The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy
Abstract
:1. Introduction
2. Effects on Offspring
2.1. Prematurity
2.2. Low Birth Weight
2.3. Cardiometabolic Risk Factors
2.4. Structural Alterations
3. Mechanisms Linking Maternal Preeclampsia and Offspring CVD
3.1. Shared Genetic Factors
3.2. Shared Environment
3.3. Developmental Programming
3.4. Epigenetics
4. Molecular Mechanisms
4.1. Angiogenic Imbalance
4.2. Inflammation
4.3. Alterations in the RAAS
4.4. Imbalance of Endothelium-Derived Components
4.5. Serotonin Dysregulation
4.6. Oxidative Stress
4.7. Activation of the Hypothalamic–Pituitary–Adrenal Axis
4.8. Activation of the Hypothalamic–Pituitary–Gonadal Axis
4.9. Epigenetic Modifications
- DNA methylation
- microRNA
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, R.; Li, Y.; Li, X.; Jiang, W. Hypertensive Disorders in Pregnancy: Global Burden from 1990 to 2019, Current Research Hotspots and Emerging Trends. Curr. Probl. Cardiol. 2023, 48, 101982. [Google Scholar] [CrossRef] [PubMed]
- Karrar, S.A.; Hong, P.L. Preeclampsia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension the Task Force for the management of arterial hypertension of the European Society of Hypertension. J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H.; Steinberg, G.; Ramus, R.M. Preeclampsia; Medscape: New York, NY, USA, 2022. [Google Scholar]
- Yang, C.; Baker, P.N.; Granger, J.P.; Davidge, S.T.; Tong, C. Long-Term Impacts of Preeclampsia on the Cardiovascular System of Mother and Offspring. Hypertension 2023, 80, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Berhan, Y. No Hypertensive Disorder of Pregnancy; No Preeclampsia-eclampsia; No Gestational Hypertension; No Hellp Syndrome. Vascular Disorder of Pregnancy Speaks for All. Ethiop. J. Health Sci. 2016, 26, 177–186. [Google Scholar] [CrossRef]
- Wu, P.; Gulati, M.; Kwok, C.S.; Wong, C.W.; Narain, A.; O’Brien, S.; Chew-Graham, C.A.; Verma, G.; Kadam, U.T.; Mamas, M.A.; et al. Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e007809. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q. Literature Overview of Association Between Preeclampsia and Cardiovascular Risk. Anatol. J. Cardiol. 2023, 27, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.W.; LaMarca, B. Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy. Am. J. Physiol. Integr. Comp. Physiol. 2018, 315, R521–R528. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Janszky, I.; Gissler, M.; Roos, N.; Wikström, A.-K.; Yu, Y.; Chen, H.; Bonamy, A.-K.E.; Li, J.; László, K.D. Association of Maternal Preeclampsia with Offspring Risks of Ischemic Heart Disease and Stroke in Nordic Countries. JAMA Netw. Open 2022, 5, e2242064. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Zuccotti, G. Prevention and Treatment of Cardiometabolic Diseases in Children with Overweight and Obesity: The Future of Healthcare. Children 2022, 9, 176. [Google Scholar] [CrossRef]
- Candelino, M.; Tagi, V.M.; Chiarelli, F. Cardiovascular risk in children: A burden for future generations. Ital. J. Pediatr. 2022, 48, 57. [Google Scholar] [CrossRef]
- Gidding, S.S. Epidemiology of Cardiovascular Disease in Children. In Pediatric Hypertension; Flynn, J., Ingelfinger, J., Redwine, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 335–348. [Google Scholar] [CrossRef]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Gootjes, D.V.; Posthumus, A.G.; Jaddoe, V.W.V.; van Rijn, B.B.; Steegers, E.A.P. Maternal hypertensive disorders in pregnancy and early childhood cardiometabolic risk factors: The Generation R Study. PLoS ONE 2021, 16, e0261351. [Google Scholar] [CrossRef] [PubMed]
- High Blood Pressure in Kids and Teens. Available online: https://www.cdc.gov/bloodpressure/youth.htm (accessed on 7 November 2023).
- Bi, S.; Zhang, L.; Huang, L.; Li, Y.; Liang, Y.; Huang, M.; Huang, B.; Liang, J.; Gu, S.; Chen, J.; et al. Long-term effects of preeclampsia on metabolic and biochemical outcomes in offspring: What can be expected from a meta-analysis? Obes. Rev. 2021, 23, e13411. [Google Scholar] [CrossRef] [PubMed]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Wojczakowski, W.; Kimber-Trojnar, Ż.; Dziwisz, F.; Słodzińska, M.; Słodziński, H.; Leszczyńska-Gorzelak, B. Preeclampsia and Cardiovascular Risk for Offspring. J. Clin. Med. 2021, 10, 3154. [Google Scholar] [CrossRef] [PubMed]
- Goffin, S.M.; Derraik, J.G.B.; Groom, K.M.; Cutfield, W.S. Maternal pre-eclampsia and long-term offspring health: Is there a shadow cast? Pregnancy Hypertens. 2018, 12, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Suman, V.; Luther, E.E. Preterm Labor. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ødegård, R.; Vatten, L.J.; Nilsen, S.T.; Salvesen, K.; Austgulen, R. Preeclampsia and fetal growth. Obstet. Gynecol. 2000, 96, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lin, R.; Yang, L.; Wang, Y.; Mao, B.; Xu, X.; Yu, J. Meta-Analysis of Cardiovascular Risk Factors in Offspring of Preeclampsia Pregnancies. Diagnostics 2023, 13, 812. [Google Scholar] [CrossRef] [PubMed]
- Andraweera, P.H.; Lassi, Z.S. Cardiovascular Risk Factors in Offspring of Preeclamptic Pregnancies—Systematic Review and Meta-Analysis. J. Pediatr. 2019, 208, 104–113.e6. [Google Scholar] [CrossRef]
- Wang, L.-B.; Qu, B.; Xu, P.; Wu, L.-L.; Gu, J.-S.; Shah, N.K.; Dong, S.; Shu, C. Preeclampsia exposed offspring have greater body mass index than non-exposed offspring during peripubertal life: A meta-analysis. Pregnancy Hypertens. 2020, 19, 247–252. [Google Scholar] [CrossRef]
- Benagiano, M.; Mancuso, S.; Brosens, J.J.; Benagiano, G. Long-Term Consequences of Placental Vascular Pathology on the Maternal and Offspring Cardiovascular Systems. Biomolecules 2021, 11, 1625. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.L.S.; Barbalho, S.M.; de Araujo, R.R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes/Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Stadler, J.T.; Scharnagl, H.; Wadsack, C.; Marsche, G. Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and Their Offspring. Antioxidants 2023, 12, 795. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.Z.; Aye, C.Y.; Lewandowski, A.J.; Davis, E.F.; Khoo, C.P.; Newton, L.; Yang, C.T.; Zen, A.A.H.; Simpson, L.J.; O’brien, K.; et al. Association of Maternal Antiangiogenic Profile at Birth with Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies. Hypertension 2016, 68, 749–759. [Google Scholar] [CrossRef]
- Plummer, M.D.; Andraweera, P.H.; Garrett, A.; Leemaqz, S.; Wittwer, M.; Aldridge, E.; Arstall, M.A.; Dekker, G.A.; Roberts, C.T. Hypertensive disorders of pregnancy and later cardiovascular disease risk in mothers and children. J. Dev. Orig. Health Dis. 2020, 12, 555–560. [Google Scholar] [CrossRef]
- Stojanovska, V.; Scherjon, S.A.; Plösch, T. Preeclampsia as Modulator of Offspring Health. Biol. Reprod. 2016, 94, 53. [Google Scholar] [CrossRef]
- Cebrian, C.; Asai, N.; D’agati, V.; Costantini, F. The Number of Fetal Nephron Progenitor Cells Limits Ureteric Branching and Adult Nephron Endowment. Cell Rep. 2014, 7, 127–137. [Google Scholar] [CrossRef]
- Jonker, S.S.; Louey, S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J. Endocrinol. 2015, 228, R1–R18. [Google Scholar] [CrossRef]
- Giachini, F.R.; Riva-Trem, O.B.O.; Galaviz-Hernandez, C.; Damiano, A.E.; Viana, M.; Cadavid, A.; Asturizaga, P.; Teran, E.; Clapes, S.; Alcala, M.; et al. Vascular Dysfunction in Mother and Offspring during Preeclampsia: Contributions from Latin-American Countries. Curr. Hypertens. Rep. 2017, 19, 83. [Google Scholar] [CrossRef]
- Çetinkaya, M.; Bostan, Ö.; Köksal, N.; Semizel, E.; Özkan, H.; Çakır, S. Early left ventricular diastolic dysfunction in premature infants born to preeclamptic mothers. J. Perinat. Med. 2011, 39, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Turbeville, H.R.; Sasser, J.M. Preeclampsia beyond pregnancy: Long-term consequences for mother and child. Am. J. Physiol. Physiol. 2020, 318, F1315–F1326. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.Q.; Hu, R. Lasting Effects of Intrauterine Exposure to Preeclampsia on Offspring and the Underlying Mechanism. Am. J. Perinatol. Rep. 2019, 9, E275–E291. [Google Scholar] [CrossRef] [PubMed]
- Andraweera, P.H.; Gatford, K.L.; Care, A.S.; Bianco-Miotto, T.; Lassi, Z.S.; Dekker, G.A.; Arstall, M.; Roberts, C.T. Mechanisms linking exposure to preeclampsia in utero and the risk for cardiovascular disease. J. Dev. Orig. Health Dis. 2020, 11, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Founds, S.A.; Tsigas, E.; Ren, D.; Barmada, M.M. Associating Symptom Phenotype and Genotype in Preeclampsia. Biol. Res. Nurs. 2018, 20, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.H.; Lucassen, A.M. Recent developments in genetic/genomic medicine. Clin. Sci. 2019, 133, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Løset, M.; Johnson, M.P.; Melton, P.E.; Ang, W.; Huang, R.C.; Mori, T.A.; Beilin, L.J.; Pennell, C.; Roten, L.T.; Iversen, A.C.; et al. Preeclampsia and cardiovascular disease share genetic risk factors on chromosome 2q22. Pregnancy Hypertens. 2024, 4, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Sitras, V.; Fenton, C.; Acharya, G. Gene expression profile in cardiovascular disease and preeclampsia: A meta-analysis of the transcriptome based on raw data from human studies deposited in Gene Expression Omnibus. Placenta 2015, 36, 170–178. [Google Scholar] [CrossRef]
- Marciniak, A.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Marciniak, B.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fetal programming of the metabolic syndrome. Taiwan J. Obstet. Gynecol. 2017, 56, 133–138. [Google Scholar] [CrossRef]
- Beratis, N.G.; Panagoulias, D.; Varvarigou, A. Increased blood pressure in neonates and infants whose mothers smoked during pregnancy. J. Pediatr. 1996, 128, 806–812. [Google Scholar] [CrossRef]
- Cheong, J.N.; Wlodek, M.E.; Moritz, K.M.; Cuffe, J.S.M. Programming of maternal and offspring disease: Impact of growth restriction, fetal sex and transmission across generations. J. Physiol. 2016, 594, 4727–4740. [Google Scholar] [CrossRef] [PubMed]
- Varshavsky, J.; Smith, A.; Wang, A.; Hom, E.; Izano, M.; Huang, H.; Padula, A.; Woodruff, T.J. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod. Toxicol. 2020, 92, 14–56. [Google Scholar] [CrossRef] [PubMed]
- Rager, J.E.; Bangma, J.; Carberry, C.; Chao, A.; Grossman, J.; Lu, K.; Manuck, T.A.; Sobus, J.R.; Szilagyi, J.; Fry, R.C. Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reprod. Toxicol. 2020, 98, 1–12. [Google Scholar] [CrossRef]
- Lorigo, M.; Cairrao, E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol. Asp. Med. 2021, 87, 101054. [Google Scholar] [CrossRef] [PubMed]
- Salsano, S.; Pérez-Debén, S.; Quiñonero, A.; González-Martín, R.; Domínguez, F. Phytoestrogen exposure alters endometrial stromal cells and interferes with decidualization signaling. Fertil. Steril. 2019, 112, 947–958.e3. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.; Cooper, B.; Posnack, N.G. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res. 2020, 112, 1362–1385. [Google Scholar] [CrossRef] [PubMed]
- Gingrich, J.; Ticiani, E.; Veiga-Lopez, A. Placenta Disrupted: Endocrine Disrupting Chemicals and Pregnancy. Trends Endocrinol. Metab. 2020, 31, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. Fetal growth and adult disease. BJOG Int. J. Obstet. Gynaecol. 1992, 99, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Barker, D. The developmental origins of chronic adult disease. Acta Paediatr. 2004, 93, 26–33. [Google Scholar] [CrossRef]
- Boeldt, D.S.; Bird, I.M. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J. Endocrinol. 2017, 232, R27–R44. [Google Scholar] [CrossRef]
- Jayet, P.-Y.; Rimoldi, S.F.; Stuber, T.; Salmòn, C.S.; Hutter, D.; Rexhaj, E.; Thalmann, S.; Schwab, M.; Turini, P.; Sartori-Cucchia, C.; et al. Pulmonary and Systemic Vascular Dysfunction in Young Offspring of Mothers with Preeclampsia. Circulation 2010, 122, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Alsnes, I.V.; Vatten, L.J.; Fraser, A.; Bjørngaard, J.H.; Rich-Edwards, J.; Romundstad, P.R.; Åsvold, B.O. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertension 2017, 69, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2018, 20, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Caniçais, C.; Vasconcelos, S.; Ramalho, C.; Marques, C.J.; Dória, S. Deregulation of imprinted genes expression and epigenetic regulators in placental tissue from intrauterine growth restriction. J. Assist. Reprod. Genet. 2021, 38, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y. Promoter Methylation Status of WNT2 in Placenta from Patients with Preeclampsia. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 5294–5301. [Google Scholar] [CrossRef] [PubMed]
- Levy, E.; Spahis, S.; Bigras, J.-L.; Delvin, E.; Borys, J.-M. The Epigenetic Machinery in Vascular Dysfunction and Hypertension. Curr. Hypertens. Rep. 2017, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, T105–T119. [Google Scholar] [CrossRef] [PubMed]
- Paauw, N.D.; van Rijn, B.B.; Lely, A.T.; Joles, J.A. Pregnancy as a critical window for blood pressure regulation in mother and child: Programming and reprogramming. Acta Physiol. 2016, 219, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.A.; Khalil, R.A. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem. Pharmacol. 2015, 95, 211–226. [Google Scholar] [CrossRef]
- Alexander, B.T.; Dasinger, J.H.; Intapad, S. Fetal programming and cardiovascular pathology. Compr. Physiol. 2015, 5, 997–1025. [Google Scholar] [CrossRef]
- Staff, A.C. The two-stage placental model of preeclampsia: An update. J. Reprod. Immunol. 2019, 134–135, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Spradley, F.T. Sympathetic nervous system control of vascular function and blood pressure during pregnancy and preeclampsia. J. Hypertens. 2019, 37, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Byers, B.D.; Betancourt, A.; Lu, F.; Hankins, G.D.; Longo, M.; Saade, G.R.; Bytautiene, E. The effect of prepregnancy obesity and sFlt-1–induced preeclampsia-like syndrome on fetal programming of adult vascular function in a mouse model. Am. J. Obstet. Gynecol. 2009, 200, 432.e1–432.e7. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Bytautiene, E.; Tamayo, E.; Gamble, P.; Anderson, G.D.; Hankins, G.D.; Longo, M.; Saade, G.R. Gender-specific effect of overexpression of sFlt-1 in pregnant mice on fetal programming of blood pressure in the offspring later in life. Am. J. Obstet. Gynecol. 2007, 197, 418.e1–418.e5. [Google Scholar] [CrossRef]
- Lewandowski, A.J.; Davis, E.F.; Yu, G.; Digby, J.E.; Boardman, H.; Whitworth, P.; Singhal, A.; Lucas, A.; McCormick, K.; Shore, A.C.; et al. Elevated Blood Pressure in Preterm-Born Offspring Associates with a Distinct Antiangiogenic State and Microvascular Abnormalities in Adult Life. Hypertension 2015, 65, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Llurba, E.; Sánchez, O.; Ferrer, Q.; Nicolaides, K.H.; Ruíz, A.; Domínguez, C.; Sánchez-De-Toledo, J.; García-García, B.; Soro, G.; Arévalo, S.; et al. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur. Heart J. 2013, 35, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Patten, I.S.; Rana, S.; Shahul, S.; Rowe, G.C.; Jang, C.; Liu, L.; Hacker, M.R.; Rhee, J.S.; Mitchell, J.; Mahmood, F.; et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 2012, 485, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Pruis, M.G.; Gellhaus, A.; Kühnel, E.; Lendvai, Á.; Bloks, V.W.; Groen, A.K.; Plösch, T. Sex-specific placental differences as a contributor to sex-specific metabolic programming? Acta Physiol. 2015, 215, 127–129. [Google Scholar] [CrossRef]
- McDonnold, M.; Tamayo, E.; Kechichian, T.; Gamble, P.; Longo, M.; Hankins, G.D.; Saade, G.R.; Costantine, M.M. The effect of prenatal pravastatin treatment on altered fetal programming of postnatal growth and metabolic function in a preeclampsia-like murine model. Am. J. Obstet. Gynecol. 2014, 210, 542.e1–542.e7. [Google Scholar] [CrossRef]
- Blázquez-Medela, A.M.; García-Ortiz, L.; A Gómez-Marcos, M.; I Recio-Rodríguez, J.; Sánchez-Rodríguez, A.; López-Novoa, J.M.; Martínez-Salgado, C. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 2010, 8, 86. [Google Scholar] [CrossRef]
- LaMarca, B.; Cornelius, D.C.; Harmon, A.C.; Amaral, L.M.; Cunningham, M.W.; Faulkner, J.L.; Wallace, K. Identifying immune mechanisms mediating the hypertension during preeclampsia. Am. J. Physiol. Integr. Comp. Physiol. 2016, 311, R1–R9. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Jee, B.; Gupta, S.K. Preeclampsia: Disease biology and burden, its management strategies with reference to India. Pregnancy Hypertens. 2018, 15, 23–31. [Google Scholar] [CrossRef]
- Guillemette, L.; Lacroix, M.; Allard, C.; Patenaude, J.; Battista, M.-C.; Doyon, M.; Moreau, J.; Ménard, J.; Ardilouze, J.-L.; Perron, P.; et al. Preeclampsia is associated with an increased pro-inflammatory profile in newborns. J. Reprod. Immunol. 2015, 112, 111–114. [Google Scholar] [CrossRef]
- Hu, M.; Eviston, D.; Hsu, P.; Mariño, E.; Chidgey, A.; Santner-Nanan, B.; Wong, K.; Richards, J.L.; Yap, Y.-A.; Collier, F.; et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat. Commun. 2019, 10, 3031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, D.; Chen, X.; Li, Y.; Li, N.; Gao, Q.; Li, L.; Zhou, X.; Lv, J.; Sun, M.; et al. Prenatal hypoxia promotes atherosclerosis via vascular inflammation in the offspring rats. Atherosclerosis 2016, 245, 28–34. [Google Scholar] [CrossRef]
- Cummins, E.P.; Berra, E.; Comerford, K.M.; Ginouves, A.; Fitzgerald, K.T.; Seeballuck, F.; Godson, C.; Nielsen, J.E.; Moynagh, P.; Pouyssegur, J.; et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl. Acad. Sci. USA 2006, 103, 18154–18159. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.M.; da Silva, R.L.; Vieira, J.L.; Fattah, T.; Lueneberg, M.E.; Gottschall, C.A.M. Role of Vascular Inflammation in Coronary Artery Disease: Potential of Anti-inflammatory Drugs in the Prevention of Atherothrombosis. Inflammation and anti-inflammatory drugs in coronary artery disease. Am. J. Cardiovasc. Drugs 2014, 15, 1–11. [Google Scholar] [CrossRef]
- South, A.M.; Shaltout, H.A.; Washburn, L.K.; Hendricks, A.S.; Diz, D.I.; Chappell, M.C. Fetal programming and the angiotensin-(1-7) axis: A review of the experimental and clinical data. Clin. Sci. 2019, 133, 55–74. [Google Scholar] [CrossRef]
- Lumbers, E.R.; Delforce, S.J.; Arthurs, A.L.; Pringle, K.G. Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front. Endocrinol. 2019, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Lumbers, E.R.; Pringle, K.G. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am. J. Physiol. Integr. Comp. Physiol. 2014, 306, R91–R101. [Google Scholar] [CrossRef]
- Hering, L.; Herse, F.; Geusens, N.; Verlohren, S.; Wenzel, K.; Staff, A.C.; Brosnihan, K.B.; Huppertz, B.; Luft, F.C.; Muller, D.N.; et al. Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy. Hypertension 2010, 56, 311–318. [Google Scholar] [CrossRef]
- Yart, L.; Bahmanyar, E.R.; Cohen, M.; de Tejada, B.M. Role of the Uteroplacental Renin–Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021, 9, 1332. [Google Scholar] [CrossRef] [PubMed]
- Gathiram, P.; Moodley, J. The Role of the Renin-Angiotensin-Aldosterone System in Preeclampsia: A Review. Curr. Hypertens. Rep. 2020, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pringle, K.; Tadros, M.; Callister, R.; Lumbers, E. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: Roles in trophoblast invasion and angiogenesis? Placenta 2011, 32, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Herse, F.; LaMarca, B. Angiotensin II Type 1 Receptor Autoantibody (AT1-AA)-Mediated Pregnancy Hypertension. Am. J. Reprod. Immunol. 2012, 69, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Makris, A.; Hennessy, A. Linking the old and new—Do angiotensin II type 1 receptor antibodies provide the missing link in the pathophysiology of preeclampsia? Hypertens. Pregnancy 2015, 34, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.W. JAHA Spotlight on Pregnancy and Its Impact on Maternal and Offspring Cardiovascular Health. J. Am. Heart Assoc. 2022, 11, e025167. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, N.B.; Grigore, D.; Robertson, E.B.; Alexander, B.T. Estrogen Protects Against Increased Blood Pressure in Postpubertal Female Growth Restricted Offspring. Hypertension 2007, 50, 679–685. [Google Scholar] [CrossRef]
- Ojeda, N.B.; Intapad, S.; Royals, T.P.; Black, J.T.; Dasinger, J.H.; Tull, F.L.; Alexander, B.T. Hypersensitivity to acute ANG II in female growth-restricted offspring is exacerbated by ovariectomy. Am. J. Physiol. Integr. Comp. Physiol. 2011, 301, R1199–R1205. [Google Scholar] [CrossRef]
- Brosnihan, K.B.; Hodgin, J.B.; Smithies, O.; Maeda, N.; Gallagher, P. Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice. Exp. Physiol. 2008, 93, 658–664. [Google Scholar] [CrossRef]
- South, A.M.; Nixon, P.A.; Chappell, M.C.; Diz, D.I.; Russell, G.B.; Jensen, E.T.; Shaltout, H.A.; O’Shea, T.M.; Washburn, L.K. Association between preterm birth and the renin−angiotensin system in adolescence: Influence of sex and obesity. J. Hypertens. 2018, 36, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Washburn, L.K.; Brosnihan, K.B.; Chappell, M.C.; I Diz, D.; Gwathmey, T.M.; A Nixon, P.; Russell, G.B.; Snively, B.M.; O’shea, T.M. The renin–angiotensin–aldosterone system in adolescent offspring born prematurely to mothers with preeclampsia. J. Renin-Angiotensin-Aldosterone Syst. 2014, 16, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Irani, R.A.; Zhang, Y.; Blackwell, S.C.; Zhou, C.C.; Ramin, S.M.; Kellems, R.E.; Xia, Y. The detrimental role of angiotensin receptor agonistic autoantibodies in intrauterine growth restriction seen in preeclampsia. J. Exp. Med. 2009, 206, 2809–2822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, X.; Yang, L.; Yan, Z.; Yan, L.; Tian, J.; Li, X.; Song, L.; Wang, L.; Yang, X.; et al. Increased Susceptibility to Metabolic Syndrome in Adult Offspring of Angiotensin Type 1 Receptor Autoantibody-Positive Rats. Antioxid. Redox Signal. 2012, 17, 733–743. [Google Scholar] [CrossRef]
- Chu, K.Y.; Lau, T.; Carlsson, P.-O.; Leung, P.S. Angiotensin II Type 1 Receptor Blockade Improves β-Cell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Diabetes 2006, 55, 367–374. [Google Scholar] [CrossRef]
- Alexander, B.T.; South, A.M.; August, P.; Bertagnolli, M.; Ferranti, E.P.; Grobe, J.L.; Jones, E.J.; Loria, A.S.; Safdar, B.; Sequeira-Lopez, M.L.S.; et al. Appraising the Preclinical Evidence of the Role of the Renin-Angiotensin-Aldosterone System in Antenatal Programming of Maternal and Offspring Cardiovascular Health across the Life Course: Moving the Field Forward: A Scientific Statement from the American Heart Association. Hypertension 2023, 80, E75–E89. [Google Scholar] [CrossRef] [PubMed]
- Sulemanji, M.; Vakili, K. Neonatal renal physiology. Semin. Pediatr. Surg. 2013, 22, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Ma’Ayeh, M.; Krishnan, V.; Gee, S.E.; Russo, J.; Shellhaas, C.; Rood, K.M. Fetal renal artery impedance in pregnancies affected by preeclampsia. JPME 2020, 48, 313–316. [Google Scholar] [CrossRef]
- Jakoubek, V.; Bíbová, J.; Herget, J.; Hampl, V. Chronic hypoxia increases fetoplacental vascular resistance and vasoconstrictor reactivity in the rat. Am. J. Physiol.-Heart Circ. Physiol. 2008, 294, H1638–H1644. [Google Scholar] [CrossRef]
- Singh, R.R.; Denton, K.M.; Bertram, J.F.; Jefferies, A.J.; Moritz, K.M. Reduced nephron endowment due to fetal uninephrectomy impairs renal sodium handling in male sheep. Clin. Sci. 2010, 118, 669–680. [Google Scholar] [CrossRef]
- Yu, Y.-C.; Jiang, Y.; Yang, M.-M.; He, S.-N.; Xi, X.; Xu, Y.-T.; Hu, W.-S.; Luo, Q. Hypermethylation of delta-like homolog 1/maternally expressed gene 3 loci in human umbilical veins: Insights into offspring vascular dysfunction born after preeclampsia. J. Hypertens. 2019, 37, 581–589. [Google Scholar] [CrossRef]
- Mannaerts, D.; Faes, E.; Gielis, J.; Van Craenenbroeck, E.; Cos, P.; Spaanderman, M.; Gyselaers, W.; Cornette, J.; Jacquemyn, Y. Oxidative stress and endothelial function in normal pregnancy versus pre-eclampsia, a combined longitudinal and case control study. BMC Pregnancy Childbirth 2018, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Alwasel, S.H.; Kaleem, I.; Sahajpal, V.; Ashton, N. Maternal Protein Restriction Reduces Angiotensin II AT1 and AT2 Receptor Expression in the Fetal Rat Kidney. Kidney Blood Press. Res. 2010, 33, 251–259. [Google Scholar] [CrossRef]
- Kajantie, E.; Eriksson, J.G.; Osmond, C.; Thornburg, K.; Barker, D.J. Pre-Eclampsia Is Associated With Increased Risk of Stroke in the Adult Offspring. Stroke 2009, 40, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C.P.; Brownbill, P.; Dilworth, M.; Glazier, J.D. Review: Adaptation in placental nutrient supply to meet fetal growth demand: Implications for programming. Placenta 2010, 31, S70–S74. [Google Scholar] [CrossRef]
- Sánchez, A.; Martínez, P.; Muñoz, M.; Benedito, S.; García-Sacristán, A.; Hernández, M.; Prieto, D. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: Role of ETA and ETB receptors. Br. J. Pharmacol. 2014, 171, 5682–5695. [Google Scholar] [CrossRef]
- Rosenfeld, C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol. Reprod. 2020, 102, 532–538. [Google Scholar] [CrossRef]
- Keaton, S.A.; Heilman, P.; Bryleva, E.Y.; Madaj, Z.; Krzyzanowski, S.; Grit, J.; Miller, E.S.; Jalmby, M.; Kalapotharakos, G.; Racicot, K.; et al. Altered Tryptophan Catabolism in Placentas from Women with Pre-eclampsia. Int. J. Tryptophan Res. 2019, 12, 1178646919840321. [Google Scholar] [CrossRef]
- Gumusoglu, S.; Scroggins, S.; Vignato, J.; Santillan, D.; Santillan, M. The Serotonin-Immune Axis in Preeclampsia. Curr. Hypertens. Rep. 2021, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- A Doggrell, S. The role of 5-HT on the cardiovascular and renal systems and the clinical potential of 5-HT modulation. Expert Opin. Investig. Drugs 2003, 12, 805–823. [Google Scholar] [CrossRef]
- Herr, N.; Bode, C.; Duerschmied, D. The Effects of Serotonin in Immune Cells. Front. Cardiovasc. Med. 2017, 4, 48. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, P.; Ramiro-Cortijo, D.; Reyes-Hernandez, C.G.; de Pablo, A.L.L.; Gonzalez, M.C.; Arribas, S.M. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef] [PubMed]
- Dennery, P.A. Oxidative stress in development: Nature or nurture? Free Radic. Biol. Med. 2010, 49, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Hilali, N.; Kocyigit, A.; Demir, M.; Camuzcuoglu, A.; Incebiyik, A.; Camuzcuoglu, H.; Vural, M.; Taskin, A. DNA damage and oxidative stress in patients with mild preeclampsia and offspring. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 377–380. [Google Scholar] [CrossRef]
- Matsubara, K.; Matsubara, Y.; Hyodo, S.; Katayama, T.; Ito, M. Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J. Obstet. Gynaecol. Res. 2010, 36, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, B.; Amaral, L.M.; Harmon, A.C.; Cornelius, D.C.; Faulkner, J.L.; Cunningham, M.W., Jr. Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia. Curr. Hypertens. Rep. 2016, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef]
- Gil-Acevedo, L.; Ceballos, G.; Torres-Ramos, Y. Foetal lipoprotein oxidation and preeclampsia. Lipids Health Dis. 2022, 21, 51. [Google Scholar] [CrossRef] [PubMed]
- Ghany, E.A.G.A.; Alsharany, W.; Ali, A.A.; Youness, E.R.; Hussein, J.S. Anti-oxidant profiles and markers of oxidative stress in preterm neonates. Ann. Trop. Paediatr. 2016, 36, 134–140. [Google Scholar] [CrossRef]
- Bi, J.; Contag, S.A.; Chen, K.; Su, Y.; Figueroa, J.P.; Chappell, M.C.; Rose, J.C. Sex-specific effect of antenatal betamethasone exposure on renal oxidative stress induced by angiotensins in adult sheep. Am. J. Physiol. Physiol. 2014, 307, F1013–F1022. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.S.; Cooke, C.-L.; Davidge, S.T. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol. Rev. 2016, 96, 549–603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gao, Q.; Tu, Q.; Zhong, Y.; Zhu, D.; Mao, C.; Xu, Z. Prenatal hypoxia enhanced angiotensin II-mediated vasoconstriction via increased oxidative signaling in fetal rats. Reprod. Toxicol. 2016, 60, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.P.; Al-Hasan, Y. Impact of Oxidative Stress in Fetal Programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, P.; de Pablo, A.L.L.; García-Prieto, C.F.; Somoza, B.; Quintana-Villamandos, B.; de Diego, J.J.G.; Gutierrez-Arzapalo, P.Y.; Ramiro-Cortijo, D.; González, M.C.; Arribas, S.M. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress. PLoS ONE 2017, 12, e0171544. [Google Scholar] [CrossRef] [PubMed]
- Henley, D.; Brown, S.; Pennell, C.; Lye, S.; Torpy, D.J. Evidence for central hypercortisolism and elevated blood pressure in adolescent offspring of mothers with pre-eclampsia. Clin. Endocrinol. 2016, 85, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aguayo, A.; Aglony, M.; Bancalari, R.; Avalos, C.; Bolte, L.; Garcia, H.; Loureiro, C.; Carvajal, C.; Campino, C.; Inostroza, A.; et al. Birth weight is inversely associated with blood pressure and serum aldosterone and cortisol levels in children. Clin. Endocrinol. 2012, 76, 713–718. [Google Scholar] [CrossRef]
- Pinheiro, T.V.; Brunetto, S.; Ramos, J.G.L.; Bernardi, J.R.; Goldani, M.Z. Hypertensive disorders during pregnancy and health outcomes in the offspring: A systematic review. J. Dev. Orig. Health Dis. 2016, 7, 391–407. [Google Scholar] [CrossRef]
- Chinnathambi, V.; Balakrishnan, M.; Yallampalli, C.; Sathishkumar, K. Prenatal Testosterone Exposure Leads to Hypertension That Is Gonadal Hormone-Dependent in Adult Rat Male and Female Offspring1. Biol. Reprod. 2012, 86, 1–7, 137. [Google Scholar] [CrossRef]
- Spiering, W.; Kroon, A.A.; Fuss-Lejeune, M.M.J.J.; Daemen, M.J.A.P.; de Leeuw, P.W. Angiotensin II Sensitivity Is Associated with the Angiotensin II Type 1 Receptor A1166C Polymorphism in Essential Hypertensives on a High Sodium Diet. Hypertension 2000, 36, 411–416. [Google Scholar] [CrossRef]
- Kelishadi, R.; Haghdoost, A.A.; Jamshidi, F.; Aliramezany, M.; Moosazadeh, M. Low birthweight or rapid catch-up growth: Which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatr. Int. Child Health 2015, 35, 110–123. [Google Scholar] [CrossRef]
- More, A.S.; Mishra, J.S.; Hankins, G.D.; Kumar, S. Prenatal Testosterone Exposure Decreases Aldosterone Production but Maintains Normal Plasma Volume and Increases Blood Pressure in Adult Female Rats. Biol. Reprod. 2016, 95, 42. [Google Scholar] [CrossRef] [PubMed]
- Alsnes, I.V.; Janszky, I.; Åsvold, B.O.; Økland, I.; Forman, M.R.; Vatten, L.J. Maternal Preeclampsia and Androgens in the Offspring around Puberty: A Follow-Up Study. PLoS ONE 2016, 11, e0167714. [Google Scholar] [CrossRef] [PubMed]
- Bormann, C.L.; Smith, G.D.; Padmanabhan, V.; Lee, T.M. Prenatal testosterone and dihydrotestosterone exposure disrupts ovine testicular development. Reproduction 2011, 142, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Apicella, C.; Ruano, C.S.M.; Méhats, C.; Miralles, F.; Vaiman, D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int. J. Mol. Sci. 2019, 20, 2837. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, U.M.; Hall, D.L.; Rawls, A.Z.; Alexander, B.T. Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin. Sci. 2021, 135, 2307–2327. [Google Scholar] [CrossRef]
- Wang, T.; Xiang, Y.; Zhou, X.; Zheng, X.; Zhang, H.; Zhang, X.; Zhang, J.; He, L.; Zhao, X. Epigenome-wide association data implicate fetal/maternal adaptations contributing to clinical outcomes in preeclampsia. Epigenomics 2019, 11, 1003–1019. [Google Scholar] [CrossRef] [PubMed]
- Hogg, K.; Blair, J.D.; McFadden, D.E.; von Dadelszen, P.; Robinson, W.P. Early Onset Pre-Eclampsia Is Associated with Altered DNA Methylation of Cortisol-Signalling and Steroidogenic Genes in the Placenta. PLoS ONE 2013, 8, e62969. [Google Scholar] [CrossRef]
- Blair, J.D.; Yuen, R.K.; Lim, B.K.; McFadden, D.E.; von Dadelszen, P.; Robinson, W.P. Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia. Mol. Hum. Reprod. 2013, 19, 697–708. [Google Scholar] [CrossRef]
- Brodowski, L.; Zindler, T.; von Hardenberg, S.; Schröder-Heurich, B.; von Kaisenberg, C.S.; Frieling, H.; Hubel, C.A.; Dörk, T.; von Versen-Höynck, F. Preeclampsia-Associated Alteration of DNA Methylation in Fetal Endothelial Progenitor Cells. Front. Cell Dev. Biol. 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, N.; Sharp, G.C.; Reese, S.E.; Vehmeijer, F.O.; Lahti, J.; Page, C.M.; Zhang, W.; Rifas-Shiman, S.L.; Rezwan, F.I.; Simpkin, A.J.; et al. Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns. Hypertension 2019, 74, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J. The developmental basis of disease: Update on environmental exposures and animal models. Basic Clin. Pharmacol. Toxicol. 2018, 125, 5–13. [Google Scholar] [CrossRef]
- Hanson, M.A.; Skinner, M.K. Developmental origins of epigenetic transgenerational inheritance. Environ. Epigenet. 2016, 2, dvw002. [Google Scholar] [CrossRef] [PubMed]
- Ching, T.; Ha, J.; Song, M.-A.; Tiirikainen, M.; Molnar, J.; Berry, M.J.; Towner, D.; Garmire, L.X. Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia. Clin. Epigenet. 2015, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Shi, A.; Zhu, D.; Bo, L.; Zhong, Y.; Wang, J.; Xu, Z.; Mao, C. High sucrose intake during gestation increases angiotensin II type 1 receptor-mediated vascular contractility associated with epigenetic alterations in aged offspring rats. Peptides 2016, 86, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, O.; Baccarelli, A.A. Environmental Health and Long Non-coding RNAs. Curr. Environ. Health Rep. 2016, 3, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Lu, C.; Ji, X.; Miao, Z.; Long, W.; Ding, H.; Lv, M. Roles of microRNAs in preeclampsia. J. Cell. Physiol. 2018, 234, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, biology and functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Brodowski, L.; Schröder-Heurich, B.; von Hardenberg, S.; Richter, K.; von Kaisenberg, C.S.; Dittrich-Breiholz, O.; Meyer, N.; Dörk, T.; von Versen-Höynck, F. MicroRNA Profiles of Maternal and Neonatal Endothelial Progenitor Cells in Preeclampsia. Int. J. Mol. Sci. 2021, 22, 5320. [Google Scholar] [CrossRef]
- Beermann, J.; Piccoli, M.-T.; Viereck, J.; Thum, T.; Clézardin, P.; Coleman, R.; Puppo, M.; Ottewell, P.; Bonnelye, E.; Paycha, F.; et al. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 2016, 96, 1297–1325. [Google Scholar] [CrossRef]
- Pan, H.-T.; Shi, X.-L.; Fang, M.; Sun, X.-M.; Chen, P.-P.; Ding, J.-L.; Xia, G.-Y.; Yu, B.; Zhang, T.; Zhu, H.-D. Profiling of exosomal microRNAs expression in umbilical cord blood from normal and preeclampsia patients. BMC Pregnancy Childbirth 2022, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Colpaert, R.M.; Calore, M. MicroRNAs in Cardiac Diseases. Cells 2019, 8, 737. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, A.L.; Lumbers, E.R.; Delforce, S.J.; Mathe, A.; Morris, B.J.; Pringle, K.G. The role of oxygen in regulating microRNAs in control of the placental renin–angiotensin system. Mol. Hum. Reprod. 2019, 25, 206–217. [Google Scholar] [CrossRef]
- Sandrim, V.C.; Eleuterio, N.; Pilan, E.; Tanus-Santos, J.E.; Fernandes, K.; Cavalli, R. Plasma levels of increased miR-195-5p correlates with the sFLT-1 levels in preeclampsia. Hypertens. Pregnancy 2016, 35, 150–158. [Google Scholar] [CrossRef]
- Ali, A.; Hadlich, F.; Abbas, M.W.; Iqbal, M.A.; Tesfaye, D.; Bouma, G.J.; Winger, Q.A.; Ponsuksili, S. MicroRNA–mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int. J. Mol. Sci. 2021, 22, 2313. [Google Scholar] [CrossRef]
- Kasiviswanathan, D.; Perumal, R.C.; Bhuvaneswari, S.; Kumar, P.; Sundaresan, L.; Philip, M.; Krishnankutty, S.P.; Chatterjee, S. Interactome of miRNAs and transcriptome of human umbilical cord endothelial cells exposed to short-term simulated microgravity. NPJ Microgravity 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.Z.; Reilly, S.; Lewandowski, A.J.; Aye, C.Y.; Simpson, L.J.; Newton, L.D.; Davis, E.F.; Zhu, S.J.; Fox, W.R.; Goel, A.; et al. Neonatal MicroRNA Profile Determines Endothelial Function in Offspring of Hypertensive Pregnancies. Hypertension 2018, 72, 937–945. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, Q.-Y.; Li, H.; Wang, R.-F.; Liu, A.-X.; Magness, R.R.; Zheng, J. Preeclampsia Downregulates MicroRNAs in Fetal Endothelial Cells: Roles of miR-29a/c-3p in Endothelial Function. J. Clin. Endocrinol. Metab. 2017, 102, 3470–3479. [Google Scholar] [CrossRef]
- Paramsothy, A.; Hegvik, T.-A.; Engeland, A.; Bjørge, T.; Egeland, G.M.; Klungsøyr, K. Fetal Exposure to Preeclampsia and Later Risk of Cardiometabolic Disorders: A Population-Based Cohort Study. Hypertension 2023, 80, e158–e166. [Google Scholar] [CrossRef]
- De Ferranti, S.D.; Steinberger, J.; Ameduri, R.; Baker, A.; Gooding, H.; Kelly, A.S.; Mietus-Snyder, M.; Mitsnefes, M.M.; Peterson, A.L.; St-Pierre, J.; et al. Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e603–e634. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, O.; Pahkala, K.; Magnussen, C.G. Prevention of atherosclerosis from childhood. Nat. Rev. Cardiol. 2022, 19, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Sacks, K.N.; Friger, M.; Shoham-Vardi, I.; Spiegel, E.; Sergienko, R.; Landau, D.; Sheiner, E. Prenatal exposure to preeclampsia as an independent risk factor for long-term cardiovascular morbidity of the offspring. Pregnancy Hypertens. 2018, 13, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, M.; Pietrucha, T.; Sakowicz, A. Preeclampsia and Related Cardiovascular Risk: Common Genetic Background. Curr. Hypertens. Rep. 2018, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.B.; Peterson, A. Preventing Premature Atherosclerotic Disease. Curr. Hypertens. Rep. 2020, 22, 87. [Google Scholar] [CrossRef]
- Huang, C.; Li, J.; Qin, G.; Liew, Z.; Hu, J.; László, K.D.; Tao, F.; Obel, C.; Olsen, J.; Yu, Y. Maternal hypertensive disorder of pregnancy and offspring early-onset cardiovascular disease in childhood, adolescence, and young adulthood: A national population-based cohort study. PLoS Med. 2021, 18, e1003805. [Google Scholar] [CrossRef]
Risk Factors | Patients Exposed to PE | Patients Not Exposed to PE | Results |
---|---|---|---|
SBP (mmHg) | 3952 | 42,416 | MD = 1.51, 95%CI (1.15–1.88), p < 0.00001 |
DBP (mmHg) | 3952 | 42,416 | MD = 1.90, 95%CI (1.69–2.10), p < 0.00001 |
BMI (kg/m2) | 3920 | 42,082 | MD = 0.42, 95%CI (0.27–0.57), p < 0.00001 |
Total cholesterol (mg/dL) | 3257 | 10,824 | MD = 0.11, 95%CI (0.08–0.13), p < 0.00001 |
LDL (mg/dL) | 3203 | 10,441 | MD = 0.01, 95%CI (−0.02–0.05), p = 0.48 |
HDL (mg/dL) | 3558 | 36,889 | MD = 0.02, 95%CI (0.01–0.03), p = 0.0002 |
Non-HDL | 400 | 26,498 | MD = 0.16, 95%CI (0.13–0.19), p < 0.00001 |
Cholesterol (mg/dL) | 3549 | 36,556 | MD = −0.02, 95%CI (−0.03–−0.01), p < 0.00001 |
Triglycerides (mg/dL) | 3250 | 10,809 | MD = −0.08, 95%CI (−0.09–−0.07), p < 0.00001 |
Glucose (mg/dL) | 3173 | 10,411 | MD = −0.21, 95%CI (−0.32–−0.09), p = 0.0004 |
Risk Factors | Patients Exposed to PE | Patients Not Exposed to PE | Results |
---|---|---|---|
SBP (mmHg) | 1559 | 53,029 | MD = 5.17, 95%CI (1.60–8.73), p < 0.0001 |
DBP (mmHg) | 1583 | 52,993 | MD = 4.06, 95%CI (0.67–7.44), p < 0.0001 |
BMI (kg/m2) | 1752 | 53,293 | MD = 0.36, 95%CI (0.04–0.68), p < 0.0001 |
Total cholesterol (mg/dL) | 396 | 3788 | MD = 0.47, 95%CI (0.21–1.16), p = 0.45 |
LDL (mg/dL) | 258 | 3465 | MD = 0.12, 95%CI (−0.09–0.34), p = 0.03 |
HDL (mg/dL) | 503 | 7684 | MD = 0.24, 95%CI (−0.79–0.31), p < 0.0001 |
Non-HDL | 306 | 4058 | MD = 0.06, 95%CI (−0.07–0.18), p < 0.0001 |
Cholesterol (mg/dL) | 216 | 1276 | MD = 1.33, 95%CI (−1.25–3.90), p = 0.83 |
Triglycerides (mg/dL) | 486 | 4334 | MD = 0.01, 95%CI (−0.03–0.05), p < 0.0001 |
Glucose (mg/dL) | 215 | 1276 | MD = 0.25, 95%CI (−0.0.03–0.53), p = 0.07 |
miRNA | Expression Level | Target Gene Expression | Outcome |
---|---|---|---|
miR-144 | Upregulation | Downregulation of VEGFA | Decrease trophoblast viability and proliferation |
miR-16 | Upregulation | Downregulation of VEGFA | Decrease trophoblast viability, proliferation and invasion |
miR-17 | Upregulation | Downregulation of VEGFA and HIF1a | Decrease trophoblast viability, proliferation and invasion |
miR-20a | Upregulation | Downregulation of VEGFA and HIF1a | Decrease trophoblast viability, proliferation and invasion |
miR-195-5p | Upregulation | Upregulation of sFlt-1 | Impaired angiogenesis |
miR-126 | Downregulation | Downregulation of VCAM-1 | Decrease in pro-angiogenic factors |
miR-155 | Upregulation | Downregulation of AT1R | Impaired development for offspring |
miR-181a | Upregulation | Upregulation of IL-6 and AT1-AAs | Increased sensitivity for AT1R |
miR-1301 | Downregulation | Upregulation of IL-6 | Increase in AT1-AAs production |
miR-155 | Upregulation | Downregulation of eNOS | Decreased bioavailability of NO |
miR-29b | Upregulation | Downregulation of VEGFA | Decrease in trophoblast invasion |
miR-30 | Upregulation | Downregulation of IGF-1 | Decrease in trophoblast invasion |
miR-195 | Downregulation | Decrease in TGF-β | Decrease in trophoblast invasion |
miR-376c | Downregulation | Decrease in TGF-β | Decrease in trophoblast invasion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svigkou, A.; Katsi, V.; Kordalis, V.G.; Tsioufis, K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. Int. J. Mol. Sci. 2024, 25, 5455. https://doi.org/10.3390/ijms25105455
Svigkou A, Katsi V, Kordalis VG, Tsioufis K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. International Journal of Molecular Sciences. 2024; 25(10):5455. https://doi.org/10.3390/ijms25105455
Chicago/Turabian StyleSvigkou, Asimenia, Vasiliki Katsi, Vasilios G. Kordalis, and Konstantinos Tsioufis. 2024. "The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy" International Journal of Molecular Sciences 25, no. 10: 5455. https://doi.org/10.3390/ijms25105455
APA StyleSvigkou, A., Katsi, V., Kordalis, V. G., & Tsioufis, K. (2024). The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. International Journal of Molecular Sciences, 25(10), 5455. https://doi.org/10.3390/ijms25105455