Differential Transcription Profiling Reveals the MicroRNAs Involved in Alleviating Damage to Photosynthesis under Drought Stress during the Grain Filling Stage in Wheat
Abstract
:1. Introduction
2. Results
2.1. Effects of Drought Stress at the Grain Filling Stage on the Chlorophyll Content and Photosynthetic Parameters of Different Wheat Varieties
2.2. Effects of Drought Stress during Grain Filling on the MDA Content and Antioxidant Enzyme Activities in the Leaves of Different Wheat Varieties
2.3. Effect of Drought on the Chloroplast Ultrastructure of Three Wheat Varieties
2.4. Identification of Known microRNAs (miRNAs) and New miRNAs in Different Wheat Varieties
2.5. Identification and Screening of Drought Stress-Related miRNAs and Genes in Different Wheat Varieties
2.6. Analysis of DE Gene Enrichment in Different Wheat Varieties under Drought Stress
2.6.1. GO and KEGG Pathway Enrichment Analyses of Common Differentially Expressed Genes (DE Genes) under Drought Stress
2.6.2. Enrichment Analysis of Specific DE Genes and GO and KEGG Pathways of Drought-Tolerant Varieties
2.7. Correlation Analysis between Specific Differentially Expressed miRNAs (DE Genes) and Target Genes in Drought-Tolerant Varieties
2.8. qRT-PCR Validation of mRNA and miRNA Expression Profile Data
2.9. Effects of Drought Stress on the Contents of Brassinosterol (BR), Cytokinin (CTK), Jasmonic Acid (JA), and Abscisic Acid (ABA) in Different Wheat Varieties
2.10. TaAOS Is the Target Gene of tae-miR408
3. Discussion
3.1. miRNA-Triggered Chlorophyll Degradation Affects Photosynthetic Capacity under Drought Stress
3.2. miRNAs Enhance Antioxidant Capacity and Reduce the Destruction of Photosynthetic Structure
3.3. Wheat miRNAs Affect the Synthesis and Signal Transduction of Phytohormones Regulating the Synergy and Antagonism between Phytohormones
3.4. Mediation of TaAOS by tae-miR408 Affects the JA Content in the Flag Leaves of Wheat Plants in Response to Drought Stress
4. Materials and Methods
4.1. Experimental Materials and Design
4.2. Determination of Chlorophyll Content
4.3. Determination of Malondialdehyde (MDA)
4.4. Determination of Superoxide Dismutase (SOD), Peroxidase (POD), and Catalase (CAT) Enzyme Activities
4.5. Determination of Photosynthetic Parameters
4.6. Observation of Chloroplast Ultrastructure
4.7. Determination of BR, CTK, JA, and ABA Contents
4.8. Transcriptome Sequencing
4.9. Bioinformatics Analysis
4.10. Real-Time Quantitative PCR (qRT-PCR)
4.11. Transient Assay of miRNA-Target Interactions in Nicotiana Benthamiana Leaves
4.12. Allene Oxide Synthase (AOS) Content Determination
4.13. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Hu, Y.; Ma, X.; Da, L.; She, J.; Liu, Y.; Yi, X.; Cao, Y.; Xu, W.; Jiao, Y.; et al. WheatCENet: A Database for Comparative Co-expression Networks Analysis of Allohexaploid Wheat and Its Progenitors. Genom. Proteom. Bioinform. 2023, 21, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Broberg, M.C.; Hayes, F.; Harmens, H.; Uddling, J.; Mills, G.; Pleijel, H. Effects of ozone, drought and heat stress on wheat yield and grain quality. Agr. Ecosyst. Environ. 2023, 352, 108505. [Google Scholar] [CrossRef]
- Zhao, C.H.; Zhang, N.; Fan, X.L.; Ji, J.; Shi, X.L.; Cui, F.; Ling, H.Q.; Li, J.M. Dissecting the key genomic regions underlying high yield potential in common wheat variety ‘Kenong 9204’. J. Integr. Agric. 2023, 22, 2603–2616. [Google Scholar] [CrossRef]
- Jiang, L.W.; Liu, K.; Zhang, T.; Chen, J.; Zhao, S.Q.; Cui, Y.S.; Zhou, W.T.; Yu, Y.; Chen, S.Y.; Wang, C.Y.; et al. The RhWRKY33a-RhPLATZ9 regulatory module delays petal senescence by suppressing rapid reactive oxygen species accumulation in rose flowers. Plant J. 2023, 114, 1425–1442. [Google Scholar] [CrossRef] [PubMed]
- Pita, P.; Hernández, M.J.; Pardos, M. Contrasting ethylene-mediated responses to waterlogging in four Eucalyptus globulus Labill. clones. Environ. Exp. Bot. 2023, 215, 105503. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Cheng, Q.; Zhao, Y.T.; Wu, F.F.; Mu, B.B.; Gao, J.P.; Yang, L.; Yan, J.L.; Zhang, H.F.; Cui, X.; et al. The abscisic acid–responsive element binding factors MAPKKK18 module regulates abscisic acid–induced leaf senescence in Arabidopsis. J. Biol. Chem. 2023, 299, 103060. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.T.; Zhang, J.K.; Zhang, Q.; Li, X.L.; Li, M.J.; Yang, Y.Z.; Zhou, J.; Wei, Q.P.; Zhou, B.B. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants. Tree Physiol. 2022, 42, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Q.; Xie, J.J.; Huang, M.; Cai, J.; Zhou, Q.; Dai, T.B.; Jiang, D. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. Crop J. 2021, 9, 120–132. [Google Scholar] [CrossRef]
- Hua, Y.P.; Chen, J.F.; Zhou, T.; Zhang, T.Y.; Shen, D.D.; Feng, Y.N.; Guan, P.F.; Huang, S.M.; Zhou, Z.F.; Huang, J.Y.; et al. Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum). J. Exp. Bot. 2022, 73, 7516–7537. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.J.; Xu, C.C.; Wang, X.; Wang, P.; Huang, S.B. Abscisic acid collaborates with lignin and flavonoid to improve pre-silking drought tolerance by tuning stem elongation and ear development in maize (Zea mays L.). Plant J. 2023, 114, 437–454. [Google Scholar] [CrossRef]
- Wei, H.J.; He, W.Y.; Kuang, Y.X.; Wang, Z.H.; Wang, Y.; Hu, W.T.; Tang, M.; Chen, H. Arbuscular mycorrhizal symbiosis and melatonin synergistically suppress heat-induced leaf senescence involves in abscisic acid, gibberellin, and cytokinin-mediated pathways in perennial ryegrass. Environ. Exp. Bot. 2023, 213, 105436. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Zhang, F.H.; Mickan, B.; Wang, D. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth. Plant Cell Rep. 2023, 42, 165–179. [Google Scholar] [CrossRef]
- Yue, K.; Li, L.L.; Xie, J.H.; Zechariah, E.; Sumera, A.; Wang, L.L.; Meng, H.F.; Li, L.Z. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates. J. Integr. Agric. 2023, 22, 2673–2686. [Google Scholar] [CrossRef]
- Dash, P.K.; Gupta, P.; Pradhan, S.K.; Shasany, A.K.; Rai, R. Analysis of Homologous Regions of Small RNAs MIR397 and MIR408 Reveals the Conservation of Microsynteny among Rice Crop-Wild Relatives. Cells 2022, 11, 3461. [Google Scholar] [CrossRef] [PubMed]
- Gui, M.; Hu, H.R.; Jia, Z.Q.; Gao, X.; Tao, H.Z.; Li, Y.Z.; Liu, Y.T. Full-length RNA sequencing reveals the mechanisms by which an TSWV-HCRV complex suppresses plant basal resistance. Front. Plant Sci. 2023, 14, 1108552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.B.; Liu, G.Y.; Song, J.K.; Jia, B.; Yang, S.X.; Ma, J.J.; Liu, J.; Shahzad, K.; Wang, W.K.; Pei, W.F.; et al. Analysis of the MIR396 gene family and the role of MIR396b in regulating fiber length in cotton. Physiol. Plant. 2022, 174, e13801. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Li, Y.; Xiang, L.; Sheng, J.; Shen, L. SlNPR1 modulates chilling stress resistance in tomato plant by alleviating oxidative damage and affecting the synthesis of ferulic acid. Sci. Hortic. 2023, 307, 111486. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, W.; Lv, H.; Liang, B.; Jin, S.; Li, J.; Zhou, W. Animal-derived plant biostimulant alleviates drought stress by regulating photosynthesis, osmotic adjustment, and antioxidant systems in tomato plants. Sci. Hortic. 2022, 305, 111365. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wang, S.J.; Feng, S.X.; Yan, S.F.; Li, Y.T.; Huang, Y.R.; Yang, M.S. Combined whole transcriptome analysis and physical-chemical reveals the leaf color change mechanism of Ulmus pulima under heat stress. Environ. Exp. Bot. 2023, 210, 105347. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, M.H.; Li, X.Y.; Zhou, R.X.; Xue, X.Y.; Zhang, J.; Liu, N.A.; Xue, R.L.; Qi, X.L. Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2023, 24, 5226. [Google Scholar] [CrossRef]
- Saini, R.; Ansari, S.J.; Debnath, A. Aggregation of chlorophylls on plant thylakoid membranes using coarse-grained simulations. Phys. Chem. Chem. Phys. 2023, 25, 11356–11367. [Google Scholar] [CrossRef] [PubMed]
- Puig, M.L.; Rodríguez, A.A.; Vidal, A.A.; Bezus, R.; Maiale, S.J. Patterns of physiological parameters and nitrogen partitioning in flag leaf explain differential grain protein content in rice. Plant Physiol. Biochem. 2021, 168, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; An, C.; Wang, Z.N.; Xiong, F.M.; Wang, Y.X.; Ren, M.J.; Xu, R.H. Wheat TaANS-6D positively regulates leaf senescence through the abscisic acid mediated chlorophyll degradation in tobacco. Plant Growth Regul. 2022, 98, 127–139. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Teferi, T.J.; Ambaw, A.M.; Gabi, M.T.; Koua, P.; Léon, J.; Ballvora, A. New drought-adaptive loci underlying candidate genes on wheat chromosome 4B with improved photosynthesis and yield responses. Physiol. Plant. 2021, 173, 2166–2180. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Yu, H.; Yu, Z. Exogenous melatonin ameliorates yellowing of postharvest pak choi (Brassica rapa subsp. chinensis) by modulating chlorophyll catabolism and antioxidant system during storage at 20 °C. Sci. Hortic. 2023, 311, 111808. [Google Scholar] [CrossRef]
- Tanaka, R.; Tanaka, A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Et Biophys. Acta-Bioenerg. 2011, 1807, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Gu, T.Y.; Khan, I.; Zada, A.; Jia, T. Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll. Cells 2021, 10, 3134. [Google Scholar] [CrossRef] [PubMed]
- Alhajhoj, M.R.; Munir, M.; Sudhakar, B.; Ali-Dinar, H.M.; Iqbal, Z. Common and novel metabolic pathways related ESTs were upregulated in three date palm cultivars to ameliorate drought stress. Sci. Rep. 2022, 12, 15027. [Google Scholar] [CrossRef]
- Song, T.; Yang, F.; Das, D.; Chen, M.X.; Hu, Q.J.; Tian, Y.; Cheng, C.L.; Liu, Y.; Zhang, J.H. Transcriptomic analysis of photosynthesis-related genes regulated by alternate wetting and drying irrigation in flag leaves of rice. Food Energy Secur. 2020, 9, e221. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, J.; Duan, W.; Sun, H.; Zhang, L.; Yan, Y.; Skirycz, A. Analysis of the chloroplast crotonylome of wheat seedling leaves reveals the roles of crotonylated proteins involved in salt-stress responses. J. Exp. Bot. 2023, 74, 2067–2082. [Google Scholar] [CrossRef]
- Puri, A.; Pajak, A.; Hannoufa, A.; Marsolais, F. Quantitative proteomic analysis of the role of miRNA156 in alfalfa under drought stress. Environ. Exp. Bot. 2023, 214, 105449. [Google Scholar] [CrossRef]
- Banerjee, N.; Kumar, S.; Singh, A.; Annadurai, A.; Thirugnanasambandam, P.P.; Kumar, S. Identification of microRNAs involved in sucrose accumulation in sugarcane (Saccharum species hybrid). Plant Gene 2022, 29, 100352. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Gohari, G.; Esmaielpour, B.; Panahirad, S.; Milani, M.H.; Kulak, M.; Janda, T. Melatonin and TIO2 NPs application-induced changes in growth, photosynthesis, antioxidant enzymes activities and secondary metabolites in stevia (Stevia rebaudiana bertoni) under drought stress conditions. J. Plant Growth Regul. 2023, 42, 2023–2040. [Google Scholar] [CrossRef]
- Sun, Y.F.; Miao, F.; Wang, Y.C.; Liu, H.C.; Wang, X.T.; Wang, H.; Guo, J.M.; Shao, R.X.; Yang, Q.H. L-Arginine Alleviates the Reduction in Photosynthesis and Antioxidant Activity Induced by Drought Stress in Maize Seedlings. Antioxidants 2023, 12, 482. [Google Scholar] [CrossRef] [PubMed]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Zeidi, M.A.; Siddique, K.H.M.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Yu, J.C.; Lu, J.Z.; Cui, X.Y.; Guo, L.; Wang, Z.J.; Liu, Y.D.; Wang, F.; Qi, M.F.; Liu, Y.F.; Li, T.L. Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants. J. Pineal Res. 2022, 73, e12810. [Google Scholar] [CrossRef] [PubMed]
- Vidya Muthulakshmi, M.; Srinivasan, A.; Srivastava, S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS Omega 2023, 8, 3586–3605. [Google Scholar] [CrossRef]
- Yang, Q.; Tan, S.Y.; Wang, H.L.; Wang, T.; Cao, J.; Liu, H.R.; Sha, Y.Q.; Zhao, Y.N.; Xia, X.L.; Guo, H.W.; et al. Spliceosomal protein U2B00 delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis. New Phytol. 2023, 240, 1116–1133. [Google Scholar] [CrossRef]
- Cheng, M.C.; Ko, K.; Chang, W.L.; Kuo, W.C.; Chen, G.H.; Lin, T.P. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 2015, 83, 926–939. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Hu, X.; Liu, H.; Lin, Y. W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci. Rep. 2016, 6, 20881. [Google Scholar] [CrossRef]
- Asad, M.A.U.; Guan, X.; Zhou, L.; Qian, Z.; Yan, Z.; Cheng, F. Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence. Plant Sci. 2023, 336, 111855. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, L.; Zhang, W.; Liu, J.; Nong, H.; Wang, X.; Zheng, H.; Tao, J. Transcriptomic and functional analysis reveals that VvSAUR43 may be involved the elongation of grape berries. Sci. Hortic. 2023, 318, 112119. [Google Scholar] [CrossRef]
- Shah, S.; Cai, L.; Li, X.; Fahad, S.; Wang, D. Influence of cultivation practices on the metabolism of cytokinin and its correlation in rice production. Food Energy Secur. 2023, 12, e488. [Google Scholar] [CrossRef]
- Niu, Y.F.; Li, J.Y.; Sun, F.T.; Song, T.Y.; Han, B.J.; Liu, Z.J.; Su, P.S. Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties. Genomics 2023, 115, 110688. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zheng, X.D.; Guo, J.; Yu, T. Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. J. Integr. Agric. 2022, 21, 697–709. [Google Scholar] [CrossRef]
- Lei, L.; Wu, D.; Cui, C.; Gao, X.; Yao, Y.J.; Dong, J.; Xu, L.S.; Yang, M.M. Transcriptome Analysis of Early Senescence in the Post-Anthesis Flag Leaf of Wheat (Triticum aestivum L.). Plants-Basel 2022, 11, 2593. [Google Scholar] [CrossRef]
- An, J.P.; Zhang, C.L.; Li, H.L.; Wang, G.L.; You, C.X. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein. Plant J. 2022, 111, 457–472. [Google Scholar] [CrossRef]
- Singroha, G.; Sharma, P.; Sunkur, R. Current status of microRNA-mediated regulation of drought stress responses in cereals. Physiol. Plant. 2021, 172, 1808–1821. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, K.; Zhang, H.L.; LI, S.Y.; Zhang, Y.J.; Wei, J.L.; Zhang, H.; Gu, J.F.; Liu, L.J.; Yang, J.C. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agron. Sin. 2021, 47, 1540–1550. [Google Scholar] [CrossRef]
- Saleem, S.; Malik, A.; Khan, S.T. ZnO nanoparticles in combination with Zn biofertilizer improve wheat plant growth and grain Zn content without significantly changing the rhizospheric microbiome. Environ. Exp. Bot. 2023, 213, 105446. [Google Scholar] [CrossRef]
- Qiu, Z.B.; Hai, B.Z.; Guo, J.L.; Li, Y.F.; Zhang, L. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol. Biochem. 2016, 101, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Zhang, H.L.; Hou, P.F.; Su, X.Y.; Zhao, P.F.; Zhao, H.J.; Liu, S.C. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul. 2014, 73, 289–297. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Li, X.; Song, Y.; Wang, J.; Huang, J.; Xue, R. Exogenous application of 5-aminolevulinic acid alleviated damage to wheat chloroplast ultrastructure under drought stress by transcriptionally regulating genes correlated with photosynthesis and chlorophyll biosynthesis. Acta Physiol. Plant. 2021, 44, 12. [Google Scholar] [CrossRef]
- Cui, N.; Chen, X.F.; Shi, Y.; Chi, M.R.; Hu, J.T.; Lai, K.L.; Wang, Z.H.; Wang, H.F. Changes in the epigenome and transcriptome of rice in response to Magnaporthe oryzae infection. Crop J. 2021, 9, 843–853. [Google Scholar] [CrossRef]
Gene ID or Name | Forward (5′-3′) | Reverse (5′-3′) | Application | Origin |
---|---|---|---|---|
TraesCS5B02G124100 | GGAATCCATGAGACCACCTAC | GACCCAGACAACTCGCAAC | Internal reference | own design |
TraesCS5B02G408000 | TCTTCCACCTCCTCACCCACC | CGTCGTCGTTGTAGTTGCCG | III | own design |
TraesCS1A02G028700 | CATTGATCTCGGCAACTCTC | CTTCCCACAACTTTTCATCC | III | own design |
TraesCS5D02G207400 | ACGGGGCGGACAAGACGGAT | TGGCTCGTGTTGGAGAAGGTGA | III | own design |
TraesCS6D02G106000 | TGGTGTGGGCGGTGCT | ACGAAGGGGCCAATCTC | III | own design |
TraesCS3A02G008100 | AATGGTCTCACAATACGGGG | TGAGCCATCACCACCCAG | III | own design |
TraesCS5D02G021700 | AGTGTATCACCTAGCACCTCTC | CTCATTGGGGTAATCATCTT | III | own design |
TraesCS1D02G161700 | GTATGGGAGGTGCCTAATGG | GTCAGGATCAGAAGCGAGAA | III | own design |
TraesCS3B02G103500 | ATGAGAACCTATTTCGTCGGG | GAACAAAAGCCAATAAACCGA | III | own design |
TraesCS4B02G055600 | TAGGAGTGACCAGAGGGAAAGC | TAAGCAAATGAATCGCCGACC | III | own design |
TraesCS2B02G329400 | TTGCTATTTTTGGGTTTGGTG | AAAGATTGAACTTCTGCGAGG | III | own design |
TraesCS6A02G307700 | TCTACGGCTGGGTGTTCC | CGCCCTCGATCTTGTCCT | III | own design |
TraesCS6D02G286900 | GACTTCTACGGCTGGGTGTTCC | CCGCCCTCGATCTTATCCTTG | III | own design |
TraesCS2B02G307500 | GGAAGCCAGGGTTACAAG | GGTTTCAGCAGATTAGCG | III | own design |
TraesCS2D02G310900 | AGCCCTTAAAACGCTATCTG | TTGTCTTCCTGGTGAATCTG | III | own design |
TraesCS5D02G098800 | GTAACGGCGCAGCAGCTAAA | TTGGGACACCGACACGAAAG | III | own design |
TraesCS6B02G041900 | TGACTATCCTCTCAAGACCTCCCT | CCTTCTGCTAACCATCGCCT | III | own design |
TraesCS6B02G013300 | CAAGACCTCCCTGCTATACACG | TTCTGCTAACCATCGCCTGA | III | own design |
TraesCS5B02G408000 | agatcgccgtgtaattctagaCCTCTTCCACCTCCTCACCCA | actggtgatttcagcgaattcCTCTCCACCACCATGTCCCG | I, II | own design |
TraesCS5A02G403200 | agatcgccgtgtaattctagaTTCCACCTCCTCACCCACCG | actggtgatttcagcgaattcCCACCACCATGTCCCGCTTC | I, II | own design |
1A_255_13455352_13455372 | CCGCGATGGTGCTATCTTCTGGATAT | III | own design | |
3B_15_41449227_41449247 | CCGCATCATGCCATCCTTTTGGAAG | III | own design | |
4D_2_6631080_6631099 | CGGTAGTTCGACCGCGGAATT | III | own design | |
tae-miR408 | CTGCACTGCCTCTTCCCTGG | III | own design | |
tae-miR9660-5p | CGTTGCGAGCAACGGATGAATC | III | own design | |
tae-miR9664-3p | CGTTGCAGTCCTCGATGTCGTAG | III | own design | |
4D_170_330965539_330965559 | CGGTGCAATTCTCCTCTGGCATG | III | own design | |
7D_223_631615399_631615419 | ATTATGAAGAGCGCGGGCAGC | III | own design | |
tae-miR408 | gagaacacgggggacgagctcAGGAGGTGAGGTGGTGAACGA | gcccttgctcaccatggtaccACAGTGGCAGCATGAGAACGT | I, II | own design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Song, Y.; Xue, X.; Xue, R.; Jiang, H.; Zhou, Y.; Qi, X.; Wang, Y. Differential Transcription Profiling Reveals the MicroRNAs Involved in Alleviating Damage to Photosynthesis under Drought Stress during the Grain Filling Stage in Wheat. Int. J. Mol. Sci. 2024, 25, 5518. https://doi.org/10.3390/ijms25105518
Zhou R, Song Y, Xue X, Xue R, Jiang H, Zhou Y, Qi X, Wang Y. Differential Transcription Profiling Reveals the MicroRNAs Involved in Alleviating Damage to Photosynthesis under Drought Stress during the Grain Filling Stage in Wheat. International Journal of Molecular Sciences. 2024; 25(10):5518. https://doi.org/10.3390/ijms25105518
Chicago/Turabian StyleZhou, Ruixiang, Yuhang Song, Xinyu Xue, Ruili Xue, Haifang Jiang, Yi Zhou, Xueli Qi, and Yuexia Wang. 2024. "Differential Transcription Profiling Reveals the MicroRNAs Involved in Alleviating Damage to Photosynthesis under Drought Stress during the Grain Filling Stage in Wheat" International Journal of Molecular Sciences 25, no. 10: 5518. https://doi.org/10.3390/ijms25105518
APA StyleZhou, R., Song, Y., Xue, X., Xue, R., Jiang, H., Zhou, Y., Qi, X., & Wang, Y. (2024). Differential Transcription Profiling Reveals the MicroRNAs Involved in Alleviating Damage to Photosynthesis under Drought Stress during the Grain Filling Stage in Wheat. International Journal of Molecular Sciences, 25(10), 5518. https://doi.org/10.3390/ijms25105518