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Abstract: The role of the gut microbiota and its interplay with host metabolic health, particularly
in the context of type 2 diabetes mellitus (T2DM) management, is garnering increasing attention.
Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, constitute a class of drugs
extensively used in T2DM treatment. However, their potential interactions with gut microbiota remain
poorly understood. In this study, we employed computational methodologies to investigate the
binding affinities of various gliptins to DPP4-like homologs produced by intestinal bacteria. The 3D
structures of DPP4 homologs from gut microbiota species, including Segatella copri, Phocaeicola vulgatus,
Bacteroides uniformis, Parabacteroides merdae, and Alistipes sp., were predicted using computational
modeling techniques. Subsequently, molecular dynamics simulations were conducted for 200 ns
to ensure the stability of the predicted structures. Stable structures were then utilized to predict
the binding interactions with known gliptins through molecular docking algorithms. Our results
revealed binding similarities of gliptins toward bacterial DPP4 homologs compared to human
DPP4. Specifically, certain gliptins exhibited similar binding scores to bacterial DPP4 homologs as
they did with human DPP4, suggesting a potential interaction of these drugs with gut microbiota.
These findings could help in understanding the interplay between gliptins and gut microbiota
DPP4 homologs, considering the intricate relationship between the host metabolism and microbial
communities in the gut.

Keywords: DPP4; microbiome; molecular modeling; type 2 diabetes; gliptins

1. Introduction

The causes of the diabetes epidemic are multifaceted and include population aging,
economic development, urbanization, Westernized dietary habits (enriched in saturated
fats and refined sugars), genetic predisposition, and sedentary lifestyles [1]. Diabetes is
a complex metabolic disorder characterized by high blood glucose levels due to insulin
resistance, insufficient insulin secretion, or both. Hyperglycemia is the primary clinical
manifestation of diabetes. However, insulin deficiency and/or resistance also lead to dis-
ruptions in lipid and protein metabolism, as well as mineral and electrolyte imbalances [2].
Most diabetic patients fall into two main categories: type 1 diabetes mellitus (T1DM),
caused by a severe or near-complete lack of insulin due to genetic causes, and type 2 dia-
betes mellitus (T2DM), characterized by insulin resistance and inadequate compensatory
insulin secretion. Additionally, there are various uncommon types of diabetes resulting
from infections, drug use, hormonal disorders, pancreatic damage, or genetic defects. These
distinct forms are classified separately as “Other Specific Types” [3].
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Among the different diabetes classifications, T2DM is significantly more prevalent,
constituting over 90% of all cases and being strongly associated with the worldwide increase
in obesity [4]. In T2DM, insulin resistance is responsible for increased glucose production
in the liver and decreased glucose uptake in muscle and adipose tissue at a set insulin level.
Additionally, β-cell dysfunction results in reduced insulin release, insufficient to maintain
normal glucose levels. Both insulin resistance and β-cell dysfunction are early pathogenic
events in the development of T2DM [5].

Epidemiological and clinical studies, together with omics-based research and pre-
clinical experiments, demonstrate the significant impact of the gut microbiota on human
health and disease susceptibility [6]. This microbial ecosystem includes a wide array of
interrelated bacteria, archaea, bacteriophages, eukaryotic viruses, and fungi that coexist
on human surfaces and in all bodily cavities [7]. Despite significant variations in the
pathophysiology of prevalent chronic metabolic disorders, there are commonalities and
distinctiveness in the composition and function of the intestinal microbiota [8–11]. Regard-
ing T2DM patients, it has been described that their gut microbiome is enriched in certain
functional genes and pathways, such as sugar-related membrane transport, branched-chain
amino acid outward transport, methane metabolism, xenobiotic degradation, and sulfate
reduction [11]. The microbiome of individuals with overt T2DM is deficient in bacterial
butyrate producers and displays an increase in species with a pro-inflammatory profile [12].
As proof of the importance of the gut microbiome in T2DM development, epidemiological
studies have demonstrated that patients with total colectomy have a higher risk of T2DM
than individuals without colectomy [13]. Furthermore, mechanistic studies conducted
on rodents have shown that hyperglycemia can increase intestinal barrier permeability
through GLUT2-dependent transcriptional reprogramming of intestinal epithelial cells,
which alters tight junction integrity, ultimately resulting in leaky mucosa [14]. More recent
evidence in obese mice shows the potential of the intestinal microbiota to modulate distal
gut hormonal secretion with consequences in glucose regulation [15].

Drugs impact the gut microbiome, and for this reason, the associations between the
gut microbiome features and T2DM in patients undergoing multiple drug treatments are
challenging due to drug confounders. Among the drugs prescribed for T2DM, metformin
appears to have the most significant effect on the gut microbiota, with alterations in the
relative abundance of multiple genera and species and enhancement in several micro-
biome functional capabilities, such as propionate and butyrate production, which seems to
promote intestinal gluconeogenesis [16–18].

After metformin, the main drug treatments for T2DM patients are dipeptidyl peptidase
4 (DPP4) inhibitors. DPP4 is an aminopeptidase that preferentially cleaves proline or
alanine residues in the penultimate position of its substrates, although it can also cleave
other residues (Figure 1). It is an integral membrane protein expressed in various tissues,
including intestinal and renal brush border membranes, the vascular endothelium, the liver
and pancreas, glandular epithelial cells, and immune cells, and can be detected in soluble
form (amino acids 49–766) in the bloodstream and other fluids (i.e., seminal fluid and
cerebrospinal fluid). The protein has a large extracellular domain that is anchored to the
cell membrane and contains a cysteine-rich region and one rich in glycosylation sites. The
catalytic site resides in the C-terminal region, while the extracellular domain is involved
in non-enzymatic functions, such as interacting with other proteins and functioning as
binding sites for receptors and transporters [19–23].

The relationship between DPP4 and glucose homeostasis was discovered after the
identification of the intestinal hormone glucagon-like peptide-1 (GLP-1) and the glucose-
dependent insulinotropic polypeptide (GIP) as substrates of DPP4. The role of GLP-1 in
regulating glycemia was recognized in 1986, when it was found to have significant effects on
the endocrine pancreas [24,25]. In vitro kinetic studies showed that GLP-1 is a substrate for
DPP4 [26]. Subsequent studies in healthy individuals and those with T2DM demonstrated
that the metabolite resulting from DPP4 cleavage is the primary circulating form of GLP-1-
like immunoreactivity [27] and that this metabolite is rapidly formed following exogenous
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administration of GLP-1 in both healthy subjects and those with T2DM [28]. Similar findings
were reported in rats after exogenous GLP-1 administration [29], providing evidence that
GLP-1 is a genuine physiological substrate of DPP4. These results led to the suggestion that
blocking the degradation of GLP-1 by DPP4 could increase endogenous intact (active) GLP-1
concentrations and enhance its anti-hyperglycemic actions, similar to the way angiotensin-
converting enzyme inhibitors are used to treat hypertension. Therefore, DPP4 inhibition
was proposed as a novel therapeutic strategy for the treatment of T2DM [28,30,31].
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Figure 1. Catalytic active site residues and substrate specificity of amino peptidase DPP4. DPP4
liberates a di-peptide from the substrates. It prefers small proteins of less than 100 amino acids with a
preference for proline at the penultimate N-terminal position, even though some residues such as
alanine, glycine, serine, valine, or leucine can be hydrolyzed at a slower rate. This enzyme is unable
to cleave substrates that present proline at N-terminal position three.

Henceforth, the therapeutic properties of DPP4 inhibitors (DPP4is, also known as
gliptins) are achieved through secondary mediation via the substrates they shield from
degradation. The escalated levels of biologically active and intact GLP-1 and GIP instigate
insulin and glucagon secretion in a glucose-dependent way. Moreover, DPP4is have a
significant advantage over other glucose-lowering medications, as they exhibit better
tolerability and safety profiles [32–34]. This advantage even extends to new glucose-
lowering agents like sodium-glucose cotransporters II inhibitors [35–37].

Once DPP4 was established as a therapeutic target, comprehensive structure–activity
assessments were undertaken to discover compounds that were appropriate for clinical
use, leading to the development of DPP4is, such as vildagliptin [38] and saxagliptin [39].
The recognition of DPP4 as a member of an enzyme family and the elucidation of the crys-
tal structure of DPP4 protein [40] facilitated further refinement, which culminated in the
development of inhibitors such as sitagliptin [41], alogliptin [42], and linagliptin [43]. Cur-
rently, the class encompasses various DPP4is that span a spectrum of different compounds,
yielding diverse chemical and pharmacokinetic profiles [44].

The DPP4is act by targeting this enzyme binding pocket, which comprises four main
regions and an additional area where known inhibitors can be attached. Therefore, DPP4is
are categorized into distinct classes based on their binding locations for executing their
function [45] (Figure 2). These categories are as follows:
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• Class I: These attach to S1 and S2 sites; vildagliptin and saxagliptin belong to
this category.

• Class II: These bind to S1, S2, S1
′, and S2

′ sites; alogliptin and linagliptin are part of
this group.

• Class III: These interact with the S2ext site along with S1, S2, and S1
′; sitagliptin is

representative of this class.

While the use of gliptins has undoubtedly advanced the treatment of T2DM, further
exploration in this domain remains imperative to obtain more efficient and secure gliptins.
Continued research is needed to uncover innovative therapeutic options that can better
address the multifaceted nature of this disease, mitigate its long-term complications, and
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ultimately improve the quality of life for individuals affected by this pathology. Moreover,
recent studies highlighted the promise of developing therapies that target both host and
gut microbial enzymes to achieve greater clinical efficacy [46] in view of the production of
DPP4 activity by some gut microbiota members [23].

In this work, considering the potential role that DPP4-like isozymes produced by
intestinal bacteria might play, our research endeavors to investigate the binding inter-
actions of commercially available gliptins with various DPP4-like proteins. We employ
computational methodologies to elucidate the potential interactions between these drugs
and proteins produced by intestinal bacteria. Such elucidation could provide insights
facilitating the development of novel and improved DPP4 inhibitors.

2. Results
2.1. DPP4 Homologs Sequence Selection and Comparison

As a first step, we worked on a selection process to identify, from human gut metagenome
assemblies, different bacterial genes encoding peptides resembling human DPP4 at the
amino acid sequence and protein domain organization. An array of sequences obtained
from faecal samples was obtained from this step.

The amino acid sequence comparison allowed us to establish the degree of sequence
identity among the DPP4 sequences. After analyzing this alignment data, we selected those
DPP4 homologs that were relevant according to the literature but were more divergent
(less than 60% sequence identity). Thus, we ultimately opted to retain the DPP4-like
proteins from Bacteroides uniformis, Phocaeicola vulgatus, Parabacteroides merdae, Alistipes sp.,
and Segatella copri. Figure 3 presents the percentage identity between these homologous
sequences and the human DPP4.
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We also analyzed residue conservation within all the known regions of the binding
pocket of human DPP4. Specifically, we scrutinized the conservation within the S1, S2, S1

′,
S2
′, and S2ext zones of the binding pocket, which are considered essential for substrate

interaction and enzymatic activity. Table S1 provides a representation showcasing the
sequence alignment comparison of the DPP4 homologs in relation to the human reference
sequence. To better understand the conservation within the binding pocket zones, each
residue in these zones was color-coded based on their physicochemical properties. This
approach takes into consideration not only the conservation of the specific amino acids
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but also their properties. Applying this color-coding approach makes it easier to identify
residues that exhibit broader conservation across the DPP4 sequences that were studied.

Table S1 also shows trends regarding residue conservation across different regions
within the enzyme binding pocket. Specifically, the residues found in the S1 and S1

′ regions
showed a higher degree of conservation than those in the S2, S2

′, and S2ext regions. The
S2ext region stands out due to its pronounced variability and alterations among the different
DPP4-like proteins studied.

2.2. DPP4 Homologs Structure Prediction and Evaluation

Once we selected the sequence of bacterial DPP4 functional homologs, we pro-
ceeded with the prediction of 3D protein structures utilizing two different approaches,
RosettaFold (https://robetta.bakerlab.org/, accessed on 29 April 2022) and YASARA
(Version 21.6.17) homology modeling functionality. For each DPP4-like protein, the pre-
dicted structures from each approach underwent optimization, focusing on identifying the
best-optimized model.

Finally, we selected the best models for a complete analysis using the Ramachandran
Plot calculation within the SAVES Server. Table 1 shows the different metrics for the best
structure obtained for each DPP4-like protein.

Table 1. Ramachandran plot metrics for the best prediction of each DPP4 homolog alongside the
algorithm employed for its generation.

DPP4 Homolog % Most Favored
Regions

% Allowed
Regions

% Generally
Allowed Regions

% Disallowed
Regions Algorithm

S. copri 92 7.4 0.3 0.3 YASARA

Alistipes sp. 87.5 11.7 0.5 0.3 YASARA

B. uniformis 90.1 9.4 0.3 0.2 YASARA

P. merdae 92.2 7.2 0.3 0.3 YASARA

P. vulgatus 91.9 6.9 0.5 0.8 RosettaFold

This step yielded optimal 3D structures of the DPP4-like protein of five different
intestinal bacteria, showing, for each case, more than 95% of the residues falling in the most
favored and allowed regions, with less than 1% falling into disallowed regions.

In preparation for our computational work involving the predicted structures, we
subjected the DPP4-like proteins to molecular dynamics (MD) simulations spanning a
duration of 200 nanoseconds (ns) to ascertain the stability of the predicted structures over
time, ensuring that the structural integrity remains intact. Afterward, we evaluated the
root mean squared deviation (RMSD) values of the simulation (Figure 4). RMSD values
offer a depiction of how each DPP4 homolog fluctuates in structure throughout the simula-
tion trajectory, underscoring their capability to retain their conformational arrangement
with time.

The RMSD plot (Figure 4) illustrates the convergence of these structures to a consistent
state with time, which substantiates the stability attained by each DPP4 homolog’s structure
during the 200 ns MD simulations.

In some cases, such as for P. merdae, Alistipes sp., and S. copri, the RMSD values exhibit
minimal fluctuations, remaining within a range of less than 0.5 Å during the final 40 ns
of the simulation. The case of B. uniformis, while presenting slightly higher RMSD values
than the homologs mentioned above, follows a similar stabilization pattern. Its RMSD
values exhibit fluctuations of less than 0.5 Å in the last 40 ns of the simulation, indicating a
reassuring degree of structural steadiness.

https://robetta.bakerlab.org/


Int. J. Mol. Sci. 2024, 25, 5744 7 of 18
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. RMSD calculations for the 200 ns of simulations for all the predicted 3D structures. 

The RMSD plot (Figure 4) illustrates the convergence of these structures to a con-
sistent state with time, which substantiates the stability attained by each DPP4 homolog�s 
structure during the 200 ns MD simulations. 

In some cases, such as for P. merdae, Alistipes sp., and S. copri, the RMSD values exhibit 
minimal fluctuations, remaining within a range of less than 0.5 Å during the final 40 ns of 
the simulation. The case of B. uniformis, while presenting slightly higher RMSD values 
than the homologs mentioned above, follows a similar stabilization pattern. Its RMSD val-
ues exhibit fluctuations of less than 0.5 Å in the last 40 ns of the simulation, indicating a 
reassuring degree of structural steadiness. 

Although P. vulgatus registers a relatively higher RMSD score, its trajectory during 
the last 40 ns demonstrates fluctuations within approximately 1 Å. This suggests a reason-
ably acceptable stabilization, even though the RMSD values are comparatively elevated. 

Collectively, these observations suggest the stability of the DPP4 homolog structures 
after the 200 ns MD simulations. These simulations provide confidence that the predicted 
structures align well with the dynamic behavior of the proteins, thus making sense for 
subsequent computational investigations. 

2.3. Computational Prediction of the Binding of Known Gliptins with Different DPP4s 
After identifying noteworthy similarities between human DPP4 and bacterial DPP4-

like proteins, a computational investigation employing a molecular docking approach was 
conducted. This step aimed to predict the binding of well-known commercially available 
gliptins—namely, sitagliptin, saxagliptin, vildagliptin, linagliptin, alogliptin, and ten-
eligliptin—within the binding sites of all the studied DPP4-like structures. The resulting 
docking scores (kcal/mol) are presented in Table 2. These scores were generated by dock-
ing the gliptins into the binding pocket of human DPP4 and the suggested binding pocket 
indicated by the sequence alignment study for the bacterial DPP4-like proteins. 

  

Figure 4. RMSD calculations for the 200 ns of simulations for all the predicted 3D structures.

Although P. vulgatus registers a relatively higher RMSD score, its trajectory during the
last 40 ns demonstrates fluctuations within approximately 1 Å. This suggests a reasonably
acceptable stabilization, even though the RMSD values are comparatively elevated.

Collectively, these observations suggest the stability of the DPP4 homolog structures
after the 200 ns MD simulations. These simulations provide confidence that the predicted
structures align well with the dynamic behavior of the proteins, thus making sense for
subsequent computational investigations.

2.3. Computational Prediction of the Binding of Known Gliptins with Different DPP4s

After identifying noteworthy similarities between human DPP4 and bacterial DPP4-
like proteins, a computational investigation employing a molecular docking approach
was conducted. This step aimed to predict the binding of well-known commercially
available gliptins—namely, sitagliptin, saxagliptin, vildagliptin, linagliptin, alogliptin, and
teneligliptin—within the binding sites of all the studied DPP4-like structures. The resulting
docking scores (kcal/mol) are presented in Table 2. These scores were generated by docking
the gliptins into the binding pocket of human DPP4 and the suggested binding pocket
indicated by the sequence alignment study for the bacterial DPP4-like proteins.

Table 2. Docking score values (kcal/mol) for the studied DPP4 variants. Higher values indicate
stronger binding affinity.

Gliptin Human S. copri P. merdae Alistipes sp. B. uniformis P. vulgatus

Sitagliptin 9.23 7.92 9.01 7.45 8.23 7.87

Linalgliptin 9.91 8.92 10.80 8.69 9.64 8.62

Alogliptin 7.59 7.46 9.01 6.99 7.59 7.53

Teneligliptin 7.77 7.66 9.02 7.30 8.42 7.52

Vildagliptin 6.90 7.22 8.43 6.38 7.77 6.88

Saxagliptin 7.57 7.22 8.2 6.3 7.93 6.94

Average 8.20 ± 1.2 7.7 ± 0.6 9.1 ± 0.9 7.2 ± 0.9 8.3 ± 0.7 7.6 ± 0.6
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Our results showed that mean docking scores and standard deviations were quite
similar between the different variants and the human DPP4. For the human variant, the
mean docking score was 8.20 kcal/mol, with a standard deviation of 1.2 kcal/mol, while
for the bacterial variants, we observed a mean value ranging from 7.2 to 9.1 kcal/mol.
Moreover, these outcomes indicate that, among the studied bacterial DPP4-like proteins,
the P. merdae variant tends to exhibit the highest mean docking scores for the tested gliptins.
Despite slight variations in docking scores across the DPP4-like proteins, their scores are
similar to the scores of the human variant. This resemblance in binding affinities suggests
the potential for these gliptins to interact effectively with DPP4-like bacterial enzymes, akin
to their interactions with the human DPP4.

Moreover, these best poses obtained from the docking experiments were subjected
to more calculations to obtain the interactions that each drug presented with the DPP4-
like proteins. The type of each interaction was quantified for all drugs in each DPP4-like
enzyme binding, showing similar values not only in the number but also in the type of these
interactions (Figure 5). The binding of gliptins with P. merdae showed a higher number of
interactions, in concordance with the docking scores presented before, while Alistipes sp.
presented the lowest number of interactions with the different gliptins. Moreover, it can
be observed how the distribution of the type of interactions is maintained in the different
homologs, with Van Der Waal contacts being the most common interaction, followed by
hydrophobic, hydrogen bonds, and pi-stacking.
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Finally, 2D interaction maps of each pose were obtained, resulting in a visualization of
the different interactions that occur in the predicted binding of each drug. Figure 6 shows
these maps for the case of sitagliptin, as it is one of the more often administered drugs for
T2DM treatment worldwide. These 2D maps allowed us to study the predicted mechanism
of action of sitagliptin among the different DPP4-like proteins. All poses maintained
hydrophobic interactions between the molecule and the different residues of the binding
pocket; however, only the binding with S. copri, P. merdae, P. vulgatus, and B. uniformis
maintained the pi-stacking interactions with one of the aromatic rings of sitagliptin, while
the binding with the human DPP4 showed this type of interactions with both. The 2D
interaction maps for all the gliptins studied are presented in the Supplementary Material
(Figures S1–S5). Focusing on the other gliptins, it can be observed how in the case of
alogliptin, all DPP4-like proteins bindings, except B. uniformis, maintain a pi-stacking
interaction with one of the aromatic rings, as occurs with the binding with human DPP4.
Linagliptin binding with all the DPP4s shows a majority of hydrophobic interactions, while
in the binding of saxagliptin, only P. vulgatus and B. uniformis presented hydrogen bonds
as the human DPP4 binding. For teneligliptin, only the bindings with B. uniformis and
P. merdae presented a pi-stacking interaction with one of the aromatic rings, and lastly, in
the case of vildagliptin, only S. copri and P. vulgatus presented hydrogen bond interactions
in a similar way as the binding with the human DPP4.
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3. Discussion

The gut microbiota residing in the gastrointestinal tract plays a crucial role in host
metabolism and immune function. While gliptin research has mainly focused on human
DPP4 activity, certain fungi and bacteria within the human-associated microbial communi-
ties also possess DPP4-like enzymatic activities. Given the significance of inhibiting DPP4
activity in managing T2DM, investigating the role of DPP4 homologs from gut microbes is
of particular interest [47–62].

In this study, our focus centered on five distinct species of intestinal bacteria: B. uniformis,
P. vulgatus, P. merdae, Alistipes sp., and S. copri. These bacteria’s DPP4-like functional homol-
ogous proteins have been demonstrated to exhibit in vitro DPP4 activity. To comprehend
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the mechanisms underlying this activity, we initiated our exploration with a sequence
analysis to elucidate the resemblances between these homologs and the human variant.

Upon conducting sequence alignments, all five bacterial DPP4-like proteins shared a
20% to 40% similarity range with the human DPP4. Overall, our observations suggested
that the binding pocket residues remain conserved in the microbiome variants, and the
mutations of these residues do not compromise the aminoacids’ functional properties or
disrupt the cavity’s environment. The maintenance of the conserved enzymatic cavity
suggests that the enzymatic activity could also be retained between the variants, even
though the mechanism of action could be different. These conserved regions could be
related to the observation that the gut microbiome of T2DM patients treated with class I
gliptins is altered [63]. Notably, the S2ext region stood out due to its marked variability and
deviations. Indeed, the extended region’s significance lies more in how gliptins interact with
the pocket rather than directly influencing DPP4 activity. Consequently, it is conceivable
to find DPP4-like proteins exhibiting enzymatic activity even in cases where this region is
not conserved.

This observation aligns with the DPP4 activity documented in experimental results and
literature. For example, a significant reduction in DPP4 activity within cecal content and
feces was observed with the commercially available DPP4 inhibitor vildagliptin in obese
mice. Moreover, this inhibitor exerted an influence on the gut microbiota’s composition
and its associated metabolic activity [62].

This outcome suggests that gliptin drugs potentially engage with microbiome-derived
DPP-like enzymes, influencing their activity. Additionally, these drugs could be responsible
of changes in the microbiota’s composition. However, the microbiota-shaping effects of
gliptins in clinical studies and their additional hypoglycemic mechanism need further in-
vestigation [64]. Studying the interactions between these drugs and microbiota-associated
DPP4-like proteins is pivotal for a deeper comprehension of the intricate connection be-
tween the gut microbiome and T2DM.

We developed and employed a computational workflow for structure prediction to
study in silico the potential DPP4-like activity of microbiome homologs. This methodology
enabled the computational exploration of 3D structures for DPP4-like bacterial products.
Two distinct algorithms were employed, each contributing to the three-dimensional predic-
tions: the homology modeling method embedded in YASARA [65] and the deep learning
algorithm, RosettaFold [66].

Four of the five predicted variants showed the most optimal predictions through
YASARA’s homology modeling, with RosettaFold delivering the optimal prediction only for
one. The implementation of deep learning algorithms has triggered a revolution in protein
structure prediction, but in our specific case, YASARA’s homology modeling exhibited
superior performance compared to these new approaches. This could be attributed to the
fact that RosettaFold was trained using a dataset of human protein structures rather than
microbial counterparts [66]. This outcome may also be related to the results observed after
the MD simulations of the predicted structures. The DPP4-like protein from P. vulgatus,
predicted with RosettaFold, exhibited the highest RMSD values. This aligns with the results
from the Ramachandran plot, where this protein showed the highest percentage of residues
in disallowed regions, suggesting a less stable structure. Furthermore, considering that
the algorithm was trained primarily on human data and P. vulgatus has a lower sequence
identity with human DPP4 compared to the other DPP4-like proteins, it is plausible that
the protein from P. vulgatus underwent greater conformational changes to achieve a more
stable state during the MD simulations, which could explain this higher RMSD.

To our knowledge, these computations culminated in the generation of the first pre-
dicted 3D structures for these DPP4 homologs with optimal metrics. This resource equipped
us to conduct molecular modeling investigations into the interactions between diverse
molecules and these isozymes.

Considering the possible role of gliptins potentially interacting with bacterial DPP4-
like proteins, we worked with the predicted 3D structures we obtained. We used these
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structures as a basis to conduct molecular docking experiments involving six distinct
commercially available gliptins. The gliptins demonstrated similar binding affinities to
both the microbiome variants and the human DPP4.

Furthermore, when we calculated the interactions between the best poses of each
gliptin with the DPP4-like proteins studied, we observed a similar number of interactions
among them. However, not all residues observed at the junctions with bacterial DPP4s
coincide with those found in the sequential alignment between human DPP4 and bacterial
counterparts. Although we did find the same types of residues present, they did not align
with their equivalents in the sequential alignment. This discrepancy hints at a potential
different binding mode in bacterial DPP4-like proteins, suggesting that the well-defined
and known binding sections in the pocket of human DPP4 may be displaced in various
bacterial functional homologs, as suggested in the literature [46,67]. Further, more detailed
studies are imperative to ascertain this with greater certainty, as the possible binding of
these gliptins to DPP4-like proteins does not need to be necessarily related to a functional
inhibition of the protein activity. However, the possible binding of these drugs to a different
target besides the human DPP4 is a remarkable result that could help to design better and
more efficient gliptins.

The findings obtained in this work align with recent research by Wang et al. [46], where
they observed the activity of DPP4-like proteins in various Bacteroides species members of
the gut microbiota. These proteins seemed to play a role in regulating GLP-1 alongside
the human variant. Indeed, the authors experimentally demonstrated that the known
inhibitor sitagliptin could also inhibit Bacteroides DPP4 variants, although with a higher
IC50. This finding aligns with our results, which indicated a possible binding between
known inhibitors and DPP4 variants in Bacteroides spp. (but showing a less favorable
binding score, which could be related to the higher IC50 that was reported) and other
genera such as Segatella, Alistipes, and Parabacteroides.

Furthermore, the authors performed a screening and identified a compound
(daurisoline-d4) capable of inhibiting Bacteroides DPP4-like protein in vitro and in vivo
using experimental methods. This compound targets this specific Bacteroides DPP4 with-
out affecting human DPP4, and thus, it is proposed as a treatment for T2DM alongside
sitagliptin [46]. Following this line of study, our computational predictions could help
support the design of new and more efficient gliptins that bind not only the human DPP4
but also some homologs produced by the gut microbiota, extending these insights not only
to Bacteroides species but also to three more families of intestinal bacteria.

While the specific roles of these bacterial DPP4-like enzymes within the body need
more experimental studies, including their potential connection with the GLP-1 cycle
involving human DPP4, our predictions suggested a potential relationship between gliptins
and these gut microbial isozymes. The predicted docking scores and calculated interactions
raise questions about potential impacts on organismal health and microbiome dynamics.
However, whether these interactions exert any consequential effects in the clinical setting
requires a thorough investigation.

4. Materials and Methods
4.1. DPP4 Homologs Sequence Data

The sequences of the intestinal homologs of DPP4 were studied from human fecal
samples collected from a previous clinical trial on overweight subjects [68]. Paired-end fastq
files, depleted from human DNA reads (using conventional bowtie + samtools + bedtools
algorithms and hg38 assembly), were used to assemble the fecal metagenome of each
individual at week 0 and week 12, conducted on 30 overweight and obese individuals
(body mass index of 25 to 40 kg/m2). The data were analyzed by using Velvet assembler
v1.2.10 [69] with the parameters as follows: k-mer length 61, -exp_cov auto, -ins_length 250,
and -ins_length_sd 60. This step was followed by an assembly refinement step using the
Metavelvet extension [70] with the following parameters: -ins_length 250 -ins_length_sd
60 configuration. The assembled contigs larger than 500 nt in length were retained, and
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the prediction of potential ORF encoded in such fragments from respective metagenomes
was assisted by FragGeneScan v1.30 [71], with the -complete = 0 and -train = complete
configuration. Peptide sequences (with length ≥ 50 aa) obtained from the ORF prediction
in all metagenomes were concatenated and clustered at 70% sequence identity using cdhit
algorithm with -c 0.7, -G 1, -B 1, and -g 1 parameters [72]. Representative sequences from
clusters were mapped against the non-redundant peptide database derived from the latest
version of the assembled and annotated human genome (hg38). For such aim, we used
the usearch v8.0.1623 algorithm [73] with the following parameters: -usearch_local, -id
0.7, -strand both, and -top_hit_only. Domain architecture of selected gut microbiome
hits (e.g., Pfam, SMART, Interpro) as well as their molecular function (e.g., KEGG, COG,
eggNOG) were evaluated to provide further evidence about their mimicked functionality.
The taxonomy identification of ORFs mimicking human DPP4 function was achieved via
tBlastn server (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 29 April 2018) using
peptide queries versus non-redundant nucleotide collection.

4.2. Data Retrieval

For the molecular modeling experiments conducted in this work, the three-dimensional
structure of DPP4 was obtained from the Protein Data Bank (https://www.rcsb.org/, ac-
cessed on 27 February 2022) (PDB ID: 5T4F, resolution 1.9 Å). The different gliptins em-
ployed in this work, namely, sitagliptin, saxagliptin, vildagliptin, linagliptin, alogliptin, and
teneligliptin, were obtained from PubChem database (https://pubchem.ncbi.nlm.nih.gov/,
accessed on 29 September 2022) [74].

4.3. Sequence Alignment

Sequence alignments play a crucial role when working with protein sequences. By
aligning sequences, similarities and differences can be identified, aiding in the prediction
of protein structures, functional domains, and conserved regions. They provide insights
into the structural, functional, and evolutionary relationships among proteins.

The sequence alignments for all protein sequences within this study were conducted
using the Clustal Omega web server (https://www.ebi.ac.uk/jdispatcher/msa/clustalo,
accessed on 29 September 2021) [75], employing its default parameters.

4.4. Computational Prediction of DPP4 Homologs’ 3D Structure

Computational prediction of protein structure is crucial when the 3D structure is not
yet elucidated. This step allows the generation of the structure necessary for subsequent
molecular modeling steps.

Initially, the sequences of different DPP4 homologs were used as input for the structure
prediction methods. Two different approaches were employed for this purpose, one based
on deep learning algorithms, called RosettaFold [66], and one based on YASARA homology
modeling algorithm [65].

Next, the predicted structures from these different methods were assessed for quality
and accuracy by the corresponding metrics. The best-predicted structure for each DPP4
homolog was further refined using GalaxyRefine via the GalaxyWeb server (https://galaxy.
seoklab.org/cgi-bin/submit.cgi?type=REFINE, accessed on 29 April 2022) [76], a tool
known for improving structural accuracy by performing repeated structure perturbation
and subsequent overall structural relaxation by MD simulation, obtaining five refined
models for each predicted structure.

Subsequently, the top-ranked refined structures obtained from the methods employed
for each DPP4 homolog were subjected to evaluation using the SAVES Server [77] (https:
//saves.mbi.ucla.edu/, accessed on 29 April 2022). This evaluation involved generating
Ramachandran Plots [78], which provide insights into the stereochemical quality of the
protein structures. Based on the evaluation results, the best-predicted structure for each
DPP4 homolog was selected as the reference structure for subsequent MM studies (Figure 7).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/jdispatcher/msa/clustalo
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
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This reference structure serves for further investigations, allowing for in-depth exploration
of functional aspects and interactions of the DPP4 homologs.
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4.5. Molecular Dynamics Simulation

The MD simulation provided information about the conformational changes, stability,
and interactions of the molecules under investigation. The trajectories obtained from
the simulations were analyzed and interpreted, obtaining the RMSD parameter using
MAESTRO functionalities.

The MD simulations were performed with OPLS4 forcefield, establishing a timestep
of 2 femtoseconds and a simulation cell of 10 Å of spacing in each coordinate axis and
filling the simulation cell with TIP3P water molecules, the necessary ions to neutralize the
system, and a concentration of NaCl of 0.15 M. NPT ensemble class was employed with
temperature at 300 K and pressure at 1.01325 bar.

4.6. Molecular Docking Calculation and Analysis

In the molecular-docking process, the best binding pose of a ligand with a target
protein is predicted. In this study, the YASARA [65] macro designed for this purpose
was utilized with standard parameters. This macro incorporates AutoDock Vina [79]
for the docking calculations. Initially, the receptor, i.e., the DPP4 protein, underwent
cleaning and optimization using the YASARA software, ensuring a refined structure for
docking experiments.

Subsequently, the different compounds were docked to the binding site of DPP4,
employing a grid box with dimensions encompassing 5 Å around the binding pocket
amino acids (selecting the residues that form the S1, S1

′, S2, S2
′, and S2ext sections) and

25 runs. Moreover, the ligand was set free while maintaining rigid the binding pocket amino
acids. This focused docking approach aimed to explore potential binding interactions and
orientations of the small molecules within the active site of DPP4.

After the docking simulations, the results were analyzed using YASARA software,
allowing for the evaluation of binding scores and the generation of PDB files of the
best pose.
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Best pose of each docking score was then studied by in-house developed script that
incorporated ProLiF package (version 1.0.0) [80] in Python (version 3.9.4) [81] for interaction
calculation and visualization.

5. Conclusions

In conclusion, this study sheds light on the role of gut microbiota-derived DPP4-like
functional homologs in host metabolism, particularly in the context of T2DM treatment.
By focusing on five distinct species of intestinal bacteria (Bacteroides uniformis, Phocaeicola
vulgatus, Parabacteroides merdae, Alistipes sp., and Segatella copri), this research elucidates
the structural and functional similarities between bacterial DPP4-like proteins and their
human counterpart. This study employed computational methods to predict 3D structures
and conducted molecular docking experiments to explore the interactions between gliptin
drugs and DPP4-like enzymes. The results suggest potential binding affinities between
gliptins and both bacterial and human DPP4, albeit with some variations in binding modes
observed in bacterial DPP4s.

These findings align with previous research indicating the inhibitory effects of gliptins
on Bacteroides DPP4-like proteins and could help in the designing of more efficient gliptins
targeting both human- and microbiota-derived DPP4 functional homologs. However,
further experimental studies are warranted to elucidate the specific roles of these ho-
mologs in the GLP-1 cycle and their potential implications for organismal health and mi-
crobiome dynamics. This research contributes to exploring novel therapeutic strategies for
T2DM management by considering the intricate interplay between the gut microbiota and
host metabolism.
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