Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress
Abstract
:1. Introduction
2. Results
2.1. Effect of Mn Toxicity Stress on Pigment Content of Old Soybean Leaves
2.2. Effects of Different Concentrations of Mn on the Physiological Response Indicators of Old Soybean Leaves
2.3. Effect of Mn Toxicity Stress on the Hormone Content of Old Soybean Leaves
2.4. Influences of Mn Poisoning on the Ion Contents of Old Leaves in Soybean
2.5. Transcriptome Sequencing Analyzing of Old Leaves in Soybean Dealt with Normal or High Mn
2.6. Identification of Hormone-Related Genes
2.7. Identification of Glutathione Metabolism Genes
2.8. Identification of Cellulose Biosynthesis Genes
2.9. Identification of Genes Related to Amino Acid Transport
2.10. Identification of Glycometabolism Genes
2.11. qRT-PCR Verification
3. Discussion
4. Materials and Methods
4.1. Preparation of Plant Materials
4.2. Determination of Photosynthetic Pigment Content
4.3. Measurement of Physiological Response Indices
4.4. Determination of Hormone Content
4.5. Determination of the Ion Content
4.6. Transcriptome Sequencing of Old Soybean Leaves
4.7. qRT-PCR Analysis
4.8. Analysis of Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aydinalp, C.; Marinova, S. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg. J. Agric. Sci. 2009, 15, 347–350. [Google Scholar]
- Yang, W.D.; Ding, Z.L.; Zhao, F.L.; Wang, Y.Y.; Zhang, X.C.; Zhu, Z.Q.; Yang, X. Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment, application for phytoremediation. J. Geochem. Explor. 2015, 149, 1–7. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity, new light on an old problem. Ann. Bot. 2015, 116, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.B.; Xue, S.G.; Shen, J.H.; Wang, P.; Lei, J. Effects of manganese stress on Phytolacca americana growth and development. Chin. J. Ecol. 2011, 30, 1632–1636. [Google Scholar]
- Shao, J.F.; Yamaji, N.; Shen, R.F.; Ma, J.F. The Key to Mn homeostasis in plants, regulation of Mn transporters. Trends Plant Sci. 2017, 22, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.G.; Ding, Y.; Huang, H.M.; Wu, L.; Zhao, Y.L.; Yang, G.Y. Biosorption characteristics of Mn (II) by bacillus cereus strain HM–5 isolated from soil contaminated by manganese ore. Polish J. Environ. Stud. 2019, 28, 463–472. [Google Scholar]
- Nong, H.J.; Liu, J.; Chen, J.Z.; Zhao, Y.L.; Wu, L.; Tang, Y.C.; Liu, W.S.; Yang, G.Y.; Xu, Z.G. Woody plants have the advantages in the phytoremediation process of manganese ore with the help of microorganisms. Sci. Total Environ. 2023, 863, 160995. [Google Scholar] [CrossRef]
- Sinha, P.; Dube, B.K.; Chatterjee, C. Manganese stress alters phytotoxic effects of chromium in green gram physiology (Vigna radiata L.) cv. PU 19. Environ. Exp. Bot. 2006, 57, 131–138. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.L.; Mokhberdoran, F.; Xie, Y.F. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef]
- Zhao, J.J.; Wang, W.Y.; Zhou, H.K.; Wang, R.L.; Zhang, P.; Wang, H.C.; Pan, X.L.; Xu, J. Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Front. Plant Sci. 2017, 8, 272. [Google Scholar] [CrossRef]
- Gao, P.; Liu, W.S.; Zhang, H.P.; Liu, P. Morphophysiological responses and tolerance mechanisms of Xanthium strumarium to manganese stress. Ecotox. Environ. Safe 2018, 165, 654–661. [Google Scholar]
- Xiao, Z.H.; Gao, P.; Li, X.H.; Kuang, X.S.; Wang, W.M.; Liu, W.S. Effects of exogenous manganese on its plant growth, subcellular distribution, chemical forms, physiological and biochemical traits in Cleome viscosa L. Ecotox. Environ. Safe 2020, 198, 110696. [Google Scholar] [CrossRef] [PubMed]
- Israr, M.; Jewell, A.; Kumar, D.; Sahi, S.V. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J. Hazard. Mater. 2011, 186, 1520–1526. [Google Scholar] [CrossRef]
- Hu, Z.R.; Fan, J.B.; Chen, K.; Amombo, E.; Chen, L.; Fu, J.M. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. Photosynth. Res. 2016, 128, 59–72. [Google Scholar] [CrossRef]
- Fontenele, N.M.B.; Otoch, M.D.L.O.; Gomes–Rochette, N.F.; Sobreira, A.C.D.M.; Barreto, A.A.G.C.; Oliveira, F.D.B.D.; Costa, J.H.; Borges, S.D.S.S.; Nascimento, R.F.D.; Melo, D.F.D. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb–accumulation. Chemosphere 2017, 176, 397–404. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in plants, From acquisition to subcellular allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.R.; Ijomone, O.M.; Okoh, C.O.A.; Ijomone, O.K.; Akingbade, G.T.; Ke, T.; Kruma, B.; Martins, A.d.C., Jr.; Akinyemi, A.; Aranoff, N.; et al. The effects of manganese overexposure on brain health. Neurochem. Int. 2020, 135, 104688. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, A.; Rasheed, R.; Ashraf, M.A.; Rizwan, M.; Ali, S. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under Mn stress. Chemosphere 2022, 308, 136523. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.P.; Li, X.H.; Yang, S.X.; Wu, Z.W.; Xue, Y.B.; Chen, J.P. Physiological mechanisms in which manganese toxicity inhibits root growth in soybean. J. Soil Sci. Plant Nut. 2023, 23, 4141–4156. [Google Scholar] [CrossRef]
- Horst, W.J.; Maier, P.; Fecht, M.; Naumann, A.; Wissemeier, A.H. The physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr. Soil Sci. 1999, 162, 263–274. [Google Scholar] [CrossRef]
- Fecht–Christoffers, M.M.; Führs, H.; Braun, H.P.; Horst, W.J. The role of hydrogen peroxide–producing and hydrogen peroxide consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol. 2006, 140, 1451–1463. [Google Scholar] [CrossRef]
- Delhaize, E.; Gruber, B.D.; Pittman, J.K.; White, R.G.; Leung, H.; Miao, Y.; Jiang, L.; Ryan, P.R.; Richardson, A.E. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J. 2007, 51, 198–210. [Google Scholar] [CrossRef]
- Delhaize, E.; Kataoka, T.; Hebb, D.M.; White, R.G.; Ryan, P.R. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 2003, 15, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Fujii, Y.; Yamaji, N.; Masuda, S.; Takemoto, Y.; Kamiya, T.; Yusuyin, Y.; Iwasaki, K.; Kato, S.; Maeshima, M.; et al. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J. Exp. Bot. 2013, 64, 4375–4387. [Google Scholar] [CrossRef]
- Magdalena, M.; Anna, P.; Ewa, M.; Sophie, F. Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 5367–5384. [Google Scholar]
- Mora, M.L.; Rosas, A.; Ribera, A.; Rengel, Z. Differential tolerance to Mn toxicity in perennial ryegrass genotypes, involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 2009, 320, 79–89. [Google Scholar] [CrossRef]
- Chen, Z.J.; Sun, L.L.; Liu, P.D.; Liu, G.D.; Tian, J.; Liao, H. Malate synthesis and secretion mediated by a manganese–enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Plant Physiol. 2015, 167, 176–188. [Google Scholar] [CrossRef]
- Dou, C.; Fu, X.; Chen, X.; Shi, J.; Chen, Y. Accumulation and interaction of calcium and manganese in Phytolacca americana. Plant Sci. 2009, 177, 601–606. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Ogwu, M.C.; Lato, N.F. Growth and yield responses of soybean (Glycine max L. Merr.) accessions after exposure to cadmium. Vegetos 2021, 34, 107–118. [Google Scholar] [CrossRef]
- Javaid, M.H.; Khan, A.R.; Salam, A.; Neelam, A.; Azhar, W.; Ulhassan, Z.; Gan, Y.B. Exploring the adaptive responses of plants to abiotic stresses using transcriptome data. Agriculture 2022, 12, 211. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.Y.; Li, X.H.; Yang, S.X.; Hu, H.Q.; Xue, Y.B. Effects of manganese toxicity on the growth and gene expression at the seedling stage of soybean. Phyton. Int. J. Exp. Bot. 2022, 91, 975–987. [Google Scholar]
- Gao, H.H.; Huang, L.Z.; Gong, Z.J.; Wang, X.T.; Qiao, X.Q.; Fang, X.; Yang, Y.T.; Yu, B.H.; Guo, X.T.; Yu, C.Y. Exogenous melatonin application improves resistance to high manganese stress through regulating reactive oxygen species scavenging and ion homeostasis in tobacco. Plant Growth Regul. 2022, 98, 219–233. [Google Scholar] [CrossRef]
- Szechyńska–Hebda, M.; Ghalami, R.Z.; Kamran, M.; Breusegem, F.V.; Karpiński, S. To be or not to be? Are reactive oxygen species, antioxidants, and stress signalling universal determinants of life or death? Cells 2022, 11, 4105. [Google Scholar] [CrossRef] [PubMed]
- Karabourniotis, G.; Liakopoulos, G.; Bresta, P.; Nikolopoulos, D. The optical properties of leaf structural elements and their contribution to photosynthetic performance and photoprotection. Plants 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.L.; Huang, H.Y.; Peng, M.Y.; Lai, Y.H.; Ren, Q.Q.; Zhang, J.; Huang, Z.G.; Yang, L.T.; Rensing, C.; Chen, L.S. Adaptive responses of Citrus grandis leaves to copper toxicity revealed by RNA–Seq and physiology. Int. J. Mol. Sci. 2021, 22, 12023. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.X.; Qiu, L.Z.; Shen, P.K.; Wang, Y.Q.; Li, J.L.; Dai, Z.Y.; Qi, M.F.; Zhou, Y.; Zou, Z.K. Transcriptome studies on cadmium tolerance and biochar mitigating cadmium stress in muskmelon. Plant Physiol. Bioch. 2023, 197, 107661. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, M.; Chen, J.; Yang, S.; Chen, J.; Xue, Y. Comparative transcriptome analysis reveals complex physiological response and gene regulation in peanut roots and leaves under manganese toxicity stress. Int. J. Mol. Sci. 2023, 24, 1161. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.H.; Li, J.Y.; Chen, J.Y.; Yang, S.X.; Zhao, M.; Xue, Y.B. Transcriptome sequencing analysis of root in soybean responding to Mn poisoning. Int. J. Mol. Sci. 2023, 24, 12727. [Google Scholar] [CrossRef]
- Wang, D.; Hu, P.; Tie, N. Responses of photosynthesis and antioxidant activities in Koelreuteria paniculate young plants exposed to manganese stress. S. Afr. J. Bot. 2022, 147, 340–346. [Google Scholar] [CrossRef]
- He, L.J.; Su, R.K.; Chen, Y.H.; Zeng, P.; Du, L.; Cai, B.; Zhang, A.S.; Zhu, H.H. Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. Environ. Sci. Pollut Res. 2022, 29, 39017–39026. [Google Scholar] [CrossRef] [PubMed]
- Mandal, C.; Ghosh, N.; Maiti, S.; Das, K.; Gupta, S.; Dey, N.; Adak, M.K. Antioxidative responses of salvinia (Salvinia natans linn.) to aluminium stress and it’s modulation by polyamine. Physiol. Mol. Biol. 2013, 19, 91–103. [Google Scholar] [CrossRef]
- Shi, G.; Cai, Q.; Liu, C.; Wu, L. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul. 2010, 61, 45–52. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Santos, C.; Soares, A.M.V.M.; Mann, R.M. Assessment of biomarkers of cadmium stress in lettuce. Ecotox. Environ. Saf. 2009, 72, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Zhang, G.; Li, H.; Ma, L.; Yang, N. Comparative transcriptomic analysis of stenotrophomonas sp. MNB17 revealed mechanisms of manganese tolerance at different concentrations and the role of histidine biosynthesis in manganese removal. Ecotox. Environ. Saf. 2022, 244, 114056. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, H.C.; Zhang, B.X.; Zhang, H.L.; Wang, Q.W.; Liu, X.L.; Luan, X.Y.; Ma, Y.S. Effects of 24–epioleucin lactones on fertility, physiology and cellular ultrastructure of soybean under salinity stress. Chin. Agric. Sci. 2017, 50, 811–821. [Google Scholar]
- Takeuchi, J.; Fukui, K.; Seto, Y.; Takaoka, Y.; Okamoto, M. Ligand–receptor interactions in plant hormone signaling. Plant J. 2021, 105, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.X.; Li, Z.H.; Guo, H.W. New advances in the regulation of leaf senescence by classical and peptide hormones. Front. Plant Sci. 2022, 13, 923136. [Google Scholar] [CrossRef]
- Zhu, X.F.; Jiang, T.; Wang, Z.W.; Lei, G.J.; Shi, Y.Z.; Li, G.X.; Zheng, S.J. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J. Hazard. Mater. 2012, 239, 302–307. [Google Scholar] [CrossRef]
- Alonso–Ramírez, A.; Rodríguez, D.; Reyes, D.; Jiménez, J.A.; Nicolás, G.; López–Climent, M.; Gómez–Cadenas, A.; Nicolás, C. Evidence for a role of gibberellins in salicylic acid–modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009, 150, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, L.; Zhao, J.; Li, Y.; Wang, J.; Guo, R.; Gan, S.; Liu, C.J.; Zhang, K. S5H/DMR6 encodes a salicylic acid 5–hydroxylase that fine–tunes salicylic acid homeostasis. Plant Physiol. 2017, 175, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.E.; Munne–Bosch, S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J. Exp. Bot. 2009, 60, 1261–1271. [Google Scholar] [CrossRef]
- Miao, Y.; Zentgraf, U. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 2007, 19, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.Z.; Liu, X.Y.; Yu, J.F.; Ji, Y.B.; Liu, J.; Cheng, L.X.; Zou, J. Up–regulation of autophagy by low concentration of salicylic acid delays methyl jasmonate–induced leaf senescence. Sci. Rep. 2020, 10, 11472. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Song, A.; Li, Z.J.; Fan, F.L.; Liang, Y.C. Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress. Biologia 2017, 72, 388–397. [Google Scholar] [CrossRef]
- Noor, I.; Sohail, H.; Zhang, D.M.; Zhu, K.J.; Shen, W.Q.; Pan, J.J.; Hasanuzzaman, M.; Li, G.H.; Liu, J.W. Silencing of PpNRAMP5 improves manganese toxicity tolerance in peach (Prunus persica) seedlings. J. Hazard. Mater. 2023, 454, 131442. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Dong, J.Y.; Qu, M.M.; Lv, Q.M.; Zhang, L.P.; Peng, C.; Hu, Y.Y.; Li, Y.K.; Ji, Z.Y.; Mao, B.G.; et al. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms. Sci. Total Environ. 2022, 832, 155006. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell. 2012, 24, 2155–2167. [Google Scholar] [CrossRef]
- Ribera–Fonseca, A.; Inostroza–Blancheteau, C.; Cartes, P.; Rengel, Z.; Mora, M.L. Early induction of Fe–SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol. Bioch. 2013, 73, 77–82. [Google Scholar] [CrossRef]
- Liu, P.D.; Huang, R.; Hu, X.; Jia, Y.D.; Ki, J.F.; Luo, J.J.; Liu, Q.; Luo, L.J.; Liu, G.D.; Chen, Z.J. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. BMC Plant Biol. 2019, 19, 212. [Google Scholar] [CrossRef]
- Fecht–Christoffers, M.M.; Braun, H.P.; Lemaitre–Guillier, C.; Van–Dorsselaer, A.; Horst, W.J. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol. 2003, 133, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Caverzan, A.; Passaia, G.; Rosa, S.B.; Ribeiro, C.W.; Lazzarotto, F.; Margis–Pinheiro, M. Plant responses to stresses, role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012, 35, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.M.; Huang, X. Inhibition of root meristem growth by cadmium involves nitric oxide–mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 2016, 39, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Kocaman, A. Combined interactions of amino acids and organic acids in heavy metal binding in plants. Plant Signal. Behav. 2023, 18, 2064072. [Google Scholar] [CrossRef] [PubMed]
- Ramyar, H.; Baradaran-Firouzabadi, M.; Sobhani, A.R.; Asghari, H.R. Reduction of lead toxicity effects and enhancing the glutathione reservoir in green beans through spraying sulfur and serine and glutamine amino acids. Environ. Sci. Pollut. R. 2023, 30, 38157–38173. [Google Scholar] [CrossRef] [PubMed]
- Shad, M.I.; Ashraf, M.A.; Rasheed, R.; Hussain, I.; Ali, S. Exogenous coumarin decreases phytotoxic effects of manganese by regulating ascorbate–glutathione cycle and glyoxalase system to improve photosynthesis and nutrient acquisition in sesame (Sesamum indicum L.). J. Soil Sci. Plant Nut. 2023, 23, 251–274. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.P.; Li, X.H.; Liu, K.Z.; Rao, G.S.; Xue, Y.B. Optimization of aseptic germination system of seeds in soybean (Glycine max L.). J. Phys. Conf. Ser. 2020, 1637, 012077. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents, verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta (BBA)–Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Sadak, M.S.; El–Hameid, A.R.A.; Zaki, F.S.A.; Dawood, M.G.; El–Awadi, M.E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Nat. Res. Centre 2020, 44, 1–10. [Google Scholar] [CrossRef]
- Rácz, A.; Hideg, É.; Czégény, G. Selective responses of class III plant peroxidase isoforms to environmentally relevant UV–B doses. J. Plant Physiol. 2018, 221, 101–106. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tadayon, M.R.; Nadeem, M.; Cheema, M.; Razmjoo, J. Proline–mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol. Plant. 2019, 41, 23. [Google Scholar] [CrossRef]
- Ekinci, M.; Ors, S.; Yildirim, E.; Turan, M.; Sahin, U.; Dursun, A.; Kul, R. Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russ. J. Plant Physiol. 2020, 67, 740–749. [Google Scholar] [CrossRef]
- Chen, G.J.; Zheng, D.F.; Feng, N.J.; Zhou, H.; Mu, D.W.; Liu, L.; Zhao, L.M.; Shen, X.F.; Rao, G.S.; Li, T.Z. Effects of exogenous salicylic acid and abscisic acid on growth, photosynthesis and antioxidant system of rice. Chil. J. Agric. Res. 2022, 82, 21–32. [Google Scholar] [CrossRef]
- Pan, X.; Welti, R.; Wang, X. Quantitative analysis of major plant hormones in crude plant extracts by high–performance liquid chromatography–mass spectrometry. Nat. Protoc. 2010, 5, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Khew, C.Y.; Mori, I.C.; Matsuura, T.; Hirayama, T.; Harikrishna, J.A.; Lau, E.T.; Mercer, Z.J.A.; Hwang, S.S. Hormonal and transcriptional analyses of fruit development and ripening in different varieties of black pepper (Piper nigrum). J. Plant Res. 2020, 133, 73–94. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Manousi, N.; Zachariadis, G.A. Determination of the toxic and nutrient element content of almonds, walnuts, hazelnuts and pistachios by ICP–AES. Separations 2021, 8, 28. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Y.B.; Xie, B.X.; Zhu, S.N.; Lu, X.; Liang, C.Y.; Tian, J. Complex gene regulation between young and old soybean leaves in responses to manganese toxicity. Plant Physiol. Biochem. 2020, 155, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA–seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Zhuang, W.J.; Chen, H.; Yang, M.; Wang, J.P.; Pandey, M.K.; Zhang, C.; Chang, W.C.; Zhang, L.S.; Zhang, X.T.; Tang, R.H.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Wang, X.; Zhang, X. DEGseq, An R package for identifying differentially expressed genes from RNA–seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
- Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L.A.; Rhee, S.Y.; Stitt, M. MapMan, A user–driven tool to display genomic data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.B.; Zhuang, Q.L.; Zhu, S.N.; Xiao, B.X.; Liang, C.Y.; Liao, H.; Tian, J. Genome wide transcriptome analysis reveals complex regulatory mechanisms underlying phosphate homeostasis in soybean nodules. Int. J. Mol. Sci. 2018, 19, 2924. [Google Scholar] [CrossRef] [PubMed]
Gene ID | log2FoldChange | Description |
---|---|---|
Glyma.01G137500 | 2.12 | Auxin-responsive protein |
Glyma.02G125600 | −2.77 | GH3 auxin-responsive promoter |
Glyma.03G029600 | 1.66 | Auxin-responsive protein |
Glyma.06G158700 | 1.43 | Auxin-responsive protein |
Glyma.07G043000 | 1.36 | Dormancy/auxin-associated protein |
Glyma.07G051700 | 1.18 | Auxin-responsive protein |
Glyma.10G151000 | 2.27 | Dormancy/auxin-associated protein |
Glyma.12G035800 | 2.12 | Auxin-responsive protein |
Glyma.12G071000 | −1.30 | Auxin-responsive protein |
Glyma.13G150100 | −2.44 | Auxin-responsive protein |
Glyma.15G076500 | 2.23 | Dormancy/auxin-associated protein |
Glyma.17G046200 | −4.17 | Auxin-responsive protein |
Glyma.17G165300 | −2.72 | GH3 auxin-responsive promoter |
Glyma.02G007300 | −3.34 | AUX/IAA family |
Glyma.10G180000 | 1.14 | AUX/IAA family |
Glyma.13G354100 | −1.40 | AUX/IAA family |
Glyma.15G012700 | −1.45 | AUX/IAA family |
Glyma.02G142500 | −1.37 | AUX/IAA family |
Glyma.03G158700 | −1.31 | AUX/IAA family |
Glyma.04G046900 | −1.65 | AUX/IAA family |
Glyma.19G161000 | −1.30 | AUX/IAA family |
Glyma.06G185300 | −3.81 | Gibberellin-regulated protein |
Glyma.09G095200 | −1.37 | Gibberellin-regulated protein |
Glyma.14G087200 | −1.73 | Gibberellin-regulated protein |
Glyma.17G258200 | −2.25 | Gibberellin-regulated protein |
Glyma.02G297700 | −3.09 | GRAS domain family |
Glyma.06G265500 | −2.95 | GRAS domain family |
Glyma.08G325900 | −2.13 | GRAS domain family |
Glyma.12G018100 | 1.64 | GRAS domain family |
Glyma.12G137700 | −3.11 | GRAS domain family |
Glyma.12G216100 | −1.96 | GRAS domain family |
Glyma.15G037200 | 1.26 | GRAS domain family |
Glyma.17G007600 | −3.53 | GRAS domain family |
Glyma.17G160800 | 1.47 | GRAS domain family |
Glyma.18G081100 | −1.98 | GRAS domain family |
Gene ID | log2FoldChange | Description |
---|---|---|
Glyma.01G106100 | −1.05 | Glutathione S-transferase |
Glyma.02G024600 | 3.98 | Glutathione S-transferase |
Glyma.02G024800 | 4.94 | Glutathione S-transferase |
Glyma.04G107500 | −1.12 | Glutathione S-transferase |
Glyma.06G193500 | 1.70 | Glutathione S-transferase |
Glyma.07G139700 | −1.39 | Glutathione S-transferase |
Glyma.07G139800 | −2.87 | Glutathione S-transferase |
Glyma.07G140400 | −1.14 | Glutathione S-transferase |
Glyma.15G251500 | −1.82 | Glutathione S-transferase |
Glyma.15G251600 | −1.26 | Glutathione S-transferase |
Glyma.15G251700 | −3.19 | Glutathione S-transferase |
Glyma.15G251900 | 1.21 | Glutathione S-transferase |
Glyma.18G190200 | −1.78 | Glutathione S-transferase |
Glyma.05G207100 | −1.24 | Glutathione peroxidase |
Glyma.11G024000 | −1.02 | Glutathione peroxidase |
Gene ID | log2FoldChange | Description |
---|---|---|
Glyma.04G063800 | −1.26 | Cellulose synthase |
Glyma.06G065000 | −1.67 | Cellulose synthase |
Glyma.06G225400 | −5.80 | Cellulose synthase |
Glyma.06G307900 | 4.50 | Cellulose synthase |
Glyma.08G088400 | −4.22 | Cellulose synthase |
Glyma.08G117500 | −3.70 | Cellulose synthase |
Glyma.09G051100 | −1.83 | Cellulose synthase |
Glyma.12G191700 | −2.85 | Cellulose synthase |
Glyma.13G310300 | 1.08 | Cellulose synthase |
Glyma.15G157100 | −1.88 | Cellulose synthase |
Glyma.01G232500 | −2.62 | Cellulose synthase |
Glyma.11G010400 | −1.57 | Cellulose synthase |
Glyma.02G205800 | −2.83 | Cellulose synthase |
Glyma.04G255400 | 1.08 | Cellulose synthase |
Glyma.06G225500 | −1.89 | Cellulose synthase |
Glyma.06G324300 | 1.10 | Cellulose synthase |
Gene ID | log2FoldChange | Description |
---|---|---|
Glyma.01G084800 | −1.41 | Transmembrane amino acid transporter protein |
Glyma.02G260100 | −1.02 | Transmembrane amino acid transporter protein |
Glyma.05G043100 | 1.20 | Transmembrane amino acid transporter protein |
Glyma.09G238100 | −2.72 | Transmembrane amino acid transporter protein |
Glyma.10G201600 | −1.81 | Transmembrane amino acid transporter protein |
Glyma.11G097000 | −2.11 | Transmembrane amino acid transporter protein |
Glyma.11G226000 | −3.11 | Transmembrane amino acid transporter protein |
Glyma.20G188800 | −2.74 | Transmembrane amino acid transporter protein |
Glyma.14G010300 | 1.70 | Transmembrane amino acid transporter protein |
Gene ID | log2FoldChange | Description |
---|---|---|
Glyma.02G075000 | −1.57 | Sugar (and other) transporter |
Glyma.07G086000 | −2.86 | Sugar (and other) transporter |
Glyma.07G189500 | −2.13 | Sugar (and other) transporter |
Glyma.08G009900 | −1.85 | Sugar efflux transporter for intercellular exchange |
Glyma.11G004800 | −1.24 | Sugar (and other) transporter |
Glyma.15G071800 | −1.35 | Sugar (and other) transporter |
Glyma.16G138800 | −1.00 | Sugar (and other) transporter |
Glyma.16G156800 | −1.50 | Sugar (and other) transporter |
Glyma.08G135800 | −1.92 | Nucleotide-sugar transporter |
Glyma.11G119500 | −1.45 | Sugar (and other) transporter |
Glyma.13G284900 | −1.50 | Sugar (and other) transporter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Shi, J.; Li, J.; Zhang, R.; Xue, Y.; Liu, Y. Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress. Int. J. Mol. Sci. 2024, 25, 5341. https://doi.org/10.3390/ijms25105341
Pan Y, Shi J, Li J, Zhang R, Xue Y, Liu Y. Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress. International Journal of Molecular Sciences. 2024; 25(10):5341. https://doi.org/10.3390/ijms25105341
Chicago/Turabian StylePan, Yuhu, Jianning Shi, Jianyu Li, Rui Zhang, Yingbin Xue, and Ying Liu. 2024. "Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress" International Journal of Molecular Sciences 25, no. 10: 5341. https://doi.org/10.3390/ijms25105341
APA StylePan, Y., Shi, J., Li, J., Zhang, R., Xue, Y., & Liu, Y. (2024). Regulatory Mechanism through Which Old Soybean Leaves Respond to Mn Toxicity Stress. International Journal of Molecular Sciences, 25(10), 5341. https://doi.org/10.3390/ijms25105341