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Abstract: Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-
affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned
from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the
proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins
from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins
SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane
proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to
demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the
genes in the yeast Hansenula (Ogataea) polymorpha mutant strain ∆ynt1 lacking the only yeast nitrate
transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in
S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate
and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen
supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for
low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were
reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents
remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR
demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not
influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots—its expression rose
about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under
low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in
roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate
uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of
adult S. altissima plants under nitrogen deficiency.

Keywords: halophyte; high-affinity nitrate transporter; nitrate; NRT2 proteins; Suaeda altissima

1. Introduction

Nitrogen is an important biogenic element. For terrestrial plants, the main source of
nitrogen is nitrate, which is a dominating nitrogen form in aerated soils [1,2]. Plants absorb
nitrate from the soil solution using specific transport mechanisms and molecular systems
that function in their plasma membranes of root epidermal and cortical cells.

The availability of soil nitrate varies a lot due to its high turnover rate. It is explained
by nitrate leaching, denitrification and different season-related edaphic factors [3]. Driven
by the necessity to adapt to the wide range of changing nitrate concentrations, plants
evolved transport systems with different affinities to nitrate [4,5]. According to the various
concentrations of soil nitrate, the nitrate-transporting systems of plants could be divided
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to two groups, namely, low-affinity transport systems (LATS) and high-affinity transport
systems (HATS). The LATS act at concentrations higher than 0.5 mM NO3

−; the HATS act
at low NO3

− concentrations (saturation in the range of 0.2 to 0.5 mM) [6].
Concentrations of nitrate present in soils are often in the micromolar range, which

limits plant growth [5]. Low nitrate concentrations induce high-affinity transport systems
(HATS) of plants; HATS allow for absorbing nitrate from the soil solution with concentra-
tions below 0.5 mM [6,7]. Experiments with model salt-sensitive glycophyte Arabidopsis
thaliana demonstrated that the important role in nitrogen supply under low nitrate con-
centration in the ambient medium is exhibited by the high-affinity nitrate transporters
of the NRT2 family. Genes for seven members of the NRT2 family, AtNRT2.1–AtNRT2.7,
were identified in the Arabidopsis genome [8]. The genes were found based on their sim-
ilarity to AtNRT2.1 [8,9]. The transporters of the NRT2 family of Arabidopsis are the best
studied so far. It was demonstrated that the activity of high-affinity nitrate transporters
AtNRT2.1, AtNRT2.2, AtNRT2.4 and AtNRT2.5 is localized in roots and linked to nitrate
uptake [6,10–12]. Transporters AtNRT2.1 and AtNRT2.2 play an essential role under low
nitrate concentrations [10,11]. Transporters AtNRT2.4 and AtNRT2.5 are also involved
in high-affinity nitrate uptake but their activity is expressed under conditions of nitrate
starvation only while AtNRT2.4 is important for nitrate uptake at very low external NO3

−

concentrations [6,12]. Long-term nitrate starvation strongly induces the expression of
AtNRT2.5; AtNRT2.5 brings the main contribution into high-affinity nitrate uptake un-
der these conditions [6]. AtNRT2.7 is specifically expressed in seeds; it is the only NRT2
transporter located in tonoplast for loading NO3

− into vacuoles [13].
Complete genome sequencing of plant species is rapidly progressing; 3517 genomes

were sequenced from 1575 plant species from 2000 to 2024 [14]. This helped to discover
many sequences encoding nitrate transporters of different families including NRT2. Five
NRT2 genes have been identified in the rice genome [15]. Four ZmNRT2 genes have been
identified in the maize genome (ZmNRT2.1, ZmNRT2.2, ZmNRT2.3 and ZmNRT2.5) [16].
Five nitrate transporter genes of the NRT2 family have been found in wheat (Triticum
urartu) [17,18]. High-affinity nitrate transporters belonging to the NRT2 family were also
found in a wide range of other higher plant species, including barley (Hordeum vulgare) [19],
wild soybean (Glycine soja) [20], rapeseed (Brassica napus) [21], spinach (Spinacea olerae-
cae) [22] and Poncirus trifoliata [23].

Salinization reduces nitrate availability to plants. One of the main reasons is the
competition between NO3

− and Cl− for anion transporters [24–26]. For plants growing
in soils with low (micromolar) nitrate concentrations, this could be especially crucial.
The uptake of NO3

– and assimilation of nitrogen are suppressed in glycophytes under
salinity [27].

It is hypothesized that halophytes, the plants naturally inhabiting saline soils, absorb
nitrate under salinity more efficiently than glycophytes [28,29]. Anion-transporting proteins
in the plasma membrane of halophyte root cells function when exposed to much more
concentrated solutions of Na+ and Cl− ions than the orthologous proteins of glycophytes,
suggesting structural peculiarities for these proteins of halophytes and, correspondingly,
their distinct physicochemical properties compared to the glycophytic orthologs. The
characteristics ensure that the anion transport systems of halophytes bind nitrate and
transport it via plasmalemma when nitrate concentration is orders of magnitude lower than
the concentration of chloride. So, understanding the effects of salinity on nitrogen uptake in
halophytes may be beneficial for creating salinity-tolerant agricultural plants. Nevertheless,
available information about anion-transporting proteins of halophytes is scarce.

It is reasonable to assume that under the conditions of nitrate deficiency and at the
same time of salinity with high (over 200 mM) NaCl in nutrient or soil solution, the key
role in nitrate uptake and transport in plants is played by specific high-affinity nitrate
transporters. Here, we describe the cloning of coding sequences for two high-affinity
nitrate transporter genes, SaNRT2.1 and SaNRT2.5, from the euhalophyte Suaeda altissima
(Amaranthaceae, Suaedoideae). Many members of the genus Suaeda inhabit highly saline
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soils and are characterized by extreme salt tolerance, above 750 mM NaCl [30–32]. S. al-
tissima Pall. is a herbaceous halophytic plant with very high salinity tolerance, sharing the
same halophyte features as other representatives of the genus Suaeda. It is one of the most
salt tolerant plants, able to complete its life cycle at 1 M NaCl concentrations [33]. Under
natural conditions, S. altissima inhabits the shores of the largest salt lake in Europe, Elton.

Newly identified nitrate transporters from S. altissima, SaNRT2.1 and SaNRT2.5, are
putative orthologs of high-affinity nitrate transporters AtNRT2.1 and AtNRT2.5 from
A. thaliana. The relative abundance of SaNRT2.1 and SaNRT2.5 transcripts in S. altissima
organs was measured for plants grown at various nitrate and chloride concentrations
in nutrient solutions. The ability of SaNRT2.1 and SaNRT2.5 to transport nitrate was
examined in a heterologous system, by functional complementation analysis in the mutant
strain ∆ynt1 of yeast Hansenula (Ogatae) polymorpha. H. polymorpha is a suitable model
organism to study heterologous plant nitrate-transporting mechanisms since it is able to
take up and metabolize nitrate as the only nitrogen source [34,35]. Gene YNT1 (yeast nitrate
transporter 1) encodes the only high-affinity nitrate transporter in H. polymorpha [36]. In
the mutant strain ∆ynt1, used in this work, the gene YNT1 is deleted.

2. Results
2.1. Growth Parameters and Anion Accumulation in S. altissima Organs

Quantitative analyses were completed to determine the effects of low nitrate (0.5 mM
NO3

−) and high nitrate (15 mM NO3
−) conditions and NaCl treatments on the overall

growth of S. altissima plants after 6 weeks in hydroponics.
According to expectations, the growth of plants under low nitrate conditions was

essentially reduced compared to the conditions when plants grew under high nitrate
conditions (Figure 1). Addition of NaCl to the nutrient solution stimulated growth of
the euhalophyte under both low nitrate (0.5 mM NO3

−) and high nitrate (15 mM NO3
−)

conditions; the stimulation was strikingly significant when 250 mM NaCl was added to the
ambient medium with 15 mM NO3

−. Under low nitrate conditions, the growth of plants
was maximal under 500 mM NaCl added (Figure 1).

Measurements of nitrate contents in organs of Suaeda plants that grew under different
concentrations of nitrate and chloride (NaCl) in the medium demonstrated that nitrate
accumulated in high amounts in leaves and stems of plants growing in the medium with
high nitrate and without NaCl (Figure 2a). Addition of 250 mM NaCl to the nutrient
solution led to considerable drop in nitrate contents in organs of the euhalophyte. The
further increase in NaCl in the nutrient solution resulted in the gradual decrease in nitrate
in roots and leaves of Suaeda but nitrate contents remained about the same in stems of
the plants. High nitrate contents in organs of euhalophyte grown in the nutrient solution
without NaCl could be explained by the strategy of S. altissima to accumulate ions in
vacuoles of cells in leaves and stems to maintain their low osmotic potential [33]. Sodium
and chloride ions are accumulated in vacuoles of leaves and stems when NaCl is present in
the nutrient solution while K+ and nitrate presumably substitute them in the absence of
NaCl (Figures 2 and 3).

The nitrate contents in the organs of S. altissima plants were low for low nitrate
concentrations (0.5 mM) in the medium (Figure 2b), it corresponded to the reduced growth
of the euhalophyte (Figure 1b,d). However, under the conditions of low nitrate in the
nutrient solution, the increase in NaCl in the medium did not decrease but slightly increased
total nitrate contents in the organs of the plants (Figure 2b), suggesting the functioning of
specialized high-affinity nitrate transporting systems in roots of S. altissima that are able to
bind and transport nitrate against the background of high external chloride concentrations.
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Figure 1. Fresh weights (FWs) (a,b) and dry weights (DWs) (c,d) of organs (roots, leaves, stems) of 
S. altissima plants grown at high nitrate (15 mM) (a,c) or low nitrate (0.5 mM) (b,d) and at various 
NaCl concentrations in the nutrient solution. A p-value < 0.05 was considered statistically significant. 
* p < 0.05. Standard deviations are given. 
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Figure 1. Fresh weights (FWs) (a,b) and dry weights (DWs) (c,d) of organs (roots, leaves, stems) of
S. altissima plants grown at high nitrate (15 mM) (a,c) or low nitrate (0.5 mM) (b,d) and at various
NaCl concentrations in the nutrient solution. A p-value < 0.05 was considered statistically significant.
* p < 0.05. Standard deviations are given.
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Figure 2. Nitrate (NO3−) (a,b) and chloride (Cl−) (c,d) contents in the organs (roots, leaves, stems) of 
S. altissima plants grown at high nitrate supply of 15 mM (a,c) or low nitrate supply of 0.5 mM (b,d) 
and at various NaCl concentrations in the nutrient solution. A p-value < 0.05 was considered statis-
tically significant. * p < 0.05, ** p < 0.01. Standard deviations are given. 

Figure 2. Nitrate (NO3
−) (a,b) and chloride (Cl−) (c,d) contents in the organs (roots, leaves, stems)

of S. altissima plants grown at high nitrate supply of 15 mM (a,c) or low nitrate supply of 0.5 mM
(b,d) and at various NaCl concentrations in the nutrient solution. A p-value < 0.05 was considered
statistically significant. * p < 0.05, ** p < 0.01. Standard deviations are given.
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Figure 3. Sodium (Na+) (a,b) and potassium (K+) (c,d) contents in the organs (roots, leaves, stems) of 
S. altissima plants grown at high nitrate supply of 15 mM (a,c) or low nitrate supply of 0.5 mM (b,d) 
and at various NaCl concentrations in the nutrient solution. A p-value < 0.05 was considered statis-
tically significant. * p < 0.05, ** p < 0.01. Standard deviations are given. 
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Figure 3. Sodium (Na+) (a,b) and potassium (K+) (c,d) contents in the organs (roots, leaves, stems)
of S. altissima plants grown at high nitrate supply of 15 mM (a,c) or low nitrate supply of 0.5 mM
(b,d) and at various NaCl concentrations in the nutrient solution. A p-value < 0.05 was considered
statistically significant. * p < 0.05, ** p < 0.01. Standard deviations are given.

2.2. Identification of the Full-Length Coding Sequences SaNRT2.1 and SaNRT2.5 for High-Affinity
Nitrate Transporters and In Silico Analysis of the Protein Structures

Earlier, we identified the partial coding sequences (CDSs) of SaNRT2.1 and SaNRT2.5
(GenBank IDs: MK580128.1 and MK580129.1, accordingly), genes of high-affinity nitrate
transporters from S. altissima [37]. Identification of the partial CDS of S. altissima NRT2 genes
was carried out assuming similarity of putative S. altissima genes with homologous genes
from the halophytes S. fruticosa and S. glauca, which are closely related to S. altissima. Coding
nucleotide sequences of S. fruticosa and S. glauca homologous genes were obtained by in
silico analysis of the de novo assembled transcriptomes of these halophytes. The short-read
RNA arrays for the transcriptome assembling were taken by us from the BioProject database,
portal NCBI (Acc. No. #PRJNA279962, https://www.ncbi.nlm.nih.gov/bioproject/?term=
PRJNA279962, accessed on 22 March 2024, and #PRJNA295637, https://www.ncbi.nlm.nih.
gov/bioproject/?term=PRJNA295637, accessed on 22 March 2024).

Here, based on the partial SaNRT2.1 and SaNRT2.5 CDSs, we obtained 3′- and 5′-end
sequences of their cDNAs (Figure 4a,b). Then, using the experimental approach described
in “Materials and Methods”, the complete cDNA sequences for the genes SaNRT2.1 and
SaNRT2.5 were obtained from S. altissima (Figure 4c,d). Coding sequences SaNRT2.1
(1575 bp) and SaNRT2.5 (1503 bp) were cloned into yeast shuttle vector pCHLX, veri-
fied by sequencing and deposited in GenBank (SaNRT2.1 ID: OR909030.1; SaNRT2.5 ID:
OR828748.1). SaNRT2.1 encodes the protein of 524 amino acids with predicted molecular
mass of 56.96 kDa, and SaNRT2.5 encodes the protein of 500 amino acids with predicted
molecular mass of 54.38 kDa.

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA279962
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA279962
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA295637
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA295637
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Figure 4. (a,b): Analysis of 3′-end and 5′-end fragments (indicated by arrows with asterisks) of
SaNRT2.1 and SaNRT2.5 coding sequences synthesized on the total cDNA template from S. altissima
roots using Step-Out RACE technology. (c,d): Analysis of the full-length SaNRT2.1 (c) and SaNRT2.5
(d) coding sequences that were used for further cloning in vector pCHLX. DNA fragments were
separated by electrophoresis in 1% agarose gel. M—DNA molecular weight markers.

In silico analysis carried out using the online resource InterPro (version 98.0, http://
www.ebi.ac.uk/interpro/, accessed on 22 March 2024) as well as Protein BLAST at the NCBI
portal (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 22 March 2024) confirmed
that the two identified transporters belong to the family of high-affinity nitrate transporters
NRT2. In a phylogenetic tree based on amino acid sequences, SaNRT2.1 is located within a
clade with NRT2.1 proteins from other Amaranthaceae—Amaranthus tricolor, Beta vulgaris,
Chenopodium quinoa, Spinacea oleracea (Figure 5a). Accordingly, SaNRT2.5 lies in a clade with
NRT2.5 proteins from the same plant species (Figure 5a).

The online service WoLF PSORT II predicted that both SaNRT2.1 and SaNRT2.5 resided
in the plasma membrane. According to the topology model predicted using DeepTMHMM
software (version 1.0.24), both SaNRT2.1 and SaNRT2.5 are integral membrane proteins
forming 12 hydrophobic transmembrane helices (TMH); both N- and C-ends are in the
cytoplasmic compartment (Figure 5b). Every six transmembrane helixes forming a group
are connected by a central cytoplasmic loop, which is relatively short in Suaeda NRT2s. Such
topology is generally typical for proteins of the MFS (major facilitator superfamily) [38].
MFS transporters are secondary carriers consisting of a single polypeptide capable of
transporting small molecules of solutes in response to chemiosmotic ion gradients. They
function as uniporters, symporters or antiporters. MFS proteins contain 12 transmembrane
regions. Proteins of this superfamily are involved in the absorption of nitrate from the soil
by plant roots.

http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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licates was 1000; the values of bootstrap support are indicated near the nodes. The NRT2 protein 
sequences were extracted from the NCBI portal ((https://www.ncbi.nlm.nih.gov/protein, accessed 
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topology of proteins SaNRT2.1 and SaNRT2.5 predicted using DeepTMHMM software version 
1.0.24. Both SaNRT2.1 and SaNRT2.5 form 12 transmembrane helices; N- and C-ends are located in 
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The SaNRT2.1 and SaNRT2.5 sequences were aligned with NRT2 sequences from 
some other plants (Figure 6). The alignment reveals a number of conservative motifs in 
the polypeptide chains and among them the MFS-conserved motif G-xxx-D-xx-G-x-R and 
nitrate–nitrite transporter family motif G-W/L-G-N-M/L-G-G-G [39]. Table 1 shows the 

Figure 5. (a) An unrooted phylogenetic tree of the SaNRT2.1 and SaNRT2.5 transporters of S. altissima
and other plant NRT2 homologs. The phylogenetic tree was built in MEGA 11 using the maximum
likelihood method based on the Jones–Taylor–Thornton model. The number of bootstrap replicates
was 1000; the values of bootstrap support are indicated near the nodes. The NRT2 protein sequences
were extracted from the NCBI portal (https://www.ncbi.nlm.nih.gov/protein, accessed on 14 March
2024). Names of plant species and protein IDs are given in Table S2. (b) Membrane topology of
proteins SaNRT2.1 and SaNRT2.5 predicted using DeepTMHMM software version 1.0.24. Both
SaNRT2.1 and SaNRT2.5 form 12 transmembrane helices; N- and C-ends are located in cytoplasm.

The SaNRT2.1 and SaNRT2.5 sequences were aligned with NRT2 sequences from
some other plants (Figure 6). The alignment reveals a number of conservative motifs
in the polypeptide chains and among them the MFS-conserved motif G-xxx-D-xx-G-x-R
and nitrate–nitrite transporter family motif G-W/L-G-N-M/L-G-G-G [39]. Table 1 shows
the similarity of proteins SaNRT2.1 and SaNRT2.5 to each other and to proteins of the

https://www.ncbi.nlm.nih.gov/protein
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NRT2 family from A. thaliana. Similarity of SaNRT2.1 to SaNRT2.5 is not high: about 50%.
Protein SaNRT2.1 demonstrates higher similarity to Arabidopsis NRT2 proteins with the
exception of the AtNRT2.7 than to halophytic protein SaNRT2.5. The similarity of SaNRT2.5
to Arabidopsis NRT2 proteins is about the same as to SaNRT2.1. It is worth noting that
AtNRT2.5 is also the most divergent protein of the whole AtNRT2 protein family where the
genes are expressed in roots (Table 1).
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Figure 6. Multiple sequence alignment performed in Clustal Omega software (https://www.ebi.ac.
uk/jdispatcher/msa/clustalo, accessed on 25 March 2024) for NRT2 proteins from Arabidopsis thaliana
(AtNRT2.1: NP_172288.1, AtNRT2.5: NP_172754.1), Hordeum vulgare (HvNRT2.1: AAC49531.1,
HvNRT2.5: KAE8819762.1), Suaeda altissima (SaNRT2.1: WPS65192.1, SaNRT2.5: WPH61290.1) and
Spinacia oleracea (SoNRT2.1: XP_021865042.1, SoNRT2.5: XP_021845686.1). Protein GenBank IDs are
indicated in the parenthesis. The key motifs (GxxxDxxGxR, GWGN(M/L)GGG) are marked by lines
below the sequences. The intensity of the staining of amino acid residues corresponds to the degree
of their identity (percentage identity).

Table 1. Identities of aa sequences of SaNRT2.1, SaNRT2.5 and NRT2 proteins of A. thaliana calculated
in BLAST, NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 25 March 2024). Identities are
expressed as a percentage.

SaNRT2.1 AtNRT2.1 AtNRT2.2 AtNRT2.3 AtNRT2.4 AtNRT2.5 AtNRT2.6 AtNRT2.7

SaNRT2.5 53.37 53.46 53.27 54.38 54.21 65.36 55.47 49.79
AtNRT2.1 74.48 87.26 69.04 84.23 59.75 68.28 46.52
AtNRT2.2 71.76 87.26 66.8 80.98 58.58 66.93 46.53
AtNRT2.3 68.68 69.04 66.8 71.76 57.02 89.3 47.98
AtNRT2.4 73.9 83.24 80.98 71.76 58.14 71.16 47.17
AtNRT2.5 58.21 59.75 58.58 57.02 58.14 57.76 49.9
AtNRT2.6 69.19 68.28 66.93 89.3 71.16 57.76 47.75
AtNRT2.7 46.86 46.52 46.53 47.98 47.17 49.9 47.75
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2.3. Quantitative Analysis of SaNRT2.1 and SaNRT2.5 Transcripts in S. altissima Organs

We investigated expression of SaNRT2.1 and SaNRT2.5 in organs of S. altissima under
different nitrate concentrations in the NS and different salinities. Observed patterns of
SaNRT2.1 and SaNRT2.5 expressions were different (Figures 7 and 8).
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the plants grown in the nutrient medium containing 0.5 mM NO3
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p-value < 0.05 was considered to be statistically significant. * p < 0.05. Standard deviations are given.

The levels of SaNRT2.1 expression were comparable in all the studied organs; in
roots, leaves and stems of the halophyte; independently of nitrate supply (low or high
supply) when NaCl was absent in the nutrient solution (Figure 7a). An increase in NaCl
concentrations in the nutrient solution changed the pattern. The expression of SaNRT2.1 in
the roots of plants under low nitrate essentially increased; it reached maximum at 500 mM
NaCl (Figure 8a). The expression of SaNRT2.1 changed insignificantly in leaves and stems
under the conditions (Figure 8c,e). Under high nitrate concentrations in the nutrient
solution, SaNRT2.1 expression in roots increased but remained at a low level compared to
the expression observed at low nitrate concentration; the expression of SaNRT2.1 in leaves
and stems was nearly not influenced by the treatment (Figure 8a,c,e).

SaNRT2.5 was expressed mainly in roots of S. altissima; the expression of the gene
in the other organs of S. altissima was negligibly low (Figure 7b). The level of SaNRT2.5
expression in the roots was essentially influenced by concentrations of nitrate and chloride
in the nutrient solution. In the absence of NaCl in the nutrient solution, the expression
of SaNRT2.5 was significantly reduced at high nitrate concentrations (Figure 7b) and was
nearly completely suppressed with rising NaCl concentrations (Figure 8b). On the contrary,
the expression of SaNRT2.5 in the roots of plants that were grown under nitrate deficiency
dramatically increased with the rise in NaCl; the maximum expression was achieved at
500 mM NaCl, similar to the expression of SaNRT2.1 (Figure 8b). Expression of SaNRT2.5
in other S. altissima organs remained negligibly low as the concentration of NaCl in the
medium increased (Figure 8d,f)

It should be noted that the level of SaNRT2.5 expression was 10 times higher than
the level of SaNRT2.1 expression when comparing expression of SaNRT2.1 and SaNRT2.5
genes in roots of S. altissima plants that were grown in the medium with NaCl under nitrate
deficiency (Figure 8a,b).
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NaCl and containing 0.5 mM NO3

− was taken as 100 percent. A p-value < 0.05 was considered to be
statistically significant. * p < 0.05. Standard deviations are given.

2.4. Experiments on Functional Complementation of Yeast Mutant ∆ynt1 by SaNRT2.1 and
SaNRT2.5 Expression in H. polymorpha Cells

In order to demonstrate the nitrate transporting function of the SaNRT2.1 and SaNRT2.5
proteins, knockout mutant strain ∆ynt1 of the methylotrophic yeast H. polymorpha was
transformed with yeast integrative vector constructs pCHLXSaNRT2.1 or pCHLXSaNRT2.5,
carrying the coding sequences SaNRT2.1 or SaNRT2.5, respectively. Unlike the yeast wild-
type (WT) strain, the growth of the mutant ∆ynt1 strain lacking the only high-affinity



Int. J. Mol. Sci. 2024, 25, 5648 11 of 20

nitrate transporter YNT1 was suppressed on a minimal SD medium containing NO3
− at

concentrations ranging from 0.2 to 5 mM (Figure 9). Unfortunately, there was no noticeable
recovery in the growth of the mutant ∆ynt1 strain transformed by the vectors with coding
sequences of heterologous nitrate carriers SaNRT2.1 or SaNRT2.5 (Figure 9). The reasons
for this will be discussed in the Discussion Section.
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Figure 9. Complementation assay of the H. polymorpha mutant strain ∆ynt1 transformed by pCH-
LXSaNRT2.1 or pCHLXSaNRT2.5 constructs during growth on minimal agarized SD medium sup-
plied with different concentrations of nitrate (from 0.2 to 5 mM). Wild-type yeast strain DL-1 and the
∆ynt1 mutant transformed with the empty vector pCHLX were taken as controls. Approximately
105 cells of each strain were plated on Petri dishes and incubated at 37 ◦C for 3 days.

3. Discussion

Nitrogen is an essential and one of the most important mineral nutrients for plants.
The growth of S. altissima under the controlled experimental conditions of hydroponics
demonstrated that low concentrations of nitrate in the nutrient solution (0.5 mM) expectedly
reduced plant growth, by about five times in fresh and dry weights of shoots and stems, but
less for roots, compared to plants growing at high nitrate concentrations (15 mM) (Figure 1).
Concentrations of nitrate in S. altissima plant organs were also markedly reduced under
low nitrate, by 5 times for roots and by over 20 times for leaves and stems (Figure 2a,b).
However, contrary to glycophytes, the growth of euhalophyte S. altissima was significantly
stimulated by increasing NaCl concentrations in the nutrient solution, peaking at 250 mM
NaCl for high nitrate supply and even at 500 mM NaCl for low nitrate (Figure 1).

Experiments with species of the Suaeda genus, S. physophora and S. salsa, demonstrated
that NaCl application significantly increased leaf NO3

− concentrations under N-sufficient
conditions thus indicating that NaCl may have a promoting effect on nitrate uptake in some
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halophytes [29,40]. Different results were obtained in our experiments. The concentration of
nitrate in S. altissima organs dropped 2–4 times under salinity for high nitrate supply though
still remained higher than under low nitrate treatment and did not essentially decrease
with increasing salinity up to 750 mM NaCl (Figure 2a). This is the typical effect for most
plants under salinity (e.g., [27] for rice and tomato and references therein). However,
although increasing salinity treatment did not reduce nitrate concentrations (apart from
a slight initial decrease in the roots) in S. altissima organs under low nitrate, an increase
was observed in the leaves and stems (Figure 2b), similar to findings with halophytes
S. physophora and S. salsa [29,40]. This indicates that high-affinity nitrate transporters in
the roots of the halophyte are able to take up nitrate under high salinity; when potential
competition with Cl− ions is expected, the concentrations of Cl− ions are nearly three
orders of magnitude higher than concentrations of nitrate.

The salinity treatment from 0 to 750 mM NaCl influenced the concentrations of other
measured ions in S. altissima plants. For high nitrate supply, chloride contents increased
nearly linearly in all plant organs with increasing NaCl concentrations in the nutrient
solution, while for low nitrate, the concentrations of chloride increased more slowly with
signs of saturation at 750 mM NaCl (Figure 2c,d). Lower concentrations of chloride in
S. altissima roots and higher in leaves under high nitrate supply, up to twofold at 750 mM
NaCl, indicate that the halophyte accumulates chloride ions in leaf vacuoles, confirming the
earlier results [33]. The deficit of nitrate limited growth and distorted the strategy. Chloride
contents were similar for all the organs (apart at 500 mM NaCl) (Figure 2d). Sodium
contents in S. altissima organs also increased nearly linearly as the concentration of sodium
in the nutrient solution increased up to 750 mM, for both high and low nitrogen supply with
two-and-more-fold lower Na+ in roots than in leaves (Figure 3a,b). It supported again the
preferences of the halophyte to accumulation of ions in leaf vacuoles [33]. Concentrations
of potassium and K+-to-Na+ ratios are more indicative for characterizing the development
of salinity stress ([41,42]; proved for Arabidopsis–Thellungiella pair in [43]; for varieties of
pepper in [44]; etc.). The loss of potassium from plant roots under salinity is assumed as one
of determinants for salinity tolerance (e.g., reviewed in [42,45]). Potassium concentrations
were higher under high nitrate without salinity in all the studied organs of S. altissima
(Figure 3c,d). Rising salinity to 250 mM NaCl dropped the K+ concentrations under high
nitrate in all organs, with a higher decrease in leaves and stems (Figure 3c). The further
increase in salinity did not change the K+ concentrations, suggesting that the plants are
adapted to the new high salinity environment. At low nitrate, the potassium concentration
dropped in leaves only and remained about the same as under high nitrate under all the
salinity treatments (0–750 mM) (Figure 3d). The K+ concentrations under salinity were
highest in roots for high nitrate and in roots and stems under low nitrate, suggesting the
active role of the organs in ion uptake and transport (Figure 3c,d).

In the present study, the coding sequences of two genes, SaNRT2.1 and SaNRT2.5,
for high-affinity nitrate transporters of the NRT2 family were cloned from euhalophyte
S. altissima. Newly identified nitrate transporters from S. altissima, SaNRT2.1 and SaNRT2.5,
are the putative orthologs of high-affinity nitrate transporters AtNRT2.1 and AtNRT2.5
from A. thaliana. The phylogenetic bioinformatic analysis demonstrated that the proteins
SaNRT2.1 and SaNRT2.5 exhibit higher levels of homology to the corresponding proteins
from the plants of family Amaranthaceae—Amaranthus tricolor, Beta vulgaris, Chenopodium
quinoa, and Spinacea oleracea (Figure 5a). At the same time, the similarity of amino acid
sequences between proteins SaNRT2.1 and SaNRT2.5 is not that high (54%). SaNRT2.1
demonstrated higher similarity in amino acid sequences to orthologs from A. thaliana (75%)
than to SaNRT2.5 (Table 1). SaNRT2.5 in turn demonstrated a modest similarity to all
corresponding orthologs from A. thaliana.

The topological models of SaNRT2.1 and SaNRT2.5 proteins (Figure 5b) predict
12 transmembrane domains in each of the proteins, corresponding to topological of proteins
belonging to the MFS (major facilitator superfamily) with 12 transmembrane domains.
Proteins of this superfamily are involved in the uptake of nitrate from soil by plant roots.
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All NRT2s are high-affinity transporters. When the available nitrate is low, the high-
affinity transport system is activated and plays a leading role in nitrate uptake by a
plant [39,46]. The observed changes in expression of SaNRT2.1 and SaNRT2.5 under salinity
and different (high and low) nitrate concentrations in the nutrient solution (Figure 8) point
to potential and highly probable participation of the high-affinity transporters SaNRT2.1
and SaNRT2.5 in nitrate uptake by S. altissima plants under salinity. At the same time, the
expression patterns of the genes for the two transporters significantly differ, which could be
linked to the functional differences between SaNRT2.1 and SaNRT2.5 in intact S. altissima
plants. When NaCl is absent in the medium, the gene SaNRT2.1 is expressed at comparable
levels in all studied organs of S. altissima; concentration of nitrate in the nutrient solution
(low or high) did not essentially influence the level of expression (Figure 7a). On the other
hand, the gene SaNRT2.5 is expressed almost only in the roots; its level of expression
is sharply increased under low nitrate (Figure 7b). An increase in NaCl in the nutrient
solution from 0 to 750 mM under low nitrate increased the expression of both SaNRT2.1 and
SaNRT2.5, especially for roots, from 15 to 150 times at 500 mM NaCl, correspondingly. The
expression level of SaNRT2.5 exceeds the expression level of SaNRT2.1 in roots by an order
of magnitude (Figure 8a,b). Based on the analysis of the gene expression, it is highly likely
that transporter SaNRT2.5 is a main player in ensuring effective nitrate uptake by roots and
functions as an essential nitrate transporter to support the growth of adult halophyte plants
under nitrogen deficiency. The two–threefold increase in expression of the nitrate trans-
porter gene SsNRT2.1 under salinity of 200 mM NaCl and 500 mM NaCl at the background
of low (0.5 mM) nitrate was also demonstrated for euhalophyte Suaeda salsa [31]. The
discovered regular patterns of SaNRT2.1 and SaNRT2.5 expression under NaCl conditions
were similar to the patterns of expression for homologous genes in A. thaliana. In particu-
lar, four Arabidopsis genes, AtNRT2.1, AtNRT2.4, AtNRT2.5 and AtNRT2.6 showed strong
preferential expression in the roots while conditions of low nitrate treatment significantly
upregulated expression of AtNRT2.1, AtNRT2.4 and AtNRT2.5 [6,10–12]. Nevertheless,
under low nitrate conditions, AtNRT2.1 is the main transporter for nitrate uptake and
transport in roots [7,11]. The expression of AtNRT2.5 is highly induced after a long period
of starvation. Under these conditions, AtNRT2.5 becomes the most abundantly expressed
gene of the AtNRT2 family in roots and leaves, although AtNRT2.5 transcripts were mainly
present in roots and at much lower levels in shoots [6,11,47]. AtNRT2.5 expression de-
creased under conditions of sufficient nitrate supply [7,12]. The same pattern was observed
in our experiments for SaNRT2.5 (and SaNRT2.1) expressed in roots (Figure 8a,b).

A direct attempt to prove the nitrate transporting function of SaNRT2.1 and SaNRT2.5
proteins from S. altissima was chosen using the heterologous expression system. The
mutant strain ∆ynt1 of yeast H. polymorpha is lacking the only nitrate transporter of the
organism. Hence, the growth of the ∆ynt1 mutant is suppressed at medium with nitrate as
a single nitrogen source while the heterologously expressed nitrate transporters AtNPF6.3
from A. thaliana and SaNPF6.3 from S. altissima was effective in the growth rescue of the
mutant [35,48]. Unfortunately, the heterologous expression of SaNRT2.1 or SaNRT2.5 genes
in the yeast mutant did not rescue its growth at medium with nitrate. The same result
was obtained when barley HvNRT2.1 and HvNRT2.2 cDNAs were used to complement a
∆ynt1 mutant of H. polymorpha [39]. This complementation was only partial because, for
unknown reasons, the nitrate uptake activity of the transformants was very low compared
to the wild type [39]. The reasons for this absence of complementation could be multiple.
The simplest ones are that the level of synthesized proteins SaNRT2.1 or SaNRT2.5 is
too low in the heterologous systems, such that they are not delivered properly to the
cellular yeast membrane, misfolded or not translated at all. A more elegant explanation
comes from the fact that some proteins of NRT2 family require partner protein from the
family NAR2/NRT3 for their proper functionality as nitrate transporters [47,49,50]. The
interaction of NRT2 and NAR2 was demonstrated to enhance the nitrate transport activity
of a high-affinity transport system [51,52]
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There are, however, some NRT2 proteins that apparently function without these
accessory proteins [50]. So, this unsuccessful complementation of yeast ∆ynt1 mutant by
heterologous expression of SaNRT2.1 or SaNRT2.5 genes could be explained by the omitted
protein of family NAR2/NRT3 from S. altissima in the yeast heterologous expression
system. So far, none of the genes for NAR2/NRT3 proteins have been cloned and studied
in S. altissima. Further research is needed to elucidate the reasons for lack of activity of
SaNRT2.1 and SaNRT2.5 in the yeast heterologous expression system. The identification
and characterization of NAR proteins from S. altissima and understanding of their potential
interactions with SaNRT2.1 and SaNRT2.5 is one of the ways in this direction.

4. Material and Methods
4.1. Plant Material

Seeds of Suaeda altissima (L.) Pall. were harvested from the plants growing on the
shores of the salt lake Elton (Volgograd region, Russia). Seeds were germinated in wet
sand at 24 ◦C. Fourteen days after germination, the seedlings were transferred to aerated
Robinson–Downton nutrient solution (NS) [53] in 3 L vessels, 4 plants per vessel and
3 vessels per experimental point. NS was supplied with nitrate and chloride as KNO3
and NaCl, respectively. NS contained 0.5 mM NO3

− (low-nitrate medium) or 15 mM
NO3

− (high-nitrate medium) and four increasing Cl− concentrations (0, 250, 500, 750 mM)
for each NO3

− condition. Plants were grown in hydroponic conditions at 24 ◦C, 60–70%
relative humidity and under 16/8 h light/dark cycle for 4 weeks (young plants) or 6 weeks
(adult plants), depending on the type of experiment. The plants were illuminated with
high-pressure sodium lamps DNaZ_400 (Reflux, Novocherkassk, Russia) at a light flux
of 300 µmol photons m−2 s−1. To study the long-term salinity effects on the growth
characteristics of Suaeda plants and expression of the nitrate transporter genes in Suaeda
organs, NaCl was added to the nutrient solution on the 7th day after the transfer of the
seedlings from the wet sand to the vessels. To avoid salt shock, NaCl was added gradually
in increments of 50 or 100 mM per day, up to the final concentrations of 250, 500 or 750 mM;
no NaCl was added to the NS for control plants.

All chemicals used in this study for preparing Robinson–Downton nutrient solu-
tion [53] were of PTC (plant culture-tested) grade or molecular biology grade and manu-
factured by Central Drug House (P) Ltd. (New Delhi, India). Sodium chloride (extra-pure
grade) was from Sisco Research Laboratories Pvt. Ltd. (Mumbai, India).

4.2. Yeast Strain and Vectors Used in This Study

Methylotrophic yeast Hansenula polymorpha double-auxotrophic strains DL-1 (leu2 ura3
genotype) (wild-type strain, WT strain) and yeast integrative vectors pCCUR2 and pCHLX
were used in this study. The strain DL-1 (leu2 ura3) was transformed with plasmids pCCUR2
and pCHLX carrying the URA and LEU genes, respectively, to ensure the growth of the
yeast strains without additional nitrogen sources, leucine and uracil, when performing
complementation tests. Plasmids pCCUR2 and pCHLX were kindly provided by Michael
Agafonov (Federal Research Center “Fundamentals of Biotechnology”, Russian Academy
of Sciences, Moscow, Russia). Yeast cells were transformed by the lithium method [54] or
by electroporation [55] using an Eppendorf device (Eppendorf, Framingham, MA, USA).
H. polymorpha mutant strain ∆ynt1 with a deleted YNT1 gene encoding the only high-affinity
nitrate transporter in H. polymorpha was produced from the wild-type H. polymorpha strain
DL-1 (leu2 ura3) by us earlier [48]. The mutant strain ∆ynt1 (ynt1: BleoR/ZeoR, leu2, ura3)
was also transformed with pCCUR2 and pCHLX integrative plasmids carrying the URA
and LEU genes, respectively, to ensure the growth of the yeast strains without additional
nitrogen sources in the selective media, namely, leucine and uracil, when performing
complementation tests.
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4.3. Plant Organ Fresh and Dry Weight Analysis

Quantitative analyses of the overall growth parameters of S. altissima plants were
made after 6 weeks of growing plants in hydroponics. Root, stem and leaf fresh weights
(FWs) were measured after removal of the entire plant from the hydroponics system. The
respective dry weights (DWs) were measured after drying plant material in drying oven
Binder FD115 (Tuttlingen, Germany) at 90 ◦C for 48 h.

4.4. Determination of NO3
− and Cl− Contents in S. altissima Organs

Water extracts from the samples of dried S. altissima organs (roots, stems and leaves)
were prepared by incubating 100 mg of homogenized samples in 10 mL aliquots of boiling
deionized water for 10 min. Concentrations of Cl− and NO3

− in the extracts were deter-
mined using ion-selective electrodes (respectively, Elite-261 and Elite-021, Niko-Analit,
Moscow, Russia).

4.5. Extraction of Total RNA from Plant Material and First-Strand cDNA Synthesis

For total RNA extraction S. altissima plants after 4 weeks of growing in hydroponics
were used. Plant organs (roots, leaves, stems) were sampled (approximately 1 g fresh
weight of each sample), frozen in liquid nitrogen and stored at −80 ◦C for the further use.

Total RNA from S. altissima plant organs was isolated by the hot phenolic method [56]
and used as a template for the total first-strand cDNA synthesis. For amplification of
the 3′- and 5′-ends of the SaNRT2.1 and SaNRT2.5 transcripts by the Step-Out RACE
method, the first strand of cDNA was synthesized on the total RNA template isolated from
Suaeda roots using MINT revertase (Evrogen, Moscow, Russia). Full-length cDNAs of the
SaNRT2.1 and SaNRT2.5 genes were also amplified on the total RNA template isolated from
Suaeda roots. To obtain full-length cDNAs of the SaNRT2.1 and SaNRT2.5 and quantify the
representation of the gene transcripts in S. altissima organs, first-strand cDNA synthesis was
performed on the total RNA templates using (dT)15 primer and MMLV revertase (Evrogen,
Moscow, Russia).

4.6. Primer Design

Primer for qPCR-RT experiments were designed using primer Blast software, version
4.1.0 (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 22 March 2024).
Other primers used were selected using SnapGene Viewer software 5.0.8 (https://www.
snapgene.com/snapgene-viewer, accessed on 29 July 2023). All primers used are listed in
Table S1.

4.7. Identification of the Full-Length SaNRT2.1 and SaNRT2.5 Coding Sequences

Partial coding sequences (the middle fragments) of the SaNRT2.1 and SaNRT2.5
genes were obtained by us previously (GenBank ID: MK580128.1 and MK580129.1, ac-
cordingly) [37]. Here, based on these sequences, the forward and reverse primer sets were
designed for amplification of the 5′- and 3′-end sequences of SaNRT2.1 and SaNRT2.5
cDNAs. The 5′- and 3′-end sequences of the targeted cDNAs were obtained using Step-Out
RACE technology (kit #SKS03, Evrogen, Moscow, Russia), following the manufacturer’s pro-
tocol. The cDNA fragments were amplified on the total cDNA template using Encyclo DNA
polymerase (#PK002, Evrogen, Moscow, Russia). The 5′-end sequence of SaNRT2.1 cDNA
was amplified with primers SaNRT2.1_R (round 1) and SaNRT2.1_R1 (round 2). The 3′-end
sequence of SaNRT2.1 cDNA was amplified with SaNRT2.1_F (round 1) and SaNRT2.1_F1
(round 2). Similarly, 5′-end and 3′-end fragments of SaNRT2.5 cDNA were amplified with
primers SaNRT2.5_R and SaNRT2.5_F (round 1), SaNRT2.5_R2 and SaNRT2.5_F2 (round 2).
The primers Mix1 (round 1) and Mix2 (round 2) from the manufacturer kit were also used
for amplification of SaNRT2 fragments.

The amplicons obtained were cloned into pAL2-T vector (Evrogen, Moscow, Russia) for
replication in E. coli cells and the following sequencing. Subsequently, overlapping 5′- and
3′-ends of SaNRT2.1, 5′- and 3′-ends of SaNRT2.5 cDNAs were in silico assembled using
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SnapGene software 5.0.8 (https://www.snapgene.com/snapgene-viewer, accessed on
29 July 2023). Two resulting sequences were obtained containing open reading frames of
1575 bp (SaNRT2.1) and 1503 bp (SaNRT2.5), respectively. These sequences were used for the
design of primers for the amplification of full-length SaNRT2.1 and SaNRT2.5 cDNAs on the
total first-strand cDNA template. The full-length SaNRT2.1 and SaNRT2.5 coding sequences
were amplified from the total first-strand cDNA using primer pairs SaNRT2.1b_F1 and
SaNRT2.1b_R, and SaNRT2.5a_F and SaNRT2.5a_R1, respectively. All amplicons obtained
were analyzed by electrophoresis in 1% agarose gel.

The full-length SaNRT2.1 and SaNRT2.5 cDNAs were cloned into vector pCHLX [57]
under the control of the inducible nitrate reductase (NR) promoter pYNR1 and terminator
tYNR1 of H. polymorpha. Promoter pYNR1 and terminator tYNR1 sequences were amplified
from the H. polymorpha genomic DNA template using primer pairs pYNR1_F and pYNR1_R,
and tYNR1_F and tYNR1_R. The first 10 cycles of amplification of the promoter, terminator
and gene coding sequences were performed using Encyclo polymerase (No. PK002, Evro-
gen, Moscow, Russia); the next 25 cycles were performed using CloneAmp HiFi PCR Premix
kit (No. 639298, Clontech, Mountain View, CA, USA). The pCHLX vector was linearized in
the Hind III and EcoRI restriction sites and ligated with the synthesized pYNR1, tYNR1
and SaNRT2.1/SaNRT2.5 sequences using a Gibson assembly kit (No. E5510, SkyGen, NEB,
Ipswich, MA, USA) to produce the pCHLX-pYNR1-SaNRT2.1-tYNR1 or pCHLX-pYNR1-
SaNRT2.5-tYNR1 constructs (further denoted as pCHLXSaNRT2.1 or pCHLXSaNRT2.5,
respectively). The cloned sequences, SaNRT2.1 (1575 bp) and SaNRT2.5 (1503 bp), were
verified by sequencing and deposited in GenBank (SaNRT2.1 ID: OR909030.1; SaNRT2.5
ID: OR828748.1).

4.8. Quantitative Analysis of SaNRT2.1 and SaNRT2.5 Transcripts in S. altissima Organs

Quantitative analysis of SaNRT2.1 and SaNRT2.5 transcripts was performed by qRT-
PCR using a LightCycler® 96 System (Roche Diagnostics Corporation, Indianapolis, IN,
USA). The cDNA templates for the amplification of SaNRT2.1 and SaNRT2.5 fragments
were synthesized on the total RNAs templates, isolated from the organs of S. altissima plants
grown in the NS supplied with various nitrate and NaCl concentrations. A ready-to-use
reaction mixture with intercalating dye SYBR Green I for real-time PCR (Evrogen, Moscow,
Russia) was used. The S. altissima gene of elongation factor 1 alpha SaeEF1alpha (GenBank
ID: MN076325.1) was used as an internal control. The expression of this housekeeping
gene has been shown to be constitutive within the different plant organs under changing
experimental conditions [58]. To amplify the SaeEF1alpha fragment, SaeEF1alfa_F1 and
SaeEF1alfa_R1 primers were used. The results obtained were processed using LightCycler
96SW 1.1 software. The relative expression profile was calculated by the 2−∆∆CT method.
For the amplification of SaNRT2.1 and SaNRT2.5 fragments, the primer pairs SaNRT2.1_F1
and SaNRT2.1_R1, and SaNRT2.5_F2 and SaNRT2.5_R2 were used. The results are based
on three biological and three analytical replicates.

4.9. Cultivation of H. polymorpha WT Strain and ∆ynt1 Transformants

Cells of H. polymorpha WT strain and mutant ∆ynt1 strain were grown in a rich YPD
medium (1% yeast extract, 2% peptone, 2% glucose). After co-transformation with pCHLX
and pCCUR2 vectors, yeast cells were grown on a minimal synthetic SD medium (0.17%
yeast nitrogen base without amino acids and ammonium sulfate, 2% glucose) with the
addition of 0.5% (NH4)2SO4 as a nitrogen source. All solid media contained 2% agar.

For complementation assay, at first, H. polymorpha WT and ∆ynt1 strains co-transformed
with pCCUR2 and pCHLX vectors (with or without SaNRT2.1/SaNRT2.5 insert) were
grown in 10 mL of minimal SD medium containing 0.5% ammonium sulfate overnight at
37 ◦C. Then, the obtained cultures were centrifuged for 5 min at 2500 g, the precipitates
were washed with sterile water, resuspended in the water and 2 µL suspension samples
were plated on agarized SD medium containing KNO3 instead of ammonium sulfate at
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concentrations ranging from 0.2 to 5 mM. The resulting samples were incubated at 37 ◦C
for 2–3 days until colonies appeared.

All manipulations with H. polymorpha were performed according to the protocols
generally accepted for the yeast [55]. Yeast transformants were selected on minimal selective
media in the absence of leucine and/or uracil. Transformants that contained the insertion
in the genome were validated by PCR with Hp_DL-1_Chr1_R primers for genomic DNA
and standard M13_F primers for pCHLX vectors.

4.10. Bioinformatic Analysis

The online translation of nucleotide SaNRT2.1 and SaNRT2.5 encoding sequences to the
amino acid ones was carried out using online service at ExPASy portal (http://web.expasy.
org/translate/, accessed on 22 March 2024). Molecular weights of proteins SaNRT2.1 and
SaNRT2.5 were calculated at the same portal (http://web.expasy.org/protparam/, accessed
on 22 March 2024). The classification of the identified transporters within NRT2 family was
determined using InterPro v.98.0 (http://www.ebi.ac.uk/interpro/, accessed on 22 March
2024) and also with the aid of the algorithm Protein BLAST (Basic Local Alignment Search
Tool) at the NCBI portal (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 22 March
2024). Cellular localization of SaNRT2.1 and SaNRT2.5 was predicted using online service
WoLF PSORT II at GenScript (https://www.genscript.com/wolf-psort.html, accessed on
22 March 2024).

Multiple sequence alignment of amino acid sequences of NRT2 proteins was performed
using Clustal Omega software (https://www.ebi.ac.uk/jdispatcher/msa/clustalo, accessed
on 25 March 2024) and visualized with Jalview software, version 2.11.2.7 (https://www.
jalview.org/, accessed on 25 March 2024). A phylogenetic analysis of NRT2 family pro-
teins was carried out using Molecular Evolutionary Genetic Analysis (MEGA) 11 software
(version 11, https://www.megasoftware.net/, accessed on 14 March 2024), using the
maximum likelihood method based on the Jones–Taylor–Thornton model [59] (1000 boot-
strap replications were performed). NRT2 protein sequences for comparative analysis
were extracted from the NCBI portal (https://www.ncbi.nlm.nih.gov/protein, accessed on
14 March 2024).

Protein topologies were predicted by DeepTMHMM software (version 1.0.24, https://dtu.
biolib.com/DeepTMHMM, accessed on 12 March 2024) [60].

4.11. Statistical Analysis

The results presented in Figures 1–3, 7 and 8 were deduced from three biological
replicates and each of them was performed in three analytical replicates. The significant
difference was analyzed by using Student’s t-test. A p-value < 0.05 was considered to be
statistically significant. Standard deviations are given in the figures.

5. Conclusions

Concluding, two genes of high-affinity nitrate transporters, SaNRT2.1 and SaNRT2.5,
were cloned from the euhalophyte Suaeda altissima, which is able to grow and proliferate at
1 M NaCl. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied for the plants
grown under low (0.5 mM) or high (15 mM) nitrate with salinity ranging from 0 to 750 mM
NaCl. SaNRT2.1 was expressed in all organs when SaNRT2.5 was expressed exclusively
in roots. Under low nitrate in medium, salinity increased the expression of both genes: at
500 mM NaCl, SaNRT2.1 peaked in the roots with a 15-fold rise; SaNRT2.5 peaked in the
roots, rising 150-fold. An attempt to demonstrate nitrate transporting activity of SaNRT2.1
or SaNRT2.5 in the yeast heterologous expression system was not successful; hence, future
research is aimed at finding the partner protein of the NAR2/NRT3 family from S. altissima
and functional characterization of the nitrate transporters SaNRT2.1 and SaNRT2.5.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25115648/s1.
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