that this Special Issue received only five con-
tributions, of which only two are of a methodological nature. We can confidently state
that much of the technology inherent to the crystallographic technique has already been
extensively developed in recent decades, and there are few truly significant developments
on the horizon. We might expect more in terms of new insights into the structure of macro-
molecules particularly relevant in the field of human health, although, in this area, we
cannot ignore the contribution of artificial intelligence, which has allowed the building
of a database containing the prediction of the three-dimensional structures of essentially
all of the proteins of numerous genomes [13,14]. Although these are predictions, they
appear to be quite reliable and are often sufficient to draw conclusions about the functional
and mechanistic aspects of the biological process. The only aspect where predictions are
still particularly lacking concerns macromolecular complexes and protein–small-molecule
complexes, although major progress is expected in this field in the coming years.

The two methodological articles presented in this Special Issue concern improvements
in the structure determination process. Carrozzini et al. (contribution 2) describe REMO22,
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a software program that uses prior information to bypass the phase problem using a
computational technique called molecular replacement, which involves using an existing or
predicted molecular model to determine a new structure based on an approximate existing
model (and, of course, the crystal diffraction data of the structure to be determined).
REMO22 represents an evolution of the previous software REMO09 and is inserted into a
pipeline that also includes additional computational stages, such as phase refinement and
automated model building. This pipeline tends to be completely automatic for solving the
structures of proteins and nucleic acids, with minimal intervention from the operator. In
the other methodological work, Ma et al. (contribution 3) describe the use of an anomalous
signal for the correct positioning and orientation of protein fragments containing anomalous
scatterers. The technique has been used, in particular, for positioning in the electron density
of fragments containing chlorine and sulfur in the non-structural protein 1 (nsp1) of the
most recent dangerous pandemic SARS-CoV-2, but the method is generally applicable for
any anomalous scatterers. Its use requires a tunable source that can reach the appropriate
wavelengths, possibly at low energy in vacuum. In the case in question, the authors, by
measuring data at two different energies, were able to identify multiple orientations in
various fragments containing chlorine or sulfur.

The other three papers in the Special Issue are of an applied nature. Gao et al. (contri-
bution 4) describe the structural characterization of the enzyme N-Acetyl Sugar Amido-
transferase, an enzyme involved in the biosynthesis of lipopolysaccharides in the bacterium
Legionella pneumophila. The structure, resolved at 2.33 Angstrom resolution, contains a
Rossmann-like fold with a PP loop, suggesting that the catalyzed reaction probably re-
quires the conversion of ATP to AMP and PPi. In their work, Shang et al. (contribution 5)
solve three complex structures of 6 mA demethylase Caenorhabditis elegans NMAD-1A
through rational mutations and find a unique “stretch-out” conformation of its DNA bind-
ing region. Biochemical and structural studies reveal that it preferentially demethylates
6 mA, an emerging epigenetic mark, in the unpairing regions and binds to the nucleosome
with the help of the carboxy-terminal domain and the zinc finger domain.

The last paper, Del Giudice et al. (contribution 6), is not strictly crystallographic, but
describes the use of the SAXS (Small-Angle X-ray Scattering) technique in solution to deter-
mine the content of disordered structure in the different redox states of the enzyme CP12
from Arabidopsis Thaliana, a protein universally distributed in all photosynthetic organ-
isms and involved in regulating the Calvin–Benson cycle of photosynthesis. Considering
different levels of disorder, the SAXS data suggest that the reduced form is completely
disordered, and that the oxidized form is better described by conformers that include
partially ordered portions in some areas, particularly around the sulfide bridge, which
coexist with portions that remain disordered.
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