Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells
Abstract
:1. Introduction
2. Results
2.1. Rotavirus-Infected Cells
2.2. B. longum and Rotavirus Assays
2.3. C. sorokiniana and Rotavirus Assays
2.4. B. longum in Combination with C. sorokiniana and Rotavirus Assays
3. Discussion
4. Materials and Methods
4.1. Cells
4.2. Rotavirus Strain and Viral Titration
4.3. Probiotic
4.4. C. sorokiniana
4.5. Cellular Viability Assay
4.6. B. longum, C. sorokiniana, and Rotavirus Assays
4.7. qPCR Assay
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, E.M. Prebiotics and probiotics in digestive health. Clin. Gastroenterol. Hepatol. 2019, 17, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, T.; Kanmani, P.; Kobayashi, H.; Miyazaki, A.; Soma, J.; Suda, Y.; Aso, H.; Nochi, T.; Iwabuchi, N.; Xiao, J.-Z. Immunobiotic bifidobacteria strains modulate rotavirus immune response in porcine intestinal epitheliocytes via pattern recognition receptor signaling. PLoS ONE 2016, 11, e0152416. [Google Scholar] [CrossRef] [PubMed]
- Abdi, M.; Ranjbar, R. A review on antiviral efficacy of Bifidobacterium species. Rev. Res. Med. Microbiol. 2022, 33, 74–81. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Cantú-Bernal, S.; Domínguez-Gámez, M.; Medina-Peraza, I.; Aros-Uzarraga, E.; Ontiveros, N.; Flores-Mendoza, L.; Gomez-Flores, R.; Tamez-Guerra, P.; González-Ochoa, G. Enhanced viability and anti-rotavirus effect of Bifidobacterium longum and Lactobacillus plantarum in combination with Chlorella sorokiniana in a dairy product. Front. Microbiol. 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Chang, C.-H.; Chen, C.-Y.; Chang, J.-S.; Ng, I.-S. Towards protein production and application by using Chlorella species as circular economy. Bioresour. Technol. 2019, 289, 121625. [Google Scholar] [CrossRef] [PubMed]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Darani, K.K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Yan, L.; Lim, S.; Kim, I. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australas. J. Anim. Sci. 2012, 25, 1742. [Google Scholar] [CrossRef]
- Jin, J.B.; Cha, J.W.; Shin, I.S.; Jeon, J.Y.; Cha, K.H.; Pan, C.H. Supplementation with Chlorella vulgaris, Chlorella protothecoides, and Schizochytrium sp. increases propionate-producing bacteria in in vitro human gut fermentation. J. Sci. Food Agric. 2020, 100, 2938–2945. [Google Scholar] [CrossRef]
- Meier, J.L. Viral acute gastroenteritis in special populations. Gastroenterol. Clin. 2021, 50, 305–322. [Google Scholar] [CrossRef]
- Randall, R.E.; Goodbourn, S. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 2008, 89, 1–47. [Google Scholar] [CrossRef]
- Jefferies, C.A. Regulating IRFs in IFN driven disease. Front. Immunol. 2019, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, P.; Ranjan, P.; Cromeans, T.; Sambhara, S.; Vinjé, J. Critical role of RIG-I and MDA5 in early and late stages of Tulane virus infection. J. Gen. Virol. 2017, 98, 1016. [Google Scholar] [CrossRef] [PubMed]
- Rhein, B.A.; Powers, L.S.; Rogers, K.; Anantpadma, M.; Singh, B.K.; Sakurai, Y.; Bair, T.; Miller-Hunt, C.; Sinn, P.; Davey, R.A. Interferon-γ inhibits Ebola virus infection. PLoS Pathog. 2015, 11, e1005263. [Google Scholar] [CrossRef]
- Chaudhary, V.; Yuen, K.-S.; Chan, J.F.-W.; Chan, C.-P.; Wang, P.-H.; Cai, J.-P.; Zhang, S.; Liang, M.; Kok, K.-H.; Chan, C.-P. Selective activation of type II interferon signaling by Zika virus NS5 protein. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Sainz Jr, B.; Mossel, E.C.; Peters, C.; Garry, R.F. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2004, 329, 11–17. [Google Scholar] [CrossRef]
- Shan, L.; Fu, F.; Xue, M.; Li, L.; Liu, P. IFN-γ synergistically inhibit the replication of transmissible gastroenteritis virus through upregulating expression of type I interferon. Chin. Vet. Sci./Zhongguo Shouyi Kexue 2019, 49, 723–729. [Google Scholar]
- Gao, Y.; Zhao, H.; Wang, P.; Wang, J.; Zou, L. The roles of SOCS 3 and STAT 3 in bacterial infection and inflammatory diseases. Scand. J. Immunol. 2018, 88, e12727. [Google Scholar] [CrossRef]
- Okada, Y.; Tsuzuki, Y.; Hokari, R.; Komoto, S.; Kurihara, C.; Kawaguchi, A.; Nagao, S.; Miura, S. Anti-inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho-IκB and SOCS gene expression. Int. J. Exp. Pathol. 2009, 90, 131–140. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, D.; Tarcsafalvi, A.; Su, R.; Qin, L.; Bromberg, J.S. Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses. J. Immunol. 2003, 170, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, Y.; Ren, J.; Huo, N.; Liu, H.; Xiao, S.; Wang, X.; Yang, Z. Newcastle disease virus nonstructural V protein upregulates SOCS3 expression to facilitate viral replication depending on the MEK/ERK pathway. Front. Cell. Infect. Microbiol. 2019, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chen, C.; Zhang, X.; Yan, D.; Jiang, D.; Liu, X.; Yang, M.; Ding, C.; Lan, L.; Hecht, R. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: An observational trend study. Virol. J. 2022, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.; Greenberg, H. Rotaviruses. In Fields Virology, 6th ed.; Kinpe, D.M., Howley, P.M., Eds.; Lippincott: Philadelphia, PA, USA, 2013; pp. 1347–1401. [Google Scholar]
- Omatola, C.A.; Olaniran, A.O. Rotaviruses: From pathogenesis to disease control—A critical review. Viruses 2022, 14, 875. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.M.; Patton, J.T. Diversity of interferon antagonist activities mediated by NSP1 proteins of different rotavirus strains. J. Virol. 2011, 85, 1970–1979. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.M.; Sen, A.; Greenberg, H.B.; Patton, J.T. The battle between rotavirus and its host for control of the interferon signaling pathway. PLoS Pathog. 2013, 9, e1003064. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.; Kang, G.; Steele, A.D. Understanding rotavirus vaccine efficacy and effectiveness in countries with high child mortality. Vaccines 2022, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Bhuinya, A.; Dass, D.; Banerjee, A.; Mukherjee, A. A tale of antiviral counterattacks in rotavirus infection. Microbiol. Res. 2022, 260, 127046. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fang, Z.; Li, L.; Wang, H.; Zhu, J.; Zhang, P.; Lee, Y.-k.; Zhao, J.; Zhang, H.; Lu, W. Lactobacillus mucosae exerted different antiviral effects on respiratory syncytial virus infection in mice. Front. Microbiol. 2022, 13, 1001313. [Google Scholar] [CrossRef]
- Olímpio, F.; Andreata-Santos, R.; Rosa, P.C.; Santos, W.; Oliveira, C.; Aimbire, F. Lactobacillus rhamnosus Restores Antiviral Signaling and Attenuates Cytokines Secretion from Human Bronchial Epithelial Cells Exposed to Cigarette Smoke and Infected with SARS-CoV-2. Probiotics and antimicrobial proteins 2022, 15, 1513–1528. [Google Scholar] [CrossRef]
- Sadeghpour Heravi, F.; Hu, H. Bifidobacterium: Host–Microbiome Interaction and Mechanism of Action in Preventing Common Gut-Microbiota-Associated Complications in Preterm Infants: A Narrative Review. Nutrients 2023, 15, 709. [Google Scholar] [CrossRef] [PubMed]
- Romero-Arguelles, R.; Tamez-Guerra, P.; González-Ochoa, G.; Romo-Sáenz, C.I.; Gomez-Flores, R.; Flores-Mendoza, L.; Aros-Uzarraga, E. Bifidobacterium longum and Chlorella sorokiniana Improve the IFN Type I-Mediated Antiviral Response in Rotavirus-Infected Cells. Microorganisms 2023, 11, 1237. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Baek, S.H.; Woo, Y.; Han, J.K.; Kim, B.G.; Kim, O.Y.; Lee, J.H. Beneficial immunostimulatory effect of short-term Chlorella supplementation: Enhancement of natural killer cell activity and early inflammatory response (randomized, double-blinded, placebo-controlled trial). Nutr. J. 2012, 11, 53. [Google Scholar] [CrossRef]
- Holloway, G.; Dang, V.T.; Jans, D.A.; Coulson, B.S. Rotavirus inhibits IFN-induced STAT nuclear translocation by a mechanism that acts after STAT binding to importin-α. J. Gen. Virol. 2014, 95, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Holloway, G.; Coulson, B.S. Innate cellular responses to rotavirus infection. J. Gen. Virol. 2013, 94, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, D.; Raymond, Y.; Lemay, M.-J.; Champagne, C.P.; Brassard, J. Effect of probiotic bacteria on porcine rotavirus OSU infection of porcine intestinal epithelial IPEC-J2 cells. Arch. Virol. 2022, 167, 1999–2010. [Google Scholar] [CrossRef]
- Čitar, M.; Hacin, B.; Tompa, G.; Štempelj, M.; Rogelj, I.; Dolinšek, J.; Narat, M.; Matijašić, B.B. Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells. Benef. Microbes 2015, 6, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammad, S.; Sepehr, A.; Miri, S.T.; Najafi, S.; Rohani, M.; Pourshafiea, M.R. The effects of the probiotic cocktail on modulation of the NF-kB and JAK/STAT signaling pathways involved in the inflammatory response in bowel disease model. BMC Immunol. 2022, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae—A review. J. Algal Biomass Util. 2012, 3, 89–100. [Google Scholar]
- Wang, Z.; Yang, L.; Hu, F.; Yan, Y.; Yu, S.; Chen, T. Anti-inflammatory Effect of Acetone Extracts from Microalgae Chlorella sp. WZ13 on RAW264. 7 Cells and TPA-induced Ear edema in Mice. Front. Mar. Sci. 2022, 9, 920082. [Google Scholar]
- Azocar, J.; Diaz, A. Efficacy and safety of Chlorella supplementation in adults with chronic hepatitis C virus infection. World J. Gastroenterol. WJG 2013, 19, 1085. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.L.; Bincoletto, C.; Valadares, M.C.; Dantas, D.C.; Santos, L.M. Effects of Chlorella vulgaris extract on cytokines production in Listeria monocytogenes infected mice. Immunopharmacol. Immunotoxicol. 2002, 24, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Chasey, D. Investigation of immunoperoxidase-labelled rotavirus in tissue culture by light and electron microscopy. J. Gen. Virol. 1980, 50, 195–200. [Google Scholar] [CrossRef] [PubMed]
- González, M.B.; Quiñones-Gutiérrez, Y. Antibiosis of Cefotaxime/Clindamycin and Lactobacillus acidophiluson Related Bacteria to Diabetic Foot Ulcer. Food Nutr. Sci. 2018, 9, 277. [Google Scholar]
- Reyna-Martinez, R.; Gomez-Flores, R.; López-Chuken, U.; Quintanilla-Licea, R.; Caballero-Hernandez, D.; Rodríguez-Padilla, C.; Beltrán-Rocha, J.C.; Tamez-Guerra, P. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México. PeerJ 2018, 6, e4358. [Google Scholar] [CrossRef] [PubMed]
- López-Chuken, U.J.; Young, S.D.; Guzmán-Mar, J.L. Evaluating a ‘biotic ligand model’applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity. Environ. Technol. 2010, 31, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; He, H.; Wu, Y.; Li, J. Cyclosporin a inhibits rotavirus replication and restores interferon-beta signaling pathway in vitro and in vivo. PLoS ONE 2013, 8, e71815. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, Y.; Chen, X.; Zhu, J.; Du, M.; Zhou, L.; Zhang, L.; Wang, W.; Sun, G. PTEN–Foxo1 signaling triggers HMGB1-mediated innate immune responses in acute lung injury. Immunol. Res. 2015, 62, 95–105. [Google Scholar] [CrossRef]
- Jacobsen, A.V.; Yemaneab, B.T.; Jass, J.; Scherbak, N. Reference gene selection for qPCR is dependent on cell type rather than treatment in colonic and vaginal human epithelial cell lines. PLoS ONE 2014, 9, e115592. [Google Scholar] [CrossRef]
Primer Name | Primer Sequences (5′ to 3′) | Product Length | Reference | |
---|---|---|---|---|
Fwd | Rev | |||
SOCS3 | 5′-ACA ATC TGC CTC AAT CAC TCT G-3′ | 5′-TTG ACT TGG ATT GGG ATT TTG-3′ | 129 | [49] |
IFN-γ | 5′-GGC ATT TTG AAG AAT TGG AAA G-3′ | 5′-TTT GGA TGC TCT GGT CAT CTT-3′ | 112 | [49] |
STAT1 | 5′-GAT CGC TTG CCC AAC TCT TG-3′ | 5′- ACT GTG ACA TCC TTG GGC TG-3′ | 198 | [50] |
STAT2 | 5′-GGC AGC GAA TCA CTC AAA GC-3′ | 5′-CACCAGAGTCAAGAAGCCGA-3′ | 159 | [50] |
IL-10 | 5′-TGG AGC AGG TGA AGA ATG-3′ | 5′-ATA GAA GCC TAC ATG ACA-3′ | 105 | [49] |
PGK1 | 5′-GAG ATG ATT ATT GGT GGT GGA A-3′ | 5′-AGT CAA CAG GCA AGG TAA TC-3′ | 160 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velderrain-Armenta, F.; González-Ochoa, G.; Tamez-Guerra, P.; Romero-Arguelles, R.; Romo-Sáenz, C.I.; Gomez-Flores, R.; Flores-Mendoza, L.; Icedo-García, R.; Soñanez-Organis, J.G. Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells. Int. J. Mol. Sci. 2024, 25, 5514. https://doi.org/10.3390/ijms25105514
Velderrain-Armenta F, González-Ochoa G, Tamez-Guerra P, Romero-Arguelles R, Romo-Sáenz CI, Gomez-Flores R, Flores-Mendoza L, Icedo-García R, Soñanez-Organis JG. Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells. International Journal of Molecular Sciences. 2024; 25(10):5514. https://doi.org/10.3390/ijms25105514
Chicago/Turabian StyleVelderrain-Armenta, Felizardo, Guadalupe González-Ochoa, Patricia Tamez-Guerra, Ricardo Romero-Arguelles, César I. Romo-Sáenz, Ricardo Gomez-Flores, Lilian Flores-Mendoza, Ramona Icedo-García, and José G. Soñanez-Organis. 2024. "Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells" International Journal of Molecular Sciences 25, no. 10: 5514. https://doi.org/10.3390/ijms25105514
APA StyleVelderrain-Armenta, F., González-Ochoa, G., Tamez-Guerra, P., Romero-Arguelles, R., Romo-Sáenz, C. I., Gomez-Flores, R., Flores-Mendoza, L., Icedo-García, R., & Soñanez-Organis, J. G. (2024). Bifidobacterium longum and Chlorella sorokiniana Combination Modulates IFN-γ, IL-10, and SOCS3 in Rotavirus-Infected Cells. International Journal of Molecular Sciences, 25(10), 5514. https://doi.org/10.3390/ijms25105514