Fullerene C60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the FA-PVP-C60 Conjugate
2.2. Particle Size Distributions and ζ-Potential Analysis
2.3. Radical Scavenging Activity of FA-PVP-C60 Conjugate In Vitro
2.4. Toxicity Assay
2.5. Conjugate FA-PVP-C60 Internalization into Cells
2.6. Cell Cycle Analysis
3. Materials and Methods
3.1. FA-PVP-C60 Conjugate Synthesis and Characterization
3.2. Particle Size Distribution and Zeta Potential Measurements
3.3. Radical Scavenging Activity of FA-PVP-C60 Conjugate In Vitro
3.3.1. DPPH Scavenging Activity
3.3.2. Hydroxyl Radicals Scavenging Activity
3.3.3. Superoxide Radicals Scavenging Activity
3.3.4. Singlet Oxygen Pro-oxidant Activity
3.4. Cell Cultures
3.5. Toxicity Assay
3.6. Internalization into Cells Assay
3.7. FA Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luiz, M.T.; Delello Di Filippo, L.; Tofani, L.B.; de Araújo, J.T.C.; Dutra, J.A.P.; Marchetti, J.M.; Chorilli, M. Highlights in Targeted Nanoparticles as a Delivery Strategy for Glioma Treatment. Int. J. Pharm. 2021, 604, 120758. [Google Scholar] [CrossRef]
- Garcia-Bennett, A.; Nees, M.; Fadeel, B. In Search of the Holy Grail: Folate-Targeted Nanoparticles for Cancer Therapy. Biochem. Pharmacol. 2011, 81, 976–984. [Google Scholar] [CrossRef]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the Folate Receptor α in Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Narmani, A.; Rezvani, M.; Farhood, B.; Darkhor, P.; Mohammadnejad, J.; Amini, B.; Refahi, S.; Abdi Goushbolagh, N. Folic Acid Functionalized Nanoparticles as Pharmaceutical Carriers in Drug Delivery Systems. Drug Dev. Res. 2019, 80, 404–424. [Google Scholar] [CrossRef]
- Hilgenbrink, A.R.; Low, P.S. Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. J. Pharm. Sci. 2005, 94, 2135–2146. [Google Scholar] [CrossRef]
- Gruzdev, D.A.; Telegina, A.A.; Levit, G.L.; Solovieva, O.I.; Gusel’nikova, T.Y.; Razumov, I.A.; Krasnov, V.P.; Charushin, V.N. Carborane-Containing Folic Acid Bis-Amides: Synthesis and In Vitro Evaluation of Novel Promising Agents for Boron Delivery to Tumour Cells. Int. J. Mol. Sci. 2022, 23, 13726. [Google Scholar] [CrossRef]
- McCord, E.; Pawar, S.; Koneru, T.; Tatiparti, K.; Sau, S.; Iyer, A.K. Folate Receptors’ Expression in Gliomas May Possess Potential Nanoparticle-Based Drug Delivery Opportunities. ACS Omega 2021, 6, 4111–4118. [Google Scholar] [CrossRef]
- Kanemitsu, T.; Kawabata, S.; Fukumura, M.; Futamura, G.; Hiramatsu, R.; Nonoguchi, N.; Nakagawa, F.; Takata, T.; Tanaka, H.; Suzuki, M.; et al. Folate Receptor-Targeted Novel Boron Compound for Boron Neutron Capture Therapy on F98 Glioma-Bearing Rats. Radiat. Environ. Biophys. 2019, 58, 59–67. [Google Scholar] [CrossRef]
- Kucheryavykh, Y.V.; Davila, J.; Ortiz-Rivera, J.; Inyushin, M.; Almodovar, L.; Mayol, M.; Morales-Cruz, M.; Cruz-Montañez, A.; Barcelo-Bovea, V.; Griebenow, K.; et al. Targeted Delivery of Nanoparticulate Cytochrome c into Glioma Cells through the Proton-Coupled Folate Transporter. Biomolecules 2019, 9, 154. [Google Scholar] [CrossRef]
- Clement, S.; Chen, W.; Deng, W.; Goldys, E.M. X-Ray Radiation-Induced and Targeted Photodynamic Therapy with Folic Acid-Conjugated Biodegradable Nanoconstructs. Int. J. Nanomed. 2018, 13, 3553–3570. [Google Scholar] [CrossRef]
- Elechalawar, C.K.; Bhattacharya, D.; Ahmed, M.T.; Gora, H.; Sridharan, K.; Chaturbedy, P.; Sinha, S.H.; Chandra Sekhar Jaggarapu, M.M.; Narayan, K.P.; Chakravarty, S.; et al. Dual Targeting of Folate Receptor-Expressing Glioma Tumor-Associated Macrophages and Epithelial Cells in the Brain Using a Carbon Nanosphere-Cationic Folate Nanoconjugate. Nanoscale Adv. 2019, 1, 3555–3567. [Google Scholar] [CrossRef]
- Sudimack, J.; Lee, R.J. Targeted Drug Delivery via the Folate Receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, H.; Wang, L.; Li, L.; Wang, H.; Wang, Z.; Li, Z.; Chen, C.; Hou, L.; Zhang, C.; et al. PEI-Derivatized Fullerene Drug Delivery Using Folate as a Homing Device Targeting to Tumor. Biomaterials 2013, 34, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Ottone, F.; Miotti, S.; Bottini, C.; Bagnoli, M.; Perego, P.; Colnaghi, M.I.; Ménard, S. Relationship between Folate-Binding Protein Expression and Cisplatin Sensitivity in Ovarian Carcinoma Cell Lines. Br. J. Cancer 1997, 76, 77–82. [Google Scholar] [CrossRef]
- Porter, A.E.; Gass, M.; Muller, K.; Skepper, J.N.; Midgley, P.; Welland, M. Visualizing the Uptake of C60 to the Cytoplasm and Nucleus of Human Monocyte-Derived Macrophage Cells Using Energy-Filtered Transmission Electron Microscopy and Electron Tomography. Environ. Sci. Technol. 2007, 41, 3012–3017. [Google Scholar] [CrossRef]
- Qiao, R.; Roberts, A.P.; Mount, A.S.; Klaine, S.J.; Ke, P.C. Translocation of C60 and Its Derivatives across a Lipid Bilayer. Nano Lett. 2007, 7, 614–619. [Google Scholar] [CrossRef]
- Bolshakova, O.I.; Slobodina, A.D.; Sarantseva, S.V. Carbon Nanoparticles as Promising Neuroprotectors: Pro et Contra. II. Application of Carbon Nanoparticles in Neurobiology and Neurology. Nanobiotechnol. Rep. 2022, 17, 141–154. [Google Scholar] [CrossRef]
- Ye, L.; Kollie, L.; Liu, X.; Guo, W.; Ying, X.; Zhu, J.; Yang, S.; Yu, M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021, 26, 3252. [Google Scholar] [CrossRef]
- Huang, H.J.; Chetyrkina, M.; Wong, C.W.; Kraevaya, O.A.; Zhilenkov, A.V.; Voronov, I.I.; Wang, P.H.; Troshin, P.A.; Hsu, S. hui Identification of Potential Descriptors of Water-Soluble Fullerene Derivatives Responsible for Antitumor Effects on Lung Cancer Cells via QSAR Analysis. Comput. Struct. Biotechnol. J. 2021, 19, 812–825. [Google Scholar] [CrossRef]
- Yasuno, T.; Ohe, T.; Ikeda, H.; Takahashi, K.; Nakamura, S.; Mashino, T. Synthesis and Antitumor Activity of Novel Pyridinium Fullerene Derivatives. Int. J. Nanomed. 2019, 14, 6325–6337. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Fullerenes as Photosensitizers in Photodynamic Therapy: Pros and Cons. Photochem. Photobiol. Sci. 2018, 17, 1515–1533. [Google Scholar] [CrossRef]
- Antoku, D.; Sugikawa, K.; Ikeda, A. Photodynamic Activity of Fullerene Derivatives Solubilized in Water by Natural-Product-Based Solubilizing Agents. Chem.—A Eur. J. 2019, 25, 1854–1865. [Google Scholar] [CrossRef]
- Zhang, T.X.; Li, J.J.; Li, H.B.; Guo, D.S. Deep Cavitand Calixarene–Solubilized Fullerene as a Potential Photodynamic Agent. Front. Chem. 2021, 9, 710808. [Google Scholar] [CrossRef]
- Valderrama, A.; Reynoso, R.; Gómez, R.W.; Marquina, V.; Romero, M. Interactions of Calcium with the External Surfaces of Fullerenes and Endofullerenes Doped with Radioactive Sodium Iodide. J. Mol. Model. 2017, 23, 15. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Manjanath, A.; Ohno, K.; Inagaki, M.; Sekimoto, S.; Kawazoe, Y. Creation of Mo/Tc@C60and Au@C60and Molecular-Dynamics Simulations. RSC Adv. 2021, 11, 19666–19672. [Google Scholar] [CrossRef]
- Valderrama, A.; Guzman, J. Encapsulation of Sodium Radio-Iodide in Fullerene C60. J. Mol. Model. 2014, 20, 2130. [Google Scholar] [CrossRef]
- Li, T.; Murphy, S.; Kiselev, B.; Bakshi, K.S.; Zhang, J.; Eltahir, A.; Zhang, Y.; Chen, Y.; Zhu, J.; Davis, R.M.; et al. A New Interleukin-13 Amino-Coated Gadolinium Metallofullerene Nanoparticle for Targeted MRI Detection of Glioblastoma Tumor Cells. J. Am. Chem. Soc. 2015, 137, 7881–7888. [Google Scholar] [CrossRef]
- Li, Y.; Biswas, R.; Kopcha, W.P.; Dubroca, T.; Abella, L.; Sun, Y.; Crichton, R.A.; Rathnam, C.; Yang, L.; Yeh, Y.W.; et al. Structurally Defined Water-Soluble Metallofullerene Derivatives towards Biomedical Applications. Angew. Chem.—Int. Ed. 2023, 62, e202211704. [Google Scholar] [CrossRef]
- Bolshakova, O.; Borisenkova, A.; Suyasova, M.; Sedov, V.; Slobodina, A.; Timoshenko, S.; Varfolomeeva, E.; Golomidov, I.; Lebedev, V.; Aksenov, V.; et al. In Vitro and in Vivo Study of the Toxicity of Fullerenols C60, C70 and C120O Obtained by an Original Two Step Method. Mater. Sci. Eng. C 2019, 104, 109945. [Google Scholar] [CrossRef]
- Bolshakova, O.I.; Borisenkova, A.A.; Golomidov, I.M.; Komissarov, A.E.; Slobodina, A.D.; Ryabova, E.V.; Ryabokon, I.S.; Latypova, E.M.; Slepneva, E.E.; Sarantseva, S.V. Fullerenols Prevent Neuron Death and Reduce Oxidative Stress in Drosophila Huntington’s Disease Model. Cells 2023, 12, 170. [Google Scholar] [CrossRef]
- Djordjevic, A.; Srdjenovic, B.; Seke, M.; Petrovic, D.; Injac, R.; Mrdjanovic, J. Review of Synthesis and Antioxidant Potential of Fullerenol Nanoparticles. J. Nanomater. 2015, 2015, 567073. [Google Scholar] [CrossRef]
- Yamashita, K.; Yoshioka, Y.; Pan, H.; Taira, M.; Ogura, T.; Nagano, T.; Aoyama, M.; Nagano, K.; Abe, Y.; Kamada, H.; et al. Biochemical and Hematologic Effects of Polyvinylpyrrolidone-Wrapped Fullerene C60 after Oral Administration. Pharmazie 2013, 68, 54–57. [Google Scholar] [CrossRef]
- Saitoh, Y.; Tanaka, A.; Hyodo, S. Protective Effects of Polyvinylpyrrolidone-Wrapped Fullerene Against Nitric Oxide/Peroxynitrite-Induced Cellular Injury in Human Skin Keratinocytes. J. Nanosci. Nanotechnol. 2021, 21, 4579–4585. [Google Scholar] [CrossRef]
- Piotrowski, P.; Klimek, K.; Ginalska, G.; Kaim, A. Beneficial Influence of Water-Soluble PEG-Functionalized C60 Fullerene on Human Osteoblast Growth in Vitro. Materials 2021, 14, 1566. [Google Scholar] [CrossRef]
- Asada, R.; Liao, F.; Saitoh, Y.; Miwa, N. Photodynamic Anti-Cancer Effects of Fullerene [C60]-PEG Complex on Fibrosarcomas Preferentially over Normal Fibroblasts in Terms of Fullerene Uptake and Cytotoxicity. Mol. Cell. Biochem. 2014, 390, 175–184. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, X.; Liu, C.; Piao, Y.; Sun, Y.; Diao, G. Water-Soluble Inclusion Complex of Fullerene with γ-Cyclodextrin Polymer for Photodynamic Therapy. J. Mater. Chem. B 2014, 2, 5107–5115. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, Y.; Sun, L.; Yao, H.; Zhao, B.; Zhang, R.; Zhang, Y. Folic Acid Functionalized γ-Cyclodextrin C60, a Novel Vehicle for Tumor-Targeted Drug Delivery. J. Biomed. Nanotechnol. 2016, 12, 1393–1403. [Google Scholar] [CrossRef]
- Biby, T.E.; Prajitha, N.; Ashtami, J.; Sakthikumar, D.; Maekawa, T.; Mohanan, P.V. Toxicity of Dextran Stabilized Fullerene C60 against C6 Glial Cells. Brain Res. Bull. 2020, 155, 191–201. [Google Scholar] [CrossRef]
- Fan, J.; Fang, G.; Zeng, F.; Wang, X.; Wu, S. Water-Dispersible Fullerene Aggregates as a Targeted Anticancer Prodrug with Both Chemo- and Photodynamic Therapeutic Actions. Small 2013, 9, 613–621. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef]
- Ratnikova, O.V.; Melenevskaya, E.Y.; Mokeev, M.V.; Zgonnik, V.N. Complexation in Water-Soluble Systems Poly-N-Vinylpyrrolidone-Fullerene C60. Russ. J. Appl. Chem. 2003, 76, 1620–1625. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Marfunin, M.O.; Kriklya, N.N. Colloid Chemistry of Fullerene Solutions: Aggregation and Coagulation. Liquids 2023, 4, 32–72. [Google Scholar] [CrossRef]
- McHedlov-Petrossyan, N.O.; Marfunin, M.O.; Tikhonov, V.A.; Shekhovtsov, S.V. Unexpected Colloidal Stability of Fullerenes in Dimethyl Sulfoxide and Related Systems. Langmuir 2022, 38, 10000–10009. [Google Scholar] [CrossRef] [PubMed]
- Mouri, E.; Moroi, S. Association Behaviors of Poly(N-Vinylpyrrolidone)-Grafted Fullerenes in Aqueous Solution. J. Polym. Res. 2018, 25, 213. [Google Scholar] [CrossRef]
- Off, M.K.; Steindal, A.E.; Porojnicu, A.C.; Juzeniene, A.; Vorobey, A.; Johnsson, A.; Moan, J. Ultraviolet Photodegradation of Folic Acid. J. Photochem. Photobiol. B 2005, 80, 47–55. [Google Scholar] [CrossRef]
- Krasnou, I.; Tarabukina, E.; Melenevskaya, E.; Filippov, A.; Aseyev, V.; Hietala, S.; Tenhu, H. Rheological Behavior of Poly(Vinylpyrrolidone)/Fullerene C60 Complexes in Aqueous Medium. J. Macromol. Sci. Part B Phys. 2008, 47, 500–510. [Google Scholar] [CrossRef]
- Tsyupka, D.V.; Mordovina, E.A.; Sindeeva, O.A.; Sapelkin, A.V.; Sukhorukov, G.B.; Goryacheva, I.Y. High-Fluorescent Product of Folic Acid Photodegradation: Optical Properties and Cell Effect. J. Photochem. Photobiol. A Chem. 2021, 407, 113045. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Ma, X.; Abulimiti, B. Tuning the Spectrum Properties of Fullerene C60: Using a Strong External Electric Field. J. Clust. Sci. 2019, 30, 319–328. [Google Scholar] [CrossRef]
- Nathanael, A.J.; Seo, Y.H.; Oh, T.H. PVP Assisted Synthesis of Hydroxyapatite Nanorods with Tunable Aspect Ratio and Bioactivity. J. Nanomater. 2015, 2015, 621785. [Google Scholar] [CrossRef]
- Behera, M.; Ram, S. Interaction between Poly(Vinyl Pyrrolidone) PVP and Fullerene C60 at the Interface in PVP-C60 Nanofluids-A Spectroscopic Study. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 330. [Google Scholar]
- Tyagi, A.; Penzkofer, A. Fluorescence Spectroscopic Behaviour of Folic Acid. Chem. Phys. 2010, 367, 83–92. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, J.; Zhao, H.; Huang, Z.; Liu, Y.; Fang, M.; Wu, X.; Min, X. Preparation and Performance of Novel Polyvinylpyrrolidone/Polyethylene Glycol Phase Change Materials Composite Fibers by Centrifugal Spinning. Chem. Phys. Lett. 2018, 691, 314–318. [Google Scholar] [CrossRef]
- Du, Y.K.; Yang, P.; Mou, Z.G.; Hua, N.P.; Jiang, L. Thermal Decomposition Behaviors of PVP Coated on Platinum Nanoparticles. J. Appl. Polym. Sci. 2006, 99, 23–26. [Google Scholar] [CrossRef]
- Alibe, I.M.; Matori, K.A.; Sidek, H.A.A.; Yaakob, Y.; Rashid, U.; Alibe, A.M.; Zaid, M.H.M.; Khiri, M.Z.A. EFfects of Calcination Holding Time on Properties of Wide Band Gap Willemite Semiconductor Nanoparticles by the Polymer Thermal Treatment Method. Molecules 2018, 23, 873. [Google Scholar] [CrossRef] [PubMed]
- Neves, D.A.; de Sousa Lobato, K.B.; Angelica, R.S.; Teixeira Filho, J.; de Oliveira, G.P.R.; Godoy, H.T. Thermal and in Vitro Digestion Stability of Folic Acid in Bread. J. Food Compos. Anal. 2019, 84, 103311. [Google Scholar] [CrossRef]
- Jiang, W.; Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanoparticle-Mediated Cellular Response Is Size-Dependent. Nat. Nanotechnol. 2008, 3, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.H.; Park, K. Targeted Drug Delivery to Tumors: Myths, Reality and Possibility. J. Control. Release 2011, 153, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Joachim, E.; Choi, H.; Kim, K. Toxicity of Silica Nanoparticles Depends on Size, Dose, and Cell Type. Nanomedicine 2015, 11, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor Targeting via EPR: Strategies to Enhance Patient Responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Kyzyma, O.A.; Avdeev, M.V.; Bolshakova, O.I.; Melentev, P.; Sarantseva, S.V.; Ivankov, O.I.; Korobov, M.V.; Mikheev, I.V.; Tropin, T.V.; Kubovcikova, M.; et al. State of Aggregation and Toxicity of Aqueous Fullerene Solutions. Appl. Surf. Sci. 2019, 483, 69–75. [Google Scholar] [CrossRef]
- Srdjenovic, B.U.; Slavić, M.N.; Stankov, K.M.; Kladar, N.V.; Jović, D.S.; Seke, M.N.; Bogdanović, V.V. Size Distribution of Fullerenol Nanoparticles in Cell Culture Medium and Their Influence on Antioxidative Enzymes in Chinese Hamster Ovary Cells. Chem. Ind. 2015, 69, 425–431. [Google Scholar] [CrossRef]
- Su, Y.; Xu, J.; Shen, P.; Li, J.; Wang, L.; Li, Q.; Li, W.; Xu, G.; Fan, C.; Huang, Q. Cellular Uptake and Cytotoxic Evaluation of Fullerenol in Different Cell Lines. Toxicology 2010, 269, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Taheri-Ledari, R.; Ganjali, F.; Mirmohammadi, S.S.; Qazi, F.S.; Saeidirad, M.; KashtiAray, A.; Zarei-Shokat, S.; Tian, Y.; Maleki, A. Effects of Morphology and Size of Nanoscale Drug Carriers on Cellular Uptake and Internalization Process: A Review. RSC Adv. 2022, 13, 80–114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; He, C.; Riviere, J.E.; Monteiro-Riviere, N.A.; Lin, Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano 2020, 14, 3075–3095. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Alemany, L.B.; Driver, J.; Hartgerink, J.D.; Barron, A.R. Fullerene-Derivatized Amino Acids: Synthesis, Characterization, Antioxidant Properties, and Solid-Phase Peptide Synthesis. Chem.—A Eur. J. 2007, 13, 2530–2545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, Y.; Fu, S.; Zhang, A. Facile Synthesis of Water-Soluble Fullerene (C60) Nanoparticles via Mussel-Inspired Chemistry as Efficient Antioxidants. Nanomaterials 2019, 9, 1647. [Google Scholar] [CrossRef]
- Behera, M.; Ram, S. Poly(Vinyl Pyrrolidone) Mediated Solubilization and Stabilization of Fullerene C60 in the Form of Nanofluid in an Alcoholic Medium. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 1064–1072. [Google Scholar] [CrossRef]
- Serrano-Pertierra, E.; Oliveira-Rodríguez, M.; Matos, M.; Gutiérrez, G.; Moyano, A.; Salvador, M.; Rivas, M.; Blanco-López, M.C. Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules 2020, 10, 824. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Rose, J.; Plantevin, S.; Auffan, M.; Bottero, J.Y.; Vidaud, C. Protein Corona Formation for Nanomaterials and Proteins of a Similar Size: Hard or Soft Corona? Nanoscale 2013, 5, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Austin, J.; Fernandes, D.; Ruszala, M.J.A.; Hill, N.; Corbett, J. Routine, Ensemble Characterisation of Electrophoretic Mobility in High and Saturated Ionic Dispersions. Sci. Rep. 2020, 10, 4628. [Google Scholar] [CrossRef]
- Baibarac, M.; Smaranda, I.; Nila, A.; Serbschi, C. Optical Properties of Folic Acid in Phosphate Buffer Solutions: The Influence of PH and UV Irradiation on the UV-VIS Absorption Spectra and Photoluminescence. Sci. Rep. 2019, 9, 14278. [Google Scholar] [CrossRef]
- Gazzali, A.M.; Lobry, M.; Colombeau, L.; Acherar, S.; Azaïs, H.; Mordon, S.; Arnoux, P.; Baros, F.; Vanderesse, R.; Frochot, C. Stability of Folic Acid under Several Parameters. Eur. J. Pharm. Sci. 2016, 93, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.M.; Marchioni, E.; Villavicencio, A.L.C.H.; Zhao, M.; di Pascoli, T.; Kuntz, F.; Bergaentzle, M. Mechanism of Folic Acid Radiolysis in Aqueous Solution. LWT 2015, 63, 599–603. [Google Scholar] [CrossRef]
- Tang, N.; Ding, Z.; Zhang, J.; Cai, Y.; Bao, X. Recent Advances of Antioxidant Low-Dimensional Carbon Materials for Biomedical Applications. Front. Bioeng. Biotechnol. 2023, 11, 1121477. [Google Scholar] [CrossRef] [PubMed]
- Wusigale; Hu, L.; Cheng, H.; Gao, Y.; Liang, L. Mechanism for Inhibition of Folic Acid Photodecomposition by Various Antioxidants. J. Agric. Food Chem. 2020, 68, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Gsponer, N.S.; Baigorria, E.; Durantini, E.N.; Milanesio, M.E. Fullerene C60-Chitosan Conjugate Applied in the Photoinactivation of Staphylococcus Aureus. Eur. Polym. J. 2024, 204, 112678. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Mulder, R.J.; Ratcliffe, J.; Wang, C.; Wu, B.; Wang, J.; Hao, X. Highly Aqueously Stable C 60-polymer Nanoparticles with Excellent Photodynamic Property for Potential Cancer Treatment. Smart Med. 2023, 2, e20230033. [Google Scholar] [CrossRef]
- Aschberger, K.; Johnston, H.J.; Stone, V.; Aitken, R.J.; Tran, C.L.; Hankin, S.M.; Peters, S.A.K.; Christensen, F.M. Review of Fullerene Toxicity and Exposure—Appraisal of a Human Health Risk Assessment, Based on Open Literature. Regul. Toxicol. Pharmacol. 2010, 58, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, X.; Ye, L.; Liu, J.; Larwubah, K.; Meng, G.; Shen, W.; Ying, X.; Zhu, J.; Yang, S.; et al. The Effect of Polyhydroxy Fullerene Derivative on Human Myeloid Leukemia K562 Cells. Materials 2022, 15, 1349. [Google Scholar] [CrossRef] [PubMed]
- Bogdanović, G.; Kojić, V.; Dordević, A.; Čanadanović-Brunet, J.; Vojinović-Miloradov, M.; Baltić, V.V. Modulating Activity of Fullerol C 60 (OH) 22 on Doxorubicin-Induced Cytotoxicity. Toxicol. In Vitro 2004, 18, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Franskevych, D.; Palyvoda, K.; Petukhov, D.; Prylutska, S.; Grynyuk, I.; Schuetze, C.; Drobot, L.; Matyshevska, O.; Ritter, U. Fullerene C60 Penetration into Leukemic Cells and Its Photoinduced Cytotoxic Effects. Nanoscale Res. Lett. 2017, 12, 40. [Google Scholar] [CrossRef]
- Attaf, S.E.; Hasan, H.M.A. Effect of Uv Irradiation on Folic Acid Drug. World J. Pharm. Pharm. Sci. 2019, 8, 103–114. [Google Scholar]
- Xia, J.M.; Wei, X.; Chen, X.W.; Shu, Y.; Wang, J.H. Folic Acid Modified Copper Nanoclusters for Fluorescent Imaging of Cancer Cells with Over-Expressed Folate Receptor. Microchim. Acta 2018, 185, 205. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Deng, J.; Guo, D.; Zhang, J.; Yang, L.; Wu, F. A Folate-Conjugated Platinum Porphyrin Complex as a New Cancer-Targeting Photosensitizer for Photodynamic Therapy. Org. Biomol. Chem. 2019, 17, 5367–5374. [Google Scholar] [CrossRef]
- Cheng, L.; Ma, H.; Shao, M.; Fan, Q.; Lv, H.; Peng, J.; Hao, T.; Li, D.; Zhao, C.; Zong, X. Synthesis of Folate-Chitosan Nanoparticles Loaded with Ligustrazine to Target Folate Receptor Positive Cancer Cells. Mol. Med. Rep. 2017, 16, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.S.; Lee, J.Y.; Park, J.H.; Kim, S.W. Synthesis and Evaluation of 68Ga-HBED-CC-EDBE-Folate for Positron-Emission Tomography Imaging of Overexpressed Folate Receptors on CT26 Tumor Cells. J. Label. Compd. Radiopharm. 2018, 61, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, C.; Huang, Y.; Sun, S.; Guan, W.; Yao, Y. Photodynamic Anticancer Activities of Water-Soluble C 60 Derivatives and Their Biological Consequences in a HeLa Cell Line. Chem. Biol. Interact. 2012, 195, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska, M.; Kutwin, M.; Jaworski, S.; Strojny, B.; Wierzbicki, M.; Szczepaniak, J.; Łojkowski, M.; Święszkowski, W.; Bałaban, J.; Chwalibog, A.; et al. Mechano-Signalling, Induced by Fullerene C60 Nanofilms, Arrests the Cell Cycle in the G2/M Phase and Decreases Proliferation of Liver Cancer Cells. Int. J. Nanomed. 2019, 14, 6197–6215. [Google Scholar] [CrossRef] [PubMed]
- Grushko, J.S.; Sedov, V.P. Method of Preparing Fullerene C60. Patent RU2001133222 (A), 27 March 2004. [Google Scholar]
- Nigmatullina, E.K.; Kibalin, I.A.; Sedov, V.P.; Borisenkova, A.A.; Bykov, A.A.; Golosovsky, I.V. “Phantom” Atoms and Thermal Motion in Fullerene C60revealed by x-Ray and Neutron Diffraction. J. Phys. Condens. Matter 2021, 33, 455401. [Google Scholar] [CrossRef]
- Hashemian, S.; Tabatabaee, M.; Gafari, M. Fenton Oxidation of Methyl Violet in Aqueous Solution. J. Chem. 2013, 2013, 509097. [Google Scholar] [CrossRef]
- Entradas, T.; Waldron, S.; Volk, M. The Detection Sensitivity of Commonly Used Singlet Oxygen Probes in Aqueous Environments. J. Photochem. Photobiol. B 2020, 204, 111787. [Google Scholar] [CrossRef]
- Lebedev, V.T.; Török, G.; Kulvelis, Y.V.; Bolshkova, O.I.; Yevlampieva, N.P.; Soroka, M.A.; Fomin, E.V.; Vul, A.Y.; Garg, S. Diamond-Based Nanostructures with Metal-Organic Molecules. Soft Mater. 2022, 20, S34–S43. [Google Scholar] [CrossRef]
Cell Cycle Phases | G0/G1 | S | G2 |
---|---|---|---|
% cells | |||
HeLa control | 73.58% | 6.94% | 14.21% |
HeLa + FA-PVP-C60 | 69.22% | 9.69% | 15.27% |
A549 control | 66.88% | 12.07% | 14.25% |
A549 + FA-PVP-C60 | 62.70% | 14.25% | 16.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisenkova, A.A.; Bolshakova, O.I.; Titova, A.V.; Ryabokon, I.S.; Markova, M.A.; Lyutova, Z.B.; Sedov, V.P.; Varfolomeeva, E.Y.; Bakhmetyev, V.V.; Arutyunyan, A.V.; et al. Fullerene C60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells. Int. J. Mol. Sci. 2024, 25, 5350. https://doi.org/10.3390/ijms25105350
Borisenkova AA, Bolshakova OI, Titova AV, Ryabokon IS, Markova MA, Lyutova ZB, Sedov VP, Varfolomeeva EY, Bakhmetyev VV, Arutyunyan AV, et al. Fullerene C60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells. International Journal of Molecular Sciences. 2024; 25(10):5350. https://doi.org/10.3390/ijms25105350
Chicago/Turabian StyleBorisenkova, Alina A., Olga I. Bolshakova, Anna V. Titova, Irina S. Ryabokon, Maria A. Markova, Zhanna B. Lyutova, Victor P. Sedov, Elena Yu. Varfolomeeva, Vadim V. Bakhmetyev, Alexandr V. Arutyunyan, and et al. 2024. "Fullerene C60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells" International Journal of Molecular Sciences 25, no. 10: 5350. https://doi.org/10.3390/ijms25105350
APA StyleBorisenkova, A. A., Bolshakova, O. I., Titova, A. V., Ryabokon, I. S., Markova, M. A., Lyutova, Z. B., Sedov, V. P., Varfolomeeva, E. Y., Bakhmetyev, V. V., Arutyunyan, A. V., Burdakov, V. S., & Sarantseva, S. V. (2024). Fullerene C60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells. International Journal of Molecular Sciences, 25(10), 5350. https://doi.org/10.3390/ijms25105350