Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Gravid cervix | GC |
Lower uterine segment | LUS |
Uterine pacemaker | UP |
Neurotransmitter | N |
Elective cesarean section | ECS |
Body mass index | BMI |
Internal uterine orifice | IUO |
External uterine orifice | EUO |
Transvaginal ultrasonography | TU |
Adrenergic | A |
Noradrenergic | N |
Scanning electronic microscopy | SEM |
Gravid uterus | GU |
No gravid uterus | NGU |
References
- Tommaso, S.; Cavallotti, C.; Malvasi, A.; Vergara, D.; Rizzello, A.; Nuccio, F.; Tinelli, A. A qualitative and quantitative study of the innervation of the human Non-Pregnant Uterus. Curr. Protein Pept. Sci. 2017, 18, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ameer, M.A.; Fagan, S.E.; Sosa-Stanley, J.N.; Peterson, D.C. Anatomy, Abdomen and Pelvis: Uterus. 6 December 2022. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Barnum, C.E.; Shetye, S.S.; Fazelinia, H.; Garcia, B.A.; Fang, S.; Alzamora, M.; Li, H.; Brown, L.M.; Tang, C.; Myers, K.; et al. The Non-pregnant and Pregnant Human Cervix: A Systematic Proteomic Analysis. Reprod. Sci. 2022, 29, 1542–1559. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Tinelli, A.; Cavallotti, C.; Stark, M. Anatomische Aspekte von Schwangerschaft und Kaiserschnitt. In Der Kaiserschnitt; Elsevier: Amsterdam, The Netherlands, 2009; pp. 39–66. [Google Scholar]
- Miftahof, R.N.; Akhmadeev, N.R. The gravid uterus, Chapter 13. In Soft Biological Shells in Bioengineering; IOP Publishing Ltd.: Bristol, UK, 2019; pp. 13–59. [Google Scholar]
- Tinelli, A.; Di Renzo, G.C.; Malvasi, A. The intrapartum ultrasonographic detection of the Bandl ring as a marker of dystocia. Int. J. Gynaecol. Obstet. 2015, 131, 310–311. [Google Scholar] [CrossRef] [PubMed]
- Paping, A.; Basler, C.; Ehrlich, L.; Fasting, C.; Melchior, K.; Ziska, T.; Thiele, M.; Duda, G.N.; Timm, S.; Ochs, M.; et al. Uterine scars after caesarean delivery: From histology to the molecular and ultrastructural level. Wound Repair. Regen. 2023, 31, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Pinsard, M.; Mouchet, N.; Dion, L.; Bessede, T.; Bertrand, M.; Darai, E.; Bellaud, P.; Loget, P.; Mazaud-Guittot, S.; Morandi, X.; et al. Anatomic and functional mapping of human uterine innervation. Fertil. Steril. 2022, 117, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Ballini, A.; Tinelli, A.; Fioretti, B.; Vimercati, A.; Gliozheni, E.; Baldini, G.M.; Cascardi, E.; Dellino, M.; Bonetti, M.; et al. Oxytocin augmentation and neurotransmitters in prolonged delivery: An experimental appraisal. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2023, 21, 100273. [Google Scholar] [CrossRef] [PubMed]
- Tingaker, B.K.; Johansson, O.; Cluff, A.H.; Ekman-Ordeberg, G. Unaltered innervation of the human cervix uteri in contrast to the corpus during pregnancy and labor as revealed by PGP 9.5 immunohistochemistry. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 125, 66–71. [Google Scholar] [CrossRef]
- Mowa, C.; Jesmin, S.; Sakuma, I.; Usip, S.; Togashi, H.; Yoshioka, M.; Hattori, Y.; Papka, R. Characterization of Vascular Endothelial Growth Factor (VEGF) in the uterine cervix over pregnancy: Effects of denervation and implications for cervical ripening. J. Histochem. Cytochem. 2004, 52, 1665–1674. [Google Scholar] [CrossRef]
- Lammers, W.J. The electrical activities of the uterus during pregnancy. Reprod. Sci. 2013, 20, 182–189. [Google Scholar] [CrossRef]
- Rabotti, C.; Mischi, M. Propagation of electrical activity in uterine muscle during pregnancy: A review. Acta Physiol. 2015, 213, 406–416. [Google Scholar] [CrossRef]
- Young, R.C. The uterine pacemaker of labor. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 52, 68–87. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Cavallotti, C.; Gustapane, S.; Giacci, F.; Di Tommaso, S.; Vergara, D.; Mynbaev, O.A.; Tinelli, A. Neurotransmitters and Neuropeptides Expression in the Uterine Scar After Cesarean Section. Curr. Protein Pept. Sci. 2017, 18, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Sanders, K.M.; Ward, S.M.; Koh, S.D. Interstitial cells: Regulators of smooth muscle function. Physiol. Rev. 2014, 94, 859–907. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, G.; Williams, O.; Cretoiu, D.; Ciontea, S.M. Myometrial interstitial cells and the coordination of myometrial contractility. J. Cell Mol. Med. 2009, 13, 4268–4282. [Google Scholar] [CrossRef] [PubMed]
- Wray, S.; Burdyga, T.; Noble, D.; Noble, K.; Borysova, L.; Arrowsmith, S. Progress in understanding electro-mechanical signalling in the myometrium. Acta Physiol. 2015, 213, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Caldeyro-Barcia, R.; Poseiro, J.J. Oxytocin and contractility of the pregnant human uterus. Ann. N. Y. Acad. Sci. 1959, 75, 813–830. [Google Scholar] [CrossRef]
- Alvarez, H.; Caldeyro, R. Contractility of the human uterus recorded by new methods. Surg. Gynecol. Obstet. 1950, 91, 1–13. [Google Scholar]
- Reynolds, S.R.M.; OO, H. A multi-channel strain-gage tokodynamometer; an instrument for studying patterns of uterine contractions in pregnant women. Bull. Johns Hopkins Hosp. 1948, 82, 446–469. [Google Scholar]
- Alvarez, H.; Caldeyro-Barcia, R. The normal and abnormal contractile waves of the uterus during labor. Gynaecologia 1954, 138, 190–212. [Google Scholar]
- Csapo, A. The diagnostic significance of the intrauterine pressure. I. Obstet. Gynecol. Surv. 1970, 25, 403–435. [Google Scholar] [CrossRef]
- Wolfs, G.M.; van Leeuwen, M. Electromyographic observations on the human uterus during labor. Acta Obstet. Gynecol. Scand. Suppl. 1979, 90, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Young, R.C. Mechanotransduction mechanisms for coordinating uterine contractions in human labor. Reproduction 2016, 152, R51–R61. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Imtiaz, M.; Banney, D.; Paul, J.W.; Young, R.C. Why the heart is like an orchestra and the uterus like a soccer crowd? Am. J. Obstet. Gynecol. 2015, 213, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Young, R.; Barendse, P. Linking myometrial physiology to intrauterine pressure; how tissue-level contractions create uterine contractions of labor. PLoS Comput. Biol. 2014, 10, e1003850. [Google Scholar] [CrossRef] [PubMed]
- Young, R.C. Synchronization of regional contractions of human labor; direct effects of region size and tissue excitability. J. Biomech. 2015, 48, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H. Generation and Propagation of Uterine Activity in Situ. Fertil. Steril. 1965, 16, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lutton, E.J.; Lammers, W.J.E.P.; James, S.; van den Berg, H.A.; Blanks, A.M. Identification of uterine pacemaker regions at the myometrial-placental interface. J. Physiol. 2018, 596, 2841–2852. [Google Scholar] [CrossRef]
- Anderson, N.C., Jr. Voltage-clamp studies on uterine smooth muscle. J. Gen. Physiol. 1969, 54, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.F.; Barclay, M.L. A computer model of uterine contractions based on discrete contractile elements. Obstet. Gynecol. 1995, 86, 108–111. [Google Scholar] [CrossRef]
- Ciontea, S.M.; Radu, E.; Regalia, T.; Ceafalan, L.; Cretoiu, D.; Gherghiceanu, M.; Braga, R.I.; Malincenco, M.; Zagrean, L.; Hinescu, M.E.; et al. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J. Cell Mol. Med. 2005, 9, 407–420. [Google Scholar] [CrossRef]
- Duquette, R.A.; Shmygol, A.; Vaillant, C.; Mobasheri, A.; Pope, M.; Burdyga, T.; Wray, S. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: A role in pacemaking? Biol. Reprod. 2005, 72, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Cretoiu, S.M.; Cretoiu, D.; Marin, A.; Radu, B.M.; Popescu, L.M. Telocytes: Ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 2013, 145, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Popescu, L.M.; Faussone-Pellegrini, M.S. TELOCYTES—A case of serendipity: The winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J. Cell Mol. Med. 2010, 14, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Miftahof, R.N.; Akhmadeev, N.R. Neurons and neuronal assemblies. Chapter 7. In Soft Biological Shells in Bioengineering; IOP Publishing Ltd.: Bristol, UK, 2019; pp. 7-1–7-9. [Google Scholar]
- Peri, L.E.; Koh, B.H.; Ward, G.K.; Bayguinov, Y.; Hwang, S.J.; Gould, T.W.; Mullan, C.J.; Sanders, K.M.; Ward, S.M. A novel class of interstitial cells in the mouse and monkey female reproductive tracts. Biol. Reprod. 2015, 92, 102. [Google Scholar] [CrossRef] [PubMed]
- Cretoiu, S.M.; Radu, B.M.; Banciu, A.; Banciu, D.D.; Cretoiu, D.; Ceafalan, L.C.; Popescu, L.M. Isolated human uterine telocytes: Immunocytochemistry and electrophysiology of T-type calcium channels. Histochem. Cell Biol. 2015, 143, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Young, R.C.; Zhang, P. Inhibition of in vitro contractions of human myometrium by mibefradil, a T-type calcium channel blocker: Support for a model using excitation-contraction coupling, and autocrine and paracrine signalling mechanisms. J. Soc. Gynecol. Investig. 2005, 12, e7–e12. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Menon, S.N.; Singh, R.; Garnier, N.B.; Sinha, S.; Pumir, A. The role of cellular coupling in the spontaneous generation of electrical activity in uterine tissue. PLoS ONE 2015, 10, e0118443. [Google Scholar] [CrossRef]
- Wang, J.P.; Ding, G.F.; Wang, Q.Z. Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate. Cell Tissue Res. 2013, 352, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrovych, V.; Kurnik-Łucka, M.; Bereza, T.; Białas, M.; Pasternak, A.; Cretoiu, D.; Walocha, J.A.; Gil, K. The autonomic innervation and uterine telocyte interplay in leiomyoma formation. Cell Transplant. 2019, 28, 619–629. [Google Scholar] [CrossRef]
- López-Pingarrón, L.; Almeida, H.; Pereboom-Maicas, D.; García, J.J. Pathophysiological Implications of Interstitial Cajal-like Cells (ICC-like) in Uterus: A Comparative Study with Gastrointestinal ICCs. Curr. Issues Mol. Biol. 2023, 45, 7557–7571. [Google Scholar] [CrossRef]
- Sergeant, G.P.; Thornbury, K.D.; McHale, N.G.; Hollywood, M.A. Characterization of norepinephrine-evoked inward currents in interstitial cells isolated from the rabbit urethra. Am. J. Physiol. Cell Physiol. 2002, 283, C885–C894. [Google Scholar] [CrossRef]
- Fujita, A.; Takeuchi, T.; Saitoh, N.; Hanai, J.; Hata, F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am. J. Physiol. Cell Physiol. 2001, 281, C1727–C1733. [Google Scholar] [CrossRef]
- Fioretti, B.; Franciolini, F.; Catacuzzeno, L. A model of intracellular Ca2+ oscillations based on the activity of the intermediate-conductance Ca2+-activated K+ channels. Biophys. Chem. 2005, 113, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Catacuzzeno, L.; Fioretti, B.; Perin, P.; Franciolini, F. Spontaneous low-frequency voltage oscillations in frog saccular hair cells. J. Physiol. 2004, 561 Pt 3, 685–701. [Google Scholar] [CrossRef]
- Catacuzzeno, L.; Fioretti, B.; Franciolini, F. Voltage-gated outward K currents in frog saccular hair cells. J. Neurophysiol. 2003, 90, 3688–3701. [Google Scholar] [CrossRef]
- Bruniquel, G. Notes on the reflex excitability of the uterine cervix (Ferguson’s reflexes). Bull. Fed. Soc. Gynecol. Obstet. Lang. Fr. 1962, 14, 49–50. [Google Scholar] [PubMed]
- Vasicka, A.; Kumaresan, P.; Han, G.S.; Kumaresan, M. Plasma oxytocin in initiation of labor. Am. J. Obstet. Gynecol. 1978, 130, 263–273. [Google Scholar]
- Roy, A.C.; Arulkumaran, S. Pharmacology of parturition. Ann. Acad. Med. Singap. 1991, 20, 71–77. [Google Scholar] [PubMed]
- Segal, S.; Csavoy, A.N.; Datta, S. The tocolytic effect of catecholamines in the gravid rat uterus. Anesth. Analg. 1998, 87, 864–869. [Google Scholar] [CrossRef]
- Bengtsson, L.P. Hormonal effects on human myometrial activity. Vitam. Horm. 1973, 31, 257–303. [Google Scholar]
- Malvasi, A.; Vimercati, A.; Ricci, I.; Picardi, N.; Cicinelli, E.; Kosmas, I.; Baldini, G.M.; Tinelli, A. Dystocic Labor and Adrenergic and Noradrenergic Neurotransmitters: A Morphological Experimental Study. Int. J. Mol. Sci. 2022, 23, 11379. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Tinelli, A.; Cavallotti, C.; Bettocchi, S.; Di Renzo, G.C.; Stark, M. Substance P (SP) and vasoactive intestinal polypeptide (VIP) in the lower uterine segment in first and repeated cesarean sections. Peptides 2010, 31, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, I.P.; Malvasi, A.; Vergara, D.; Mynbaev, O.A.; Sparic, R.; Tinelli, A. Adrenergic and Cholinergic Uterine Innervation and the Impact on Reproduction in Aged Women. Curr. Pharm. Des. 2020, 26, 358–362. [Google Scholar] [CrossRef]
- Yang, L.; Wan, L.; Huang, H.; Qi, X. Uterine hypertonus and fetal bradycardia occurred after combined spinal-epidural analgesia during induction of labor with oxytocin infusion: A case report. Medicine 2019, 98, e16282. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, A.; Cicinelli, E.; Baldini, G.M.; Vimercati, A.; Beck, R.; Dellino, M.; Damiani, G.R.; Cazzato, G.; Cascardi, E.; Tinelli, A. Prolonged Dystocic Labor in Neuraxial Analgesia and the Role of Enkephalin Neurotransmitters: An Experimental Study. Int. J. Mol. Sci. 2023, 24, 3767. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.H.; Abele, H.; Plappert, C.F. The Role of Oxytocin and the Effect of Stress During Childbirth: Neurobiological Basics and Implications for Mother and Child. Front. Endocrinol. 2021, 12, 742236. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.A.; Fletcher, J.E.; Hill, R.G. Influence of Medication, Pain and Progress in Labor on Plasma Beta-Endorphin-Like Immunoreactivity. Br. J. Anaesth. 1982, 54, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Mansfield, S.; Bicknell, R.J.; Brown, D.; Chapman, C.; Hollingsworth, S.; Ingram, C.D.; Marsh, M.I.C.; Yates, J.O.; Dyer, R.G. Stress-Induced Disruption of Parturition in the Rat may be Mediated by Endogenous Opioids. J. Endocrinol. 1987, 114, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Bicknell, R.J.; Leng, G. Endogenous Opiates Regulate Oxytocin but Not Vasopressin Secretion from the Neurohypophysis. Nature 1982, 298, 161–162. [Google Scholar] [CrossRef]
- Morris, M.S.; Domino, E.F.; Domino, S.E. Opioid Modulation of Oxytocin Release. J. Clin. Pharmacol. 2010, 50, 1112–1117. [Google Scholar] [CrossRef]
- Sato, Y.; Hotta, H.; Nakayama, H.; Suzuki, H. Sympathetic and Parasympathetic Regulation of the Uterine Blood Flow and Contraction in the Rat. J. Auton. Nerv. Syst. 1996, 59, 151–158. [Google Scholar] [CrossRef]
- Nagel, C.; Aurich, C.; Aurich, J. Stress Effects on the Regulation of Parturition in Different Domestic Animal Species. Anim. Reprod. Sci. 2019, 207, 153–161. [Google Scholar] [CrossRef]
- Kovács, L.; Tőzsér, J.; Kézér, F.; Ruff, F.; Aubin-Wodala, M.; Albert, E.; Choukeir, A.; Szelényi, Z.; Szenci, O. Heart Rate and Heart Rate Variability in Multiparous Dairy Cows with Unassisted Calvings in the Periparturient Period. Physiol. Behav. 2015, 139, 281–289. [Google Scholar] [CrossRef]
- Melchert, M.; Aurich, C.; Aurich, J.; Gautier, C.; Nagel, C. External Stress Increases Sympathoadrenal Activity and Prolongs the Expulsive Phase of Foaling in Pony Mares. Theriogenology 2019, 128, 110–115. [Google Scholar] [CrossRef]
- Lawrence, A.B.; McLean, K.A.; Jarvis, S.; Gilbert, C.L.; Petherick, J.C. Stress and Parturition in the Pig. Reprod. Domest. Anim. 1997, 32, 231–236. [Google Scholar] [CrossRef]
- Taylor, S.E.; Klein, L.C.; Lewis, B.P.; Gruenewald, T.L.; Gurung, R.A.; Updegraff, J.A. Biobehavioral Responses to Stress in Females: Tend-and-Befriend, Not Fight-or-Flight. Psychol. Rev. 2000, 107, 411–429. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. The Biological Guide to Motherhood; Praeclarus Press: Amarillo, TX, USA, 2014. [Google Scholar]
- Uvnäs-Moberg, K.; Ekström-Bergström, A.; Berg, M.; Buckley, S.; Pajalic, Z.; Hadjigeorgiou, E.; Kotłowska, A.; Lengler, L.; Kielbratowska, B.; Leon-Larios, F.; et al. Maternal Plasma Levels of Oxytocin During Physiological Childbirth—A Systematic Review with Implications for Uterine Contractions and Central Actions of Oxytocin. BMC Pregnancy Childbirth 2019, 19, 285. [Google Scholar] [CrossRef]
- Chiodera, P.; Salvarani, C.; Bacchi-Modena, A.; Spallanzani, R.; Cigarini, C.; Alboni, A.; Gardini, E.; Coiro, V. Relationship Between Plasma Profiles of Oxytocin and Adrenocorticotropic Hormone During Suckling or Breast Stimulation in Women. Horm. Res. 1991, 35, 119–123. [Google Scholar] [CrossRef]
- Acevedo-Rodriguez, A.; Mani, S.K.; Handa, R.J. Oxytocin and Estrogen Receptor β in the Brain: An Overview. Front. Endocrinol. 2015, 6, 160. [Google Scholar] [CrossRef]
- Matsushita, H.; Latt, H.M.; Koga, Y.; Nishiki, T.; Matsui, H. Oxytocin and Stress: Neural Mechanisms, Stress-Related Disorders, and Therapeutic Approaches. Neuroscience 2019, 417, 1–10. [Google Scholar] [CrossRef]
- Schmid, V. The Meaning and Functions of Labor Pain. Midwifery Today Int. Midwife 2005, 75, 54-5, 64-6. [Google Scholar]
- Malvasi, A.; Vinciguerra, M.; Lamanna, B.; Cascardi, E.; Damiani, G.R.; Muzzupapa, G.; Kosmas, I.; Beck, R.; Falagario, M.; Vimercati, A.; et al. Asynclitism and its ultrasonographic rediscovery in labor room to date: A systematic review. Diagnostics 2022, 12, 2998. [Google Scholar] [CrossRef]
- Buhimschi, C.S.; Buhimschi, I.A.; Yu, C.; Wang, H.; Sharer, D.J.; Diamond, M.P.; Petkova, A.P.; Garfield, R.E.; Saade, G.R.; Weiner, C.P. The effect of dystocia and previous cesarean uterine scar on the tensile properties of the lower uterine segment. Am. J. Obstet. Gynecol. 2006, 194, 873–883. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Fatani, J.A. Use of glyoxylic acid in the demonstration of autonomic nerve profiles. Experientia 1985, 41, 1389–1390. [Google Scholar] [CrossRef]
- Krening, C.F.; Rehling-Anthony, K.; Garko, C. Oxytocin administration: The transition to a safer model of care. J. Perinat. Neonatal Nurs. 2012, 26, 15–24. [Google Scholar] [CrossRef]
- Pearson, N. Oxytocin safety: Legal implications for perinatal nurses. Nurs. Womens Health 2011, 15, 110–117. [Google Scholar] [CrossRef]
- Kissler, K.; Hurt, K.J. The Pathophysiology of Labor Dystocia: Theme with Variations. Reprod. Sci. 2023, 30, 729–742. [Google Scholar] [CrossRef]
- La Rosa, P.S.; Eswaran, H.; Preissl, H.; Nehorai, A. Multiscale forward electromagnetic model of uterine contractions during pregnancy. BMC Med. Phys. 2012, 12, 4. [Google Scholar] [CrossRef]
- Wang, H.; Wen, Z.; Wu, W.; Sun, Z.; Kisrieva-Ware, Z.; Lin, Y.; Wang, S.; Gao, H.; Xu, H.; Zhao, P.; et al. Noninvasive electromyometrial imaging of human uterine maturation during term labor. Nat. Commun. 2023, 14, 1198. [Google Scholar] [CrossRef]
- Malgieri, L.E. Ontologies, Machine Learning and Deep Learning in Obstetrics. In Practical Guide to Simulation in Delivery Room Emergencies; Cinnella, G., Beck, R., Malvasi, A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
Demographic Characteristics of the Patients | |
---|---|
N° | 102 |
Age (years) | 31.4 ± 4.4 |
BMI (kg/m2) | 24.7 ± 7.3 |
Gestational Age (Week + Days) | 39 ± 4.2 |
Birth Weight (g) | 3720 ± 238 |
Evaluation of Adrenergic Neurofibers in Gravid Uterine Cervix and LUS | |||
---|---|---|---|
Neurofibers | I.U.O. | L.U.S. | p-value |
Catecholamine (C) | 46 ± 4.8 C.U. | 21 ± 2.6 C.U. | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malvasi, A.; Baldini, G.M.; Cicinelli, E.; Di Naro, E.; Baldini, D.; Favilli, A.; Quellari, P.T.; Sabbatini, P.; Fioretti, B.; Malgieri, L.E.; et al. Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker. Int. J. Mol. Sci. 2024, 25, 5630. https://doi.org/10.3390/ijms25115630
Malvasi A, Baldini GM, Cicinelli E, Di Naro E, Baldini D, Favilli A, Quellari PT, Sabbatini P, Fioretti B, Malgieri LE, et al. Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker. International Journal of Molecular Sciences. 2024; 25(11):5630. https://doi.org/10.3390/ijms25115630
Chicago/Turabian StyleMalvasi, Antonio, Giorgio Maria Baldini, Ettore Cicinelli, Edoardo Di Naro, Domenico Baldini, Alessandro Favilli, Paola Tiziana Quellari, Paola Sabbatini, Bernard Fioretti, Lorenzo E. Malgieri, and et al. 2024. "Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker" International Journal of Molecular Sciences 25, no. 11: 5630. https://doi.org/10.3390/ijms25115630
APA StyleMalvasi, A., Baldini, G. M., Cicinelli, E., Di Naro, E., Baldini, D., Favilli, A., Quellari, P. T., Sabbatini, P., Fioretti, B., Malgieri, L. E., Damiani, G. R., Dellino, M., Trojano, G., & Tinelli, A. (2024). Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker. International Journal of Molecular Sciences, 25(11), 5630. https://doi.org/10.3390/ijms25115630