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Abstract: The WUSCHEL-related homeobox (WOX) transcription factor plays a vital role in stem
cell maintenance and organ morphogenesis, which are essential processes for plant growth and
development. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are valued for their ornamental
and medicinal properties. However, the specific functions of the WOX gene family in Dendrobium
species are not well understood. In our study, a total of 30 WOX genes were present in the genomes
of the three Dendrobium species (nine DchWOXs, 11 DhuWOXs, and ten DnoWOXs). These 30 WOXs
were clustered into ancient clades, intermediate clades, and WUS/modern clades. All 30 WOXs
contained a conserved homeodomain, and the conserved motifs and gene structures were similar
among WOXs belonging to the same branch. D. chrysotoxum and D. huoshanense had one pair of
fragment duplication genes and one pair of tandem duplication genes, respectively; D. nobile had
two pairs of fragment duplication genes. The cis-acting regulatory elements (CREs) in the WOX
promoter region were mainly enriched in the light response, stress response, and plant growth and
development regulation. The expression pattern and RT-qPCR analysis revealed that the WOXs
were involved in regulating the floral organ development of D. chrysotoxum. Among them, the high
expression of DchWOX3 suggests that it might be involved in controlling lip development, whereas
DchWOX5 might be involved in controlling ovary development. In conclusion, this work lays the
groundwork for an in-depth investigation into the functions of WOX genes and their regulatory role
in Dendrobium species’ floral organ development.

Keywords: WOX gene family; Dendrobium; floral development; expression pattern

1. Introduction

The homeobox transcription factors (HB TFs) are key regulators of plant and animal
cell fates and differentiation, and homeobox genes were first discovered in Drosophila [1,2].
Meanwhile, more homeobox members continue to be found in other eukaryotes. The
WUSCHEL (WUS) gene is the prototypic member of the plant-specific WUS homeobox
(WOX) protein family, one of several HB TF families [3]. A total of 14 homologs of AtWUS
were searched in the Arabidopsis genome, and these genes were named WOXs [4]. The
WOX TFs contain a short stretch of amino acids that folds into a DNA-binding domain
(called a homeodomain), which forms helix–loop–helix–turn–helix structures in space [5].

In plants, the WOX genes are extensively distributed. According to the evolutionary
origins among genes, the members of the WOX gene family in plants can be clustered into
three clades: the ancient clade, the intermediate clade, and the WUS/modern clade. All
plant species (from algae to angiosperms) contain varying amounts of WOX genes belong-
ing to the ancient clade; the intermediate clade is found in pteridophytes, gymnosperms,
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and angiosperms; and the WUS/modern clade is exclusively found in angiosperms [6]. In
the WOX gene family of Arabidopsis, there are three members (AtWOX10, AtWOX13–14) in
the ancient clade, four members (AtWOX8–9, AtWOX11–12) in the intermediate clade, and
eight members (AtWUS, AtWOX1–7) in the WUS/modern clade.

The WOX gene family is involved in plant growth and development, as well as in
the stress response. WOX family members belonging to different clades fulfill different
biological functions in the development of plant flowers, floral meristems, roots, and other
organs. The WOX genes of the ancient clade participate in the regulation of plant roots
and flower development. AtWOX13 is expressed in floral meristem tissues, inflorescences,
and young flower buds and is particularly highly expressed in developing carpels. WOX13
promotes replum development by negatively regulating the JAG/FIL genes [7]. AtWOX14 is
found only in Brassicaceae, where it is expressed early in lateral root formation and specific
to the development of anthers [8]. The intermediate clade mainly affects embryo patterning
and root organogenesis. WOX8 and WOX9 are homologous genes that play vital roles in
embryo and inflorescence development and are species-specific in their functions [2,9–11].
The genes WOX11 and WOX12, which are homologous, participate in the process of de
novo root organogenesis in Arabidopsis [12]. The WUS clade mainly affects the development
of the floral meristem and leaf and stem cell maintenance. For example, Arabidopsis WUS
genes can maintain stem cell homeostasis at all developmental stages in the shoot apical
meristem (SAM) [13,14]. Meanwhile, WUS genes are also able to act as activators to
regulate the size of the floral meristem tissue [15]. WOX1 and WOX3 redundantly regulate
abaxial–adaxial growth in the leaf and floral meristem [16,17]. AtWOX2 is required to
initiate the embryogenic shoot meristem stem cell program in Arabidopsis [18]. WOX5 is
critical for stem cell maintenance in the root apical meristem (RAM) [19,20]. In addition, the
WOX gene family plays an important role in the response to environmental stresses, such
as salt, cold, and drought. For example, GhWOX4 positively regulates drought tolerance in
cotton; PagWOX11/12a positively regulates the salt tolerance of poplar [21,22].

The WOX genes act as transcription factors to activate or repress the expression of
other genes on the one hand, as described above for the role played by WOXs in plants. On
the other hand, the upstream part of the WOX coding region contains abundant CREs to
receive the action of other regulatory factors. For example, maize ZMSP10/14/26 regulates
the expression of the ZmWOX3A gene in coat precursor cells by directly binding to its
promoter [23]. In summary, the combination of cis- and trans-acting factors exerts a
regulatory effect on gene expression, while playing an indispensable role in plant growth,
development, and evolution [24].

Orchidaceae, one of the largest angiosperm groups, contains over 750 genera and
28,000 species [25,26]. It is widely distributed, with the exception of the North and South
Poles and extremely arid desert areas, and has the greatest distribution in the tropics.
Orchids are highly evolved taxa within angiosperms and are one of the most studied taxa in
biological research [27]. Dendrobium is the second-largest genus in the orchid family and is a
typical epiphyte [28]. Most Dendrobium species have valuable medicinal stems, while their
flowers and leaves have excellent ornamental value. In recent years, the completion of the
whole-genome sequencing of D. catenatum [29], D. chrysotoxum [30], D. huoshanense [31], and
D. nobile [32], etc., has provided valuable information revealing the genetic and molecular
mechanisms of the formation of important traits in Dendrobium. The regulatory function of
the WOX genes in model plants such as Arabidopsis has been relatively comprehensively
researched. However, there is little knowledge about how the WOX genes affect the growth
and development of Dendrobium species.

In our study, we identified the WOX gene family in three Dendrobium species
(D. chrysotoxum, D. huoshanense, and D. nobile), and systematically analyzed their basic
traits, including their chromosomal localization, phylogenetics, motif compositions, gene
structures, collinearity, and CREs. Meanwhile, the expression pattern of WOXs in the D.
chrysotoxum flower parts was analyzed. This project aimed to preliminarily elucidate the
evolutionary and potential biological roles of the WOX gene family in Dendrobium species,
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and to provide new insights into the study of the molecular regulatory mechanisms of the
WOX genes in D. chrysotoxum flower development.

2. Results
2.1. Identification and Physicochemical Properties of the WOX Gene Family

The WOX genes in three Dendrobium species were screened by BLAST and HMMER.
The result showed that ten, nine, and 11 WOXs were identified in the genomes of D. chryso-
toxum, D. huoshanense, and D. nobile, respectively. According to the order distribution of the
chromosomes, these WOXs were named DchWOX1–10, DhuWOX1–9, and DnoWOX1–11.

To characterize the WOX genes of the Dendrobium species in more detail, we predicted
the physicochemical properties of 30 WOX proteins using ExPASy. The results are as
follows (Table 1). The number of amino acids (AA) varied from 110 aa (DchWOX1) to
328 aa (DchWOX4), and the molecular weight (Mw) ranged from 12.84 kDa (DchWOX1) to
35.30 kDa (DnoWOX4). Among the 30 WOXs, 12 were basic proteins with an isoelectric
point (pI) higher than 8.00; the remaining 17, with a pI ranging from 5.26 (DhuWOX8)
to 7.79 (DnoWOX4), were neutral or weakly acidic proteins. Additionally, the grand
average of hydrophilic (GRAVY) values of all WOX proteins were less than zero, suggesting
their strong hydrophilicity. The instability indexes (II) of all WOX members exceeded
40, implying that these proteins are unstable [33]. All WOX proteins were found to be in
the nucleus according to subcellular location predictions, indicating that they might also
function there, like most TFs.

Table 1. Characteristics of the WOXs from three Dendrobium species.

Gene Nane
Number of

Amino Acids
(aa)

Molecular
Weight (kDa) Theoretical PI Instability

Index
Aliphatic

Index
Grand Average of

Hydropathicity
Subcellular
Localization

DchWOX6 259 29.82 5.34 66.87 58.76 −0.887 Nucleus
DchWOX8 285 31.33 7.68 65.78 70.07 −0.395 Nucleus
DchWOX4 328 35.07 8.37 70.06 79.73 −0.065 Nucleus
DchWOX3 195 22.15 9.11 68.49 53.03 −0.772 Nucleus
DchWOX7 230 25.85 6.32 77.88 61.09 −0.693 Nucleus
DchWOX2 195 22.14 9.11 69.91 53.03 −0.772 Nucleus
DchWOX10 236 27.19 6.27 67.38 64.87 −0.834 Nucleus
DchWOX5 302 33.16 6.24 55.35 91.06 −0.098 Nucleus
DchWOX9 246 28.41 9.47 74.03 77.72 −0.706 Nucleus
DchWOX1 110 12.84 9.69 69.36 69.36 −1.195 Nucleus
DhuWOX4 184 21.06 9.08 60.70 73.10 −0.684 Nucleus
DhuWOX7 273 29.67 9.48 70.79 71.14 −0.472 Nucleus
DhuWOX1 227 26.35 6.20 66.47 71.28 −0.717 Nucleus
DhuWOX3 229 25.90 7.00 75.10 60.09 −0.691 Nucleus
DhuWOX6 300 32.64 6.31 63.71 88.43 −0.170 Nucleus
DhuWOX8 259 29.91 5.26 65.97 60.27 −0.878 Nucleus
DhuWOX5 185 19.89 8.98 79.63 54.38 −0.556 Nucleus
DhuWOX9 196 22.14 9.11 65.29 53.78 −0.758 Nucleus
DhuWOX2 316 34.27 7.66 62.10 75.66 −0.110 Nucleus
DnoWOX11 227 26.31 6.20 66.47 68.72 −0.750 Nucleus
DnoWOX7 230 26.04 6.60 74.71 59.39 −0.694 Nucleus
DnoWOX4 325 35.30 7.79 61.37 76.86 −0.364 Nucleus
DnoWOX6 216 24.38 9.91 69.27 71.34 −0.748 Nucleus
DnoWOX2 196 22.16 9.11 69.22 53.78 −0.760 Nucleus
DnoWOX8 307 33.27 6.30 69.20 75.28 −0.173 Nucleus

DnoWOX10 184 21.15 9.39 61.85 74.67 −0.664 Nucleus
DnoWOX5 259 29.92 5.26 66.63 60.27 −0.876 Nucleus
DnoWOX1 236 26.49 5.75 55.23 55.08 −0.838 Nucleus
DnoWOX3 258 27.53 5.78 66.90 69.26 −0.258 Nucleus
DnoWOX9 212 24.24 6.79 78.91 48.77 −0.922 Nucleus

2.2. Chromosomal Localization of WOXs

As illustrated in Figure 1A, ten DchWOXs were unevenly present on six chromo-
somes of D. chrysotoxum (Chr01, 06, 08, 12, 15, and 19) (Figure 1A). Nine DhuWOXs were
distributed on six chromosomes, Chr4, 6, 7, 11, 13, and 19, of D. huoshanense (Figure 1B).
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The results of the chromosome mapping for D. nobile showed that 11 DnoWOXs were
distributed across seven chromosomes (Figure 1C). In addition, we observed a pair of
tandem repeat genes in D. chrysotoxum (DchWOX2 and DchWOX3) and D. huoshanense
(DhuWOX6 and DhuWOX7).
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2.3. Phylogenetic Analysis of WOXs

We created a phylogenetic tree of the WOX genes to analyze the evolution of the WOX
genes in the Dendrobium species (Figure 2). The evolutionary tree included 30 WOXs from
three Dendrobium species, 15 AtWOXs from A. thaliana, and 13 OsWOXs from O. sativa. All
WOX protein sequences have been collected with Table S1. According to the classification
of the WOXs’ evolutionary relationships in A. thaliana, the 30 WOXs in the Dendrobium
species can be similarly clustered into the ancient clade (six WOX genes), the intermediate
clade (ten WOX genes), and the WUS/modern clade (14 WOX genes). The WUS/modern
clade has the largest number of WOX genes, while the ancient clade has the fewest.
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2.4. Gene Structure and Conserved Motifs of WOXs

The conserved motifs of the 30 WOXs in the three Dendrobium species were evaluated
through the online prediction website MEME (Figure 3B). The results demonstrated that,
whereas the motif structures varied by clade, WOXs within the same clade had comparable
motif structures. Ten conserved motifs were detected in the 30 WOXs. Table S2 has listed
all motif sequences. All WOXs contain motif 1 and motif 3 simultaneously; motif 6, motif
7, and motif 10 are exclusive to the WUS/modern clade; and motif 9 is found only in the
intermediate clade. The distinct roles of various WOXs may be conferred by the particular
distributions of various structures.

We visualized the number and distribution of the WOXs’ introns and exons to further
reveal the gene structures of the WOXs in the three Dendrobium species (Figure 3C). Most
Dendrobium WOXs contain 1–2 introns. Notably, three introns were detected in DnoWOX4
and four introns were detected in DchWOX9, while DchWOX1 and DhuWOX5 had no
introns. The gene structures of WOX members belonging to the same clade are similar. In
particular, in the ancient clade, the phylogenetic tree divides six genes into two structurally
similar subclades. DhuWOX8, DnoWOX5, and DchWOX6 are clustered as subclades with
two introns, while DchWOX10, DhuWOX1, and DnoWOX11 are clustered as a subclade
with one intron.

Multiple sequence pairs of the 30 WOXs showed that all WOXs contained a helix–
turn–helix–loop–helix region unique to the homeodomain (Figure 4A). Twelve WOXs in
the WUS/modern clade contain the WUS-box (TL-LFP-) (Figure 4B).



Int. J. Mol. Sci. 2024, 25, 5352 6 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 16 
 

 

Multiple sequence pairs of the 30 WOXs showed that all WOXs contained a helix–
turn–helix–loop–helix region unique to the homeodomain (Figure 4A). Twelve WOXs in 
the WUS/modern clade contain the WUS-box (TL-LFP-) (Figure 4B).  

 
Figure 3. Phylogenetic tree, motifs, and structures of WOXs in three Dendrobium species. (A) Phylo-
genetic tree of 30 WOXs. (B) Conserved motifs of 30 WOX proteins. (C) Intron and exon structures 
of 30 WOX genes. (D) Sequence logos of motif 1 and motif 3. 

 
Figure 4. Multiple sequence alignment results of the WOX gene family in three Dendrobium species. 
(A) Homeodomain. (B) WUS-box. The red box indicates the homeodomain and the black box indi-
cates the WUS-box domain. 

Figure 3. Phylogenetic tree, motifs, and structures of WOXs in three Dendrobium species. (A) Phylogenetic
tree of 30 WOXs. (B) Conserved motifs of 30 WOX proteins. (C) Intron and exon structures of 30 WOX
genes. (D) Sequence logos of motif 1 and motif 3.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 16 
 

 

Multiple sequence pairs of the 30 WOXs showed that all WOXs contained a helix–
turn–helix–loop–helix region unique to the homeodomain (Figure 4A). Twelve WOXs in 
the WUS/modern clade contain the WUS-box (TL-LFP-) (Figure 4B).  

 
Figure 3. Phylogenetic tree, motifs, and structures of WOXs in three Dendrobium species. (A) Phylo-
genetic tree of 30 WOXs. (B) Conserved motifs of 30 WOX proteins. (C) Intron and exon structures 
of 30 WOX genes. (D) Sequence logos of motif 1 and motif 3. 

 
Figure 4. Multiple sequence alignment results of the WOX gene family in three Dendrobium species. 
(A) Homeodomain. (B) WUS-box. The red box indicates the homeodomain and the black box indi-
cates the WUS-box domain. 

Figure 4. Multiple sequence alignment results of the WOX gene family in three Dendrobium species.
(A) Homeodomain. (B) WUS-box. The red box indicates the homeodomain and the black box
indicates the WUS-box domain.

2.5. Synteny Analysis and Ka/Ks Value of WOX Gene Family

The D. chrysotoxum genome contains a pair of segmental duplication genes, DchWOX4
and DchWOX8 on Chr06 and Chr15 (Figure 5A). Similarly, the D. huoshanense genome
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contains one pair of fragment duplication genes, DhuWOX2 and DhuWOX5 on Chr6 and
Chr11 (Figure 5B). Two pairs of segmental duplicates were found in the D. nobile genome,
DnoWOX2 and DnoWOX9 on CM039718.1 and CM039732.1, and DnoWOX3 and DnoWOX8
on CM039723.1 and CM039732.1, respectively (Figure 5C). Furthermore, the Ka/Ks ratios
of these four gene pairs were all less than 0.5, ranging from 0.13 to 0.2 (Table 2).
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Table 2. The Ka/Ks of the WOX gene family in the three Dendrobium species.

Gene 1 Gene 2 Ka Ks Ka/Ks

DchWOX4 DchWOX8 0.332789 1.919410 0.173381
DhuWOX5 DhuWOX2 0.305003 2.326057 0.131124
DnoWOX2 DnoWOX9 0.226893 1.109762 0.204452
DnoWOX3 DnoWOX8 0.267376 1.697561 0.157506

2.6. Cis-Acting Elements Analysis of WOXs

We extracted 2000 bp upstream of the CDS of the 30 WOX genes to identify the CREs
to predict the potential regulatory functions of the WOX genes in the Dendrobium species.
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In total, 569 CREs belonging to 35 types and 17 response functions were found in the three
Dendrobium species (Figure 6 and Table S3).

We classified the retrieved CREs into four categories: growth and development el-
ements, phytohormone responsiveness, stress repressiveness, and light responsiveness.
The growth and development element category includes endosperm expression, circadian
control, and meristem expression. Interestingly, among them, the frequency of meristem
expression is the largest. Five types of CRE exist within the category of phytohormone
responsiveness. This includes abscisic acid (ABA), methyl jasmonate (MeJA), auxin, gib-
berellin, and salicylic acid responsiveness. The stress repressiveness category had four
types of CRE, including defense and stress responsiveness, anaerobic induction, drought,
and low-temperature stress, with anaerobic induction being the most frequent. In addition,
light responsiveness accounts for almost half of all CREs (269/569), and there is a large
frequency of light responsiveness in each WOX gene.

As shown in Figure 6C, DchWOX9 in D. chrysotoxum has the largest number (33 CREs)
of elements, DhuWOX2 and DhuWOX4 in D. huoshanense have the most (25 CREs), and
DnoWOX6 in D. nobile has the most (34 CREs).
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2.7. Expression Pattern Analysis of WOX Gene Family in D. chrysotoxum

We performed expression analyses based on transcriptome data from different flower
parts in the three developmental periods of D. chrysotoxum (Figure 7). In the transcriptome
heatmap, DchWOX6 and DchWOX10 of the ancient clade were expressed at significantly
higher levels in S1. However, DchWOX6 was similarly expressed in all five floral parts,
whereas DchWOX10 exhibited high expression only in the gynostemium. Of the three
members of the intermediate clade, DchWOX5 had higher expression in the ovary of S1,
DchWOX8 in the sepal of S1, and DchWOX4 had lower expression in S1 than S2 and S3.
Among the five WOXs of the WUS/modern clade, DchWOX2 and DchWOX3 displayed
similar expression levels throughout flower development, and they had higher expression
amounts in the lip of S1; DchWOX7 had higher expression in the ovary of S1; DchWOX1
was highly expressed in the ovary of S2; and DchWOX9 gynostemium expression was
highest in S1.
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the WOXs in D. chrysotoxum.

2.8. RT-qPCR Analysis of WOX Genes in D. chrysotoxum

We selected DchWOX3, DchWOX5, and DchWOX10 from different clades for RT-qPCR
experiments to further elucidate the expression patterns of the WOXs during the devel-
opment of different flower parts in D. chrysotoxum (Figure 8). As shown, the DchWOX3
RT-qPCR results are in general agreement with the transcriptome data, i.e., DchWOX3
showed very low expression in other parts of the flower, while it was significantly ex-
pressed in the S1 lip, and its expression was gradually downregulated during flower
development (Figure 8A). DchWOX5 was consistently expressed in the ovary during the
three periods, suggesting that DchWOX5 is involved in regulating ovary development
(Figure 8B). The transcriptome expression heatmap showed that DchWOX10 was signifi-
cantly expressed during S1 in the gynostemium. However, the RT-qPCR results indicated a
trend of increasing followed by decreasing expression of DchWOX10 (Figure 8C). These
differences may have resulted from imperfect correlations between the samples used for
transcriptome sequencing and the samples used for RT-qPCR.
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3. Discussion

A class of TFs unique to plants, the WOX family is involved in critical regulatory
functions in important developmental programs like organ morphogenesis and stem cell
maintenance [3,34]. In our study, 30 WOXs were identified from the genomes of three
species: D. chrysotoxum contained nine DchWOXs, D. huoshanense contained 11 DhuWOXs,
and D. nobile contained 10 DnoWOXs. The three Dendrobium species had similar numbers
of WOXs to D. catenatum (14) [35], Phalaenopsis equestris (10) [36], A. thaliana (15), O. sativa
(13), Sorghum bicolor (11) [37], Vitis vinifera (12) [38], tobacco (9) [39], and Triticum aestivum
(14) [40], but differed from those of dicotyledonous plants such as Brassica napus (58) [41],
soybean (33) [42], and Gossypium hirsutum (40) [43]. Variations in the size of a species’
genome or processes like gene and genome replication may be the cause of the variations
in the number of WOXs between species [44].

All three Dendrobium species in this study had undergone at least two whole-genome
duplication (WGD) events [30–32]. According to the chromosome distribution map
(Figure 1), both D. chrysotoxum and D. huoshanense harbored a single pair of tandem repeat
genes. The synteny analysis showed that both D. chrysotoxum and D. huoshanense had a
single pair of genes with segmental duplication, and D. nobile had two pairs of genes with
segmental duplication (Figure 5). It is probably because of these duplication events that the
WOX genes differed in number and distribution among the three species. In addition, the
Ka/Ks ratios of the four WOX gene pairs detected in this study were all less than one, reveal-
ing that these WOXs underwent strong purifying selection during evolution (Table 2) [45].
This enables them to remain highly conserved in evolving Dendrobium species, maintaining
the specific biological functions of WOX proteins [46].

The phylogenetic analysis of the 30 WOXs from the Dendrobium species compared
with those from Arabidopsis and O. sativa showed that the distribution of the WOXs in
Dendrobium species is conserved (Figure 2). Like most plants, such as O. sativa, Picea abies,
and Eriobotrya japonica, the WUS/modern clade had the highest number of WOX genes
and the ancient clade had the lowest number of WOX genes among the three Dendrobium
species [36,47,48]. The loss of certain WOX genes occurred in the three Dendrobium species,
except for WOX1/6/7/8/14, which is unique to dicotyledons. For example, D. chrysotoxum
and D. huoshanense both lost WOX4, and only D. nobile retained the homologous gene for
AtWOX4 (DnoWOX6). Strikingly, DchWOX1 and DnoWOX1 were well clustered into a
subclade with AtWUS and OsWOX1 (AtWUS homologous gene). AtWUS was shown to be
the prototype of the Arabidopsis WOX gene family, so we speculate that DchWOX1 is the
prototype of the WOXs of D. chrysotoxum, and DnoWOX1 is the prototype of the WOXs
of D. nobile [3]. However, similar to D. catenatum, the prototype gene was absent in D.
huoshanense [35]. We hypothesize that, during evolution, there may have been functional
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redundancy among WOX family members to compensate for the functions performed by
the missing genes, or some species-specific WOXs may have arisen [3,39,49].

Supported by the conserved motifs and intron patterns, the highly conserved gene
structure guarantees the conserved function of each clade or subclade. WOX genes in
the same subfamily tend to have similar numbers of introns and exons, and they also
share similarities in gene structure (Figure 3) [50,51]. The gene of the ancient clade has a
more conserved gene structure than the other two clades’ genes, consistent with the WOX
genes of Arabidopsis, Poplar, and Sorghum [37]. The conserved ancient clade is present in
all plants, and we hypothesize that strict conservation ensures that these WOX proteins
perform indispensable functions in plant evolution [6]. The concatenated motif 3 and
motif 1 (Figure 3A) correspond to the homeodomain sequence shown in Figure 4 and are
present in all 30 WOX proteins. The homeodomain exhibits a helix–turn–helix–loop–helix
structure, which ensures that it can differentiate between sequence-specific targets with
precise spatiotemporal organization (Figure 4A) [52]. Similar to most plants, such as
Arabidopsis, rice, and maize, only WUS/modern clade members contained the WUS-box
(TL-LFP-) (Figure 4B) [4,39]. In summary, the sequence and structure conservation of the
WOX gene family members maintains their functional integrity across species.

Transcriptional regulation occurs mainly through the promoter and its associated
CREs to activate or repress gene expression [53]. The WOX gene family is extensively
involved in regulating the development of various plant organs and contributes to abiotic
stress and phytohormone signaling. The promoter regions of these 30 WOXs were rich in
light-responsive elements, suggesting that WOXs play an essential role in regulating the
light response (Figure 6) [54]. The meristem expression is the most frequent of the growth
and developmental components. DchWOX4, DhuWOX2, and DnoWOX3 had two, three,
and three meristem expression elements, respectively (Figure 6B), and these three genes
shared a branch with AtWOX11 and AtWOX12. Since AtWOX11 and AtWOX12 participate
in new root organ development in Arabidopsis [12], DchWOX4, DhuWOX2, and DnoWOX3
are speculated to regulate the differentiation of roots in the three Dendrobium species, re-
spectively. The stress-repressive CREs in the promoter region of the WOXs mainly include
anaerobic induction, drought inducibility, and low-temperature responsiveness, which
implies that the WOX genes are essential for plants to respond to abiotic stresses. This has
been verified in Arabidopsis and O. sativa; for example, the rab21 promoter drives OsWOX13
overexpression in O. sativa, thereby improving its drought tolerance [55]. Elements associ-
ated with the plant hormone response in the promoter region of the WOXs are ABA, IAA,
SA, GA, and MeJA. Many studies have revealed that the WOX is affected by IAA, ABA,
and GA during plant growth and development [22,56]. The MeJA response element is the
most abundant phytohormone response element. It is involved in plant defense responses
and also regulates plant growth and development. [57,58]. To summarize, the WOX gene
family in Dendrobium species has a vital function in plant growth, development, and the
stress response by mediating phytohormone regulation.

The transcriptome analysis of Arabidopsis, O. sativa, Fragaria vesca, and Nelumbo nucifera
indicated that NnWOX14 was significantly expressed in the carpel of N. nucifera; FvWOX9
and FvWOX9a in F. vesca showed significant expression in the process of development; and
WOX family members are expressed in the flowers of both Arabidopsis and O. sativa [37,59,60].
All of these observations suggest the significance of the WOX gene in the formation of
floral organs in plants. Therefore, we combined transcriptomic data from the flowers
of D. chrysotoxum with RT-qPCR experiments to identify the important regulatory role
of the WOX genes in D. chrysotoxum flower development (Figures 7 and 8). According
to the results of DchWOX3 being significantly expressed in the S1 lip (Figure 8A), along
with the development process of gradually reducing the amount of its expression, we
speculate that DchWOX3 may participate in regulating lip growth. It has been found that
PeWOX9A, PeWOX9B, and DcWOX9 are highly expressed in the gynoecium in D. catenatum
and P. equestris, respectively, and the overexpression of DcWOX9 in Arabidopsis resulted
in staminate and pistil sterility [36]. In our study, DchWOX5 was significantly expressed
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in the ovary during the three periods (Figure 8B). PeWOX9A, PeWOX9B, DcWOX9, and
DchWOX5 both share a clade with AtWOX9, indicating their specific roles in regulating
gynoecium and ovary development, which need to be further verified.

4. Materials and Methods
4.1. Data Sources

The genome files of D. chrysotoxum (accession number: PRJNA664445) and D. nobile
(accession number: PRJNA725550) were retrieved from the NCBI (https://www.ncbi.nlm.
nih.gov/, accessed on 25 September 2023). The genome file of D. huoshanense (accession
number: CNA0014590) was retrieved from the China Nucleotide Sequence Archive (CNSA,
https://ftp.cngb.org/, accessed on 25 September 2023). A total of 15 A. thaliana WOX
protein sequences were retrieved from TAIR (http://www.arabidopsis.org, accessed on
25 September 2023). The 13 WOX protein sequences of O. sativa were retrieved from
PlantTFDB (http://planttfdb.gao-lab.org/, accessed on 25 September 2023).

4.2. Identification and Physicochemical Properties of WOXs

Candidate WOX genes were searched in the genomes of three Dendrobium species in
the two-way BLAST tool of the TBtools v2.003 software, using the 15 WOXs of A. thaliana as
probes, respectively [61,62]. Meanwhile, using the Simple HMM Search tool of TBtools, the
Hidden Markov Model (HMM) file of the homeodomain (PF00046) from the Pfam database
(http://pfam.xfam.org/search, accessed on 27 September 2023) was utilized to further
identify WOX family members in the three Dendrobium species. Candidate WOXs identified
by BLAST and HMM were uploaded to NCBI CD-Search (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi, accessed on 27 September 2023) for structural analysis, and only
genes with conserved typical homeodomains of WOXs were retained.

All finalized sequences of the 30 WOX proteins were uploaded to the online software
ExPASy (https://www.expasy.org/, accessed on 27 September 2023) for physicochemical
property analysis, to obtain the amino acids (aa), molecular weight (MW), isoelectric
point (pI), instability index (II), aliphatic index (AI), and grand average of hydropathicity
(GRAVY) of all WOX proteins [63]. Then, the subcellular localization prediction of the
WOX family members was performed by the online program Cell-PLoc 2.0 (http://www.
csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/, accessed on 27 September 2023).

4.3. Chromosomal Localization

Based on the annotation data of the three Dendrobium genomes, chromosomal local-
ization maps of the WOX genes were produced using Gene Location Visualize from the
GTF/GFF program of TBtools.

4.4. Phylogenetic Analysis of WOX Gene Family

The protein sequences of 15 AtWOXs, 13 OsWOXs, ten DchWOXs, nine DhuWOXs,
and 11 DnoWOXs were uploaded into the MEGA11 software, and then these 58 WOX
protein sequences were used to achieve sequence alignment using the Clustal W function
(default parameters), and the phylogenetic trees of the five species were constructed using
the maximum likelihood (1000 bootstrap replication) [64,65]. The editing and beautification
of the phylogenetic tree was performed by Evolview 3.0. (http://www.evolgenius.info/
evolview/#/treeview, accessed on 8 October 2023) [66].

4.5. Protein Conservative Domain and Gene Structure Analysis

The prediction of conserved structural domains for the 30 WOXs in Dendrobium was
accomplished by utilizing the CDD program from NCBI (https://www.ncbi.nlm.nih.gov/
cdd, accessed on 10 October 2023). The identification of conserved motifs for the 30 WOXs
was performed by the MEME online program (https://meme-suite.org/meme/tools/
meme, accessed on 10 October 2023) [67]. Gene Structure View in TBtools was employed
to map the phylogenetic trees, conserved motifs, and gene structures in combination. The
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WOX protein sequence alignment was performed by Clustal W of MEGA 11 and then
beautified by jalview (Version: 2.11.3.2).

4.6. Synteny Analysis of WOX Gene Family

The identification of intra-species duplicate genes in the three Dendrobium species was
performed using the One Step MCScanx function of TBtools [68]. In Advance Circos of
TBtools, the duplication patterns of the three Dendrobium species were visualized. Then,
the calculation of the Ka, Ks, and Ka/Ks values for the gene pairs was accomplished by the
Simple Ka/Ks Calculator in TBtools.

4.7. Cis-Acting Regulatory Element Analysis

First, Gtf/Gff3 Sequence Extract and Fasta Extract of TBtools were used to extract
2000 bp upstream of the 30 WOX genes. Second, to complete the prediction of the
CREs, the acquired sequences were submitted to the online website PlantCARE (http:
//bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 13 October 2023).
Finally, the distribution of the acquired CREs was visualized using the Basic Biosequence
View module of TBtools, while the categories and number of CREs were counted and
plotted in Excel 2016 [69].

4.8. Expression Pattern and RT-qPCR Analysis

D. chrysotoxum plant materials were taken from the Forest Orchid Garden of Fujian
Agriculture and Forestry University for transcriptome sequencing and RT-qPCR, including
five flower parts (sepal, petal, lip, ovary, and gynostemium) in three periods (unpigmented
bud stage, pigmented bud stage, and early flowering stage).

The transcriptome sequencing and library construction of the five flower parts from
the three periods of D. chrysotoxum development were performed by BGI Genomics Co.,
Ltd. (Shenzhen, China). RESM v1.2.8 was used for transcript quantification and to calculate
the FPKM value for each sample. Based on the FPKM value, heatmaps of gene expression
are created in the HeatMap program of TBtools.

Further validation of the expression patterns of the three WOX genes was achieved by
RT-qPCR experiments. The FastPure Plant Total RNA Isolation Kit (for polysaccharide- and
polyphenol-rich tissues) (Vazyme Biotech Co., Ltd., Nanjing, China) was used to extract
total RNA from D. chrysotoxum samples. The Hifair® AdvanceFast One-Step RT-gDNA
Digestion SuperMix for qPCR (YEASEN, Shanghai, China) was used to generate the cDNA
for the quantitative PCR. Based on the transcription data, DchActin (Maker75111) was
selected as the reference gene. The WOX gene sequences were submitted to the Primer
Premier 5 software to design specific PCR primers (Table S5). The TSINGKE ArtiCanATM
SYBR qPCR Mix was used for the RT-qPCR analysis on the Bio-Rad/CFX Connect Real-
Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). Three biological
replicates were carried out for all experiments. Finally, the relative expression of the three
WOX genes was calculated using the 2−∆∆CT method with S1 Se as the reference. The data
were visualized using GraphPad Prism 7.0.

5. Conclusions

In this study, 10, 11, and 9 WOX genes were identified in the genomes of D. chryso-
toxum, D. huoshanense, and D. nobile, respectively, and chromosomal localization, phylogeny,
gene structure, and motif composition analyses were performed. In addition, based on the
transcriptome and RT-qPCR experiments, we analyzed the expression patterns of the Dch-
WOXs in five floral parts of D. chrysotoxum at three developmental periods. In conclusion,
our results provide useful information for the in-depth exploration of the biological roles of
the WOX gene family, as well as floral developmental studies in Dendrobium species.
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