Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome
Abstract
:1. Introduction
2. Results
2.1. Rare Variant Analysis
2.2. Overlap with a Single-Nucleotide Variant Analysis
2.3. Enrichment Analysis
3. Discussion
3.1. Rare Variant Analysis
3.2. Overlap with a Single-Nucleotide Variant Analysis Results
3.3. Enrichment Analysis
3.4. Limitations
4. Materials and Methods
4.1. Patients
4.2. Whole-Genome Sequencing
4.3. Structural Variant Analysis
4.4. Co-Segregation Analysis
4.5. Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robertson, M.M.; Eapen, V.; Singer, H.S.; Martino, D.; Scharf, J.M.; Paschou, P.; Roessner, V.; Woods, D.W.; Hariz, M.; Mathews, C.A.; et al. Gilles de La Tourette Syndrome. Nat. Rev. Dis. Primers 2017, 3, 16097. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.M. Tourette Syndrome, Associated Conditions and the Complexities of Treatment. Brain 2000, 123 Pt 3, 425–462. [Google Scholar] [CrossRef] [PubMed]
- Tagwerker Gloor, F.; Walitza, S. Tic Disorders and Tourette Syndrome: Current Concepts of Etiology and Treatment in Children and Adolescents. Neuropediatrics 2016, 47, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Sul, J.H.; Tsetsos, F.; Nawaz, M.S.; Huang, A.Y.; Zelaya, I.; Illmann, C.; Osiecki, L.; Darrow, S.M.; Hirschtritt, M.E.; et al. Interrogating the Genetic Determinants of Tourette’s Syndrome and Other Tic Disorders Through Genome-Wide Association Studies. Am. J. Psychiatry 2019, 176, 217–227. [Google Scholar] [CrossRef]
- Davis, L.K.; Yu, D.; Keenan, C.L.; Gamazon, E.R.; Konkashbaev, A.I.; Derks, E.M.; Neale, B.M.; Yang, J.; Lee, S.H.; Evans, P.; et al. Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture. PLoS Genet. 2013, 9, e1003864. [Google Scholar] [CrossRef] [PubMed]
- Mataix-Cols, D.; Isomura, K.; Pérez-Vigil, A.; Chang, Z.; Rück, C.; Larsson, K.J.; Leckman, J.F.; Serlachius, E.; Larsson, H.; Lichtenstein, P. Familial Risks of Tourette Syndrome and Chronic Tic Disorders. A Population-Based Cohort Study. JAMA Psychiatry 2015, 72, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Selvini, C.; Cavanna, S.; Cavanna, A. Gilles de La Tourette Syndrome. In Chromatin Signaling and Neurological Disorders; Academic Press: Cambridge, MA, USA, 2019; pp. 331–345. ISBN 978-0-12-813796-3. [Google Scholar]
- Levine, J.L.S.; Szejko, N.; Bloch, M.H. Meta-Analysis: Adulthood Prevalence of Tourette Syndrome. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 95, 109675. [Google Scholar] [CrossRef] [PubMed]
- Paschou, P. The Genetic Basis of Gilles de La Tourette Syndrome. Neurosci. Biobehav. Rev. 2013, 37, 1026–1039. [Google Scholar] [CrossRef]
- Pagliaroli, L.; Vető, B.; Arányi, T.; Barta, C. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. Front. Neurosci. 2016, 10, 277. [Google Scholar] [CrossRef]
- Qi, Y.; Zheng, Y.; Li, Z.; Liu, Z.; Xiong, L. Genetic Studies of Tic Disorders and Tourette Syndrome. Methods Mol. Biol. 2019, 2011, 547–571. [Google Scholar] [CrossRef]
- Georgitsi, M.; Willsey, A.J.; Mathews, C.A.; State, M.; Scharf, J.M.; Paschou, P. The Genetic Etiology of Tourette Syndrome: Large-Scale Collaborative Efforts on the Precipice of Discovery. Front. Neurosci. 2016, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Widomska, J.; De Witte, W.; Buitelaar, J.K.; Glennon, J.C.; Poelmans, G. Molecular Landscape of Tourette’s Disorder. Int. J. Mol. Sci. 2023, 24, 1428. [Google Scholar] [CrossRef] [PubMed]
- Tsetsos, F.; Yu, D.; Sul, J.H.; Huang, A.Y.; Illmann, C.; Osiecki, L.; Darrow, S.M.; Hirschtritt, M.E.; Greenberg, E.; Muller-Vahl, K.R.; et al. Synaptic Processes and Immune-Related Pathways Implicated in Tourette Syndrome. Transl. Psychiatry 2021, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, Y.; Abdulkadir, M.; Deng, L.; Fernandez, T.V.; Garcia-Delgar, B.; Hagstrøm, J.; Hoekstra, P.J.; King, R.A.; Koesterich, J.; et al. Whole-Exome Sequencing Identifies Genes Associated with Tourette’s Disorder in Multiplex Families. Mol. Psychiatry 2021, 26, 6937–6951. [Google Scholar] [CrossRef] [PubMed]
- Willsey, A.J.; Fernandez, T.V.; Yu, D.; King, R.A.; Dietrich, A.; Xing, J.; Sanders, S.J.; Mandell, J.D.; Huang, A.Y.; Richer, P.; et al. De Novo Coding Variants Are Strongly Associated with Tourette Disorder. Neuron 2017, 94, 486–499.e9. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Anttila, V.; Won, H.; Feng, Y.-C.A.; Rosenthal, J.; Zhu, Z.; Tucker-Drob, E.M.; Nivard, M.G.; Grotzinger, A.D.; Posthuma, D.; et al. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 2019, 179, 1469–1482.e11. [Google Scholar] [CrossRef]
- Abdulkadir, M.; Mathews, C.A.; Scharf, J.M.; Yu, D.; Tischfield, J.A.; Heiman, G.A.; Hoekstra, P.J.; Dietrich, A. Polygenic Risk Scores Derived From a Tourette Syndrome Genome-Wide Association Study Predict Presence of Tics in the Avon Longitudinal Study of Parents and Children Cohort. Biol. Psychiatry 2019, 85, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.C.; Uribe-Salazar, J.M.; Shew, C.J.; Sekar, A.; McGinty, S.P.; Dennis, M.Y. Genomic Structural Variation: A Complex but Important Driver of Human Evolution. Am. J. Biol. Anthropol. 2023, 181 (Suppl. S76), 118–144. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.J.; Quigley, C.; McNicholas, Á.; Lisanti, L.; Gallagher, L. A Review of the Cognitive Impact of Neurodevelopmental and Neuropsychiatric Associated Copy Number Variants. Transl. Psychiatry 2023, 13, 116. [Google Scholar] [CrossRef]
- Fichna, J.P.; Borczyk, M.; Piechota, M.; Korostynski, M.; Zekanowski, C.; Janik, P. Genomic Variants and Inferred Biological Processes in Multiplex Families with Tourette Syndrome. J. Psychiatry Neurosci. 2023, 48, E179–E189. [Google Scholar] [CrossRef]
- Anna, A.; Monika, G. Splicing Mutations in Human Genetic Disorders: Examples, Detection, and Confirmation. J. Appl. Genet. 2018, 59, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, A.L.; Bubb, V.J.; Quinn, J.P.; Koks, S. A Genome-Wide Screen for the Exonisation of Reference SINE-VNTR-Alus and Their Expression in CNS Tissues of Individuals with Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 11548. [Google Scholar] [CrossRef]
- Takata, A. Estimating Contribution of Rare Non-Coding Variants to Neuropsychiatric Disorders. Psychiatry Clin. Neurosci. 2019, 73, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Maeyama, K.; Sakata, N.; Itoh, F.; Akatsu, R.; Nakata, M.; Katsu, Y.; Ikeno, S.; Togawa, Y.; Vo Nguyen, T.T.; et al. C18 ORF1, a Novel Negative Regulator of Transforming Growth Factor-β Signaling. J. Biol. Chem. 2014, 289, 12680–12692. [Google Scholar] [CrossRef]
- Zarrei, M.; Burton, C.L.; Engchuan, W.; Young, E.J.; Higginbotham, E.J.; MacDonald, J.R.; Trost, B.; Chan, A.J.S.; Walker, S.; Lamoureux, S.; et al. A Large Data Resource of Genomic Copy Number Variation across Neurodevelopmental Disorders. NPJ Genom. Med. 2019, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.K.; Kurlan, R.; Leckman, J. The Immunobiology of Tourette’s Disorder, Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus, and Related Disorders: A Way Forward. J. Child Adolesc. Psychopharmacol. 2010, 20, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Leckman, J.F.; King, R.A.; Gilbert, D.L.; Coffey, B.J.; Singer, H.S.; Dure, L.S.; Grantz, H.; Katsovich, L.; Lin, H.; Lombroso, P.J.; et al. Streptococcal Upper Respiratory Tract Infections and Exacerbations of Tic and Obsessive-Compulsive Symptoms: A Prospective Longitudinal Study. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 108–118.e3. [Google Scholar] [CrossRef] [PubMed]
- Bilousova, T.; Dang, H.; Xu, W.; Gustafson, S.; Jin, Y.; Wickramasinghe, L.; Won, T.; Bobarnac, G.; Middleton, B.; Tian, J.; et al. Major Histocompatibility Complex Class I Molecules Modulate Embryonic Neuritogenesis and Neuronal Polarization. J. Neuroimmunol. 2012, 247, 1–8. [Google Scholar] [CrossRef]
- Müller-Vahl, K.R.; Kaufmann, J.; Grosskreutz, J.; Dengler, R.; Emrich, H.M.; Peschel, T. Prefrontal and Anterior Cingulate Cortex Abnormalities in Tourette Syndrome: Evidence from Voxel-Based Morphometry and Magnetization Transfer Imaging. BMC Neurosci. 2009, 10, 47. [Google Scholar] [CrossRef]
- Bombeiro, A.L.; Hell, R.C.R.; Simões, G.F.; de Castro, M.V.; Oliveira, A.L.R. de Importance of Major Histocompatibility Complex of Class I (MHC-I) Expression for Astroglial Reactivity and Stability of Neural Circuits In Vitro. Neurosci. Lett. 2017, 647, 97–103. [Google Scholar] [CrossRef]
- Ardeniz, Ö.; Unger, S.; Onay, H.; Ammann, S.; Keck, C.; Cianga, C.; Gerçeker, B.; Martin, B.; Fuchs, I.; Salzer, U.; et al. Β2-Microglobulin Deficiency Causes a Complex Immunodeficiency of the Innate and Adaptive Immune System. J. Allergy Clin. Immunol. 2015, 136, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Valleix, S.; Gillmore, J.D.; Bridoux, F.; Mangione, P.P.; Dogan, A.; Nedelec, B.; Boimard, M.; Touchard, G.; Goujon, J.-M.; Lacombe, C.; et al. Hereditary Systemic Amyloidosis Due to Asp76Asn Variant Β2-Microglobulin. N. Engl. J. Med. 2012, 366, 2276–2283. [Google Scholar] [CrossRef] [PubMed]
- Lüleyap, H.; Karacaoğlan, G.; Tahiroğlu, A.; Yaman, A.; Pazarci, P.; Çetiner, S.; Alptekin, D.; Sertdemir, Y.; Evyapan, G.; Lüleyap, D. Determination of the Relationship between Major Histocompatibility Complex Alleles Andchildhood Onset Obsessive-Compulsive Disorder. Turk. J. Med. Sci. 2022, 52, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Three Cases with Chronic Obsessive Compulsive Disorder Report Gains in Wellbeing and Function Following Rituximab Treatment. Available online: https://www.researchsquare.com (accessed on 31 January 2024).
- Rajendram, R. Identification of Causal Rare Variants in an Extended Pedigree with Obsessive-Compulsive Disorder. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2014. [Google Scholar]
- Poot, M.; Beyer, V.; Schwaab, I.; Damatova, N.; Van’t Slot, R.; Prothero, J.; Holder, S.E.; Haaf, T. Disruption of CNTNAP2 and Additional Structural Genome Changes in a Boy with Speech Delay and Autism Spectrum Disorder. Neurogenetics 2010, 11, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Pagliaroli, L. Genetic, Epigenetic and Transcriptome Studies of Tourette Syndrome and Tic Disorders. Ph.D. Thesis, Semmelweis University, Budapest, Hungary, 2019. [Google Scholar]
- Millar, J.K.; Wilson-Annan, J.C.; Anderson, S.; Christie, S.; Taylor, M.S.; Semple, C.A.; Devon, R.S.; St Clair, D.M.; Muir, W.J.; Blackwood, D.H.; et al. Disruption of Two Novel Genes by a Translocation Co-Segregating with Schizophrenia. Hum. Mol. Genet. 2000, 9, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, A.; Kubo, K.; Tomoda, T.; Takaki, M.; Youn, R.; Ozeki, Y.; Sawamura, N.; Park, U.; Kudo, C.; Okawa, M.; et al. A Schizophrenia-Associated Mutation of DISC1 Perturbs Cerebral Cortex Development. Nat. Cell Biol. 2005, 7, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Khoja, S.; Haile, M.T.; Chen, L.Y. Advances in Neurexin Studies and the Emerging Role of Neurexin-2 in Autism Spectrum Disorder. Front. Mol. Neurosci. 2023, 16, 1125087. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Jafari Khamirani, H.; Dara, M.; Dianatpour, M. NRXN3 Mutations Cause Developmental Delay, Movement Disorder, and Behavioral Problems: CRISPR Edited Cells Based WES Results. Gene 2023, 867, 147347. [Google Scholar] [CrossRef]
- Breedveld, G.J.; Fabbrini, G.; Oostra, B.A.; Berardelli, A.; Bonifati, V. Tourette Disorder Spectrum Maps to Chromosome 14q31.1 in an Italian Kindred. Neurogenetics 2010, 11, 417–423. [Google Scholar] [CrossRef]
- Vaags, A.K.; Lionel, A.C.; Sato, D.; Goodenberger, M.; Stein, Q.P.; Curran, S.; Ogilvie, C.; Ahn, J.W.; Drmic, I.; Senman, L.; et al. Rare Deletions at the Neurexin 3 Locus in Autism Spectrum Disorder. Am. J. Hum. Genet. 2012, 90, 133–141. [Google Scholar] [CrossRef]
- Nag, A.; Bochukova, E.G.; Kremeyer, B.; Campbell, D.D.; Muller, H.; Valencia-Duarte, A.V.; Cardona, J.; Rivas, I.C.; Mesa, S.C.; Cuartas, M.; et al. CNV Analysis in Tourette Syndrome Implicates Large Genomic Rearrangements in COL8A1 and NRXN1. PLoS ONE 2013, 8, e59061. [Google Scholar] [CrossRef] [PubMed]
- Tourette Syndrome Association International Consortium for Genetics. Genome Scan for Tourette Disorder in Affected-Sibling-Pair and Multigenerational Families. Am. J. Hum. Genet. 2007, 80, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Santistevan, N.J.; Nelson, J.C.; Ortiz, E.A.; Miller, A.H.; Kenj Halabi, D.; Sippl, Z.A.; Granato, M.; Grinblat, Y. Cacna2d3, a Voltage-Gated Calcium Channel Subunit, Functions in Vertebrate Habituation Learning and the Startle Sensitivity Threshold. PLoS ONE 2022, 17, e0270903. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.A.; Lee, S.; Eapen, V. Pathogenetic Model for Tourette Syndrome Delineates Overlap with Related Neurodevelopmental Disorders Including Autism. Transl. Psychiatry 2012, 2, e158. [Google Scholar] [CrossRef]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.-H.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef]
- Shao, W.; Zheng, H.; Zhu, J.; Li, W.; Li, Y.; Hu, W.; Zhang, J.; Jing, L.; Wang, K.; Jiang, X. Deletions of Cacna2d3 in Parvalbumin-Expressing Neurons Leads to Autistic-like Phenotypes in Mice. Neurochem. Int. 2023, 169, 105569. [Google Scholar] [CrossRef]
- Pirone, A.; Kurt, S.; Zuccotti, A.; Rüttiger, L.; Pilz, P.; Brown, D.H.; Franz, C.; Schweizer, M.; Rust, M.B.; Rübsamen, R.; et al. A2δ3 Is Essential for Normal Structure and Function of Auditory Nerve Synapses and Is a Novel Candidate for Auditory Processing Disorders. J. Neurosci. 2014, 34, 434–445. [Google Scholar] [CrossRef]
- Yang, L.; Neale, B.M.; Liu, L.; Lee, S.H.; Wray, N.R.; Ji, N.; Li, H.; Qian, Q.; Wang, D.; Li, J.; et al. Polygenic Transmission and Complex Neuro Developmental Network for Attention Deficit Hyperactivity Disorder: Genome-Wide Association Study of Both Common and Rare Variants. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162, 419–430. [Google Scholar] [CrossRef]
- Ren, C.; Liang, Y.; Wei, F.; Zhang, Y.; Zhong, S.; Gu, H.; Dong, X.; Huang, Y.; Ke, H.; Son, X.; et al. Balanced Translocation t(3;18)(P13;Q22.3) and Points Mutation in the ZNF407 Gene Detected in Patients with Both Moderate Non-Syndromic Intellectual Disability and Autism. Biochim. Biophys. Acta 2013, 1832, 431–438. [Google Scholar] [CrossRef]
- Costas, J.; Carrera, N.; Alonso, P.; Gurriarán, X.; Segalàs, C.; Real, E.; López-Solà, C.; Mas, S.; Gassó, P.; Domènech, L.; et al. Exon-Focused Genome-Wide Association Study of Obsessive-Compulsive Disorder and Shared Polygenic Risk with Schizophrenia. Transl. Psychiatry 2016, 6, e768. [Google Scholar] [CrossRef]
- Girirajan, S.; Brkanac, Z.; Coe, B.P.; Baker, C.; Vives, L.; Vu, T.H.; Shafer, N.; Bernier, R.; Ferrero, G.B.; Silengo, M.; et al. Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes. PLOS Genet. 2011, 7, e1002334. [Google Scholar] [CrossRef] [PubMed]
- Luan, Z.; Zhang, Y.; Lu, T.; Ruan, Y.; Zhang, H.; Yan, J.; Li, L.; Sun, W.; Wang, L.; Yue, W.; et al. Positive Association of the Human STON2 Gene with Schizophrenia. Neuroreport 2011, 22, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Kononenko, N.L.; Diril, M.K.; Puchkov, D.; Kintscher, M.; Koo, S.J.; Pfuhl, G.; Winter, Y.; Wienisch, M.; Klingauf, J.; Breustedt, J.; et al. Compromised Fidelity of Endocytic Synaptic Vesicle Protein Sorting in the Absence of Stonin 2. Proc. Natl. Acad. Sci. USA 2013, 110, E526–E535. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.E.; Suter, D.M. An Integrated Cytoskeletal Model of Neurite Outgrowth. Front. Cell. Neurosci. 2018, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Kalanithi, P.S.A.; Zheng, W.; Kataoka, Y.; DiFiglia, M.; Grantz, H.; Saper, C.B.; Schwartz, M.L.; Leckman, J.F.; Vaccarino, F.M. Altered Parvalbumin-Positive Neuron Distribution in Basal Ganglia of Individuals with Tourette Syndrome. Proc. Natl. Acad. Sci. USA 2005, 102, 13307–13312. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Kalanithi, P.S.A.; Grantz, H.; Schwartz, M.L.; Saper, C.; Leckman, J.F.; Vaccarino, F.M. Decreased Number of Parvalbumin and Cholinergic Interneurons in the Striatum of Individuals with Tourette Syndrome. J. Comp. Neurol. 2010, 518, 277–291. [Google Scholar] [CrossRef]
- Bloch, M.H.; Leckman, J.F.; Zhu, H.; Peterson, B.S. Caudate Volumes in Childhood Predict Symptom Severity in Adults with Tourette Syndrome. Neurology 2005, 65, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Reiner, O.; Karzbrun, E.; Kshirsagar, A.; Kaibuchi, K. Regulation of Neuronal Migration, an Emerging Topic in Autism Spectrum Disorders. J. Neurochem. 2016, 136, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Hickman, T.T.; Hashimoto, K.; Liberman, L.D.; Liberman, M.C. Synaptic Migration and Reorganization after Noise Exposure Suggests Regeneration in a Mature Mammalian Cochlea. Sci. Rep. 2020, 10, 19945. [Google Scholar] [CrossRef]
- Visser, E.; Zwiers, M.P.; Kan, C.C.; Hoekstra, L.; van Opstal, A.J.; Buitelaar, J.K. Atypical Vertical Sound Localization and Sound-Onset Sensitivity in People with Autism Spectrum Disorders. J. Psychiatry Neurosci. 2013, 38, 398–406. [Google Scholar] [CrossRef]
- Neal, M.; Cavanna, A.E. Selective Sound Sensitivity Syndrome (Misophonia) in a Patient with Tourette Syndrome. J. Neuropsychiatry Clin. Neurosci. 2013, 25, E01. [Google Scholar] [CrossRef] [PubMed]
- Webber, T.A.; Johnson, P.L.; Storch, E.A. Pediatric Misophonia with Comorbid Obsessive-Compulsive Spectrum Disorders. Gen. Hosp. Psychiatry 2014, 36, 231.e1–231.e2. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Storti, S.; Lukose, R.; Jr, R.J.K. Structural and Functional Aberrations of the Auditory Brainstem in Autism Spectrum Disorder. J. Osteopath. Med. 2019, 119, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.D.; Fast, D.K.; Burd, L.; Kerbeshian, J.; Robertson, M.M.; Sandor, P. An International Perspective on Tourette Syndrome: Selected Findings from 3,500 Individuals in 22 Countries. Dev. Med. Child Neurol. 2000, 42, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, J.; Grochowalski, Ł.; Marciniak, B.; Lach, J.; Słomka, M.; Sobalska-Kwapis, M.; Lorkiewicz, W.; Pułaski, Ł.; Strapagiel, D. Mitochondrial DNA Variability of the Polish Population. Eur. J. Hum. Genet. 2019, 27, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Leońska-Duniec, A.; Borczyk, M.; Korostyński, M.; Massidda, M.; Maculewicz, E.; Cięszczyk, P. Genetic Variants in Myostatin and Its Receptors Promote Elite Athlete Status. BMC Genom. 2023, 24, 761. [Google Scholar] [CrossRef] [PubMed]
- Szejko, N.; Fichna, J.P.; Safranow, K.; Dziuba, T.; Żekanowski, C.; Janik, P. Association of a Variant of CNR1 Gene Encoding Cannabinoid Receptor 1 with Gilles de La Tourette Syndrome. Front. Genet. 2020, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020. [Google Scholar]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Chiliński, M.; Plewczynski, D. ConsensuSV-from the Whole-Genome Sequencing Data to the Complete Variant List. Bioinformatics 2022, 38, 5440–5442. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
Position (GRCh38) | Type of Variant | Gene | Location | MAF % Controls | MAF % GnomAd | Family, P(obs) 1 |
---|---|---|---|---|---|---|
chr15:44715700-44717603 | deletion | B2M | partially exon 2, intron 2, exon 3, partially intron 3 | 0 | 0 | Y, 0.0012 |
chr19:53410124-53411474 | deletion | ZNF765 | non-coding exon 4, 3′UTR | 0 | 0 | I, 0.0024 |
chr1:215623423-215623500 | deletion | USH2A | non-coding exon 72, 3′UTR | 0.98 (1/102) | 0 | T, 0.0049 |
chr18:13647104-13647595 | deletion | LDLRAD4 | within exon 7 | 0.98 (1/102) | 0 | J, 0.0097 |
Position (GRCh38) | Type of Variant | Gene | Location | MAF % Controls | MAF % GnomAd | Family, P(obs) 1 |
---|---|---|---|---|---|---|
chr13:113565350-113565735 | deletion | intergenic | 0 | 0 | A, G, 0.0245 | |
chr15:43793040-43793706 | deletion | SERF2 | intron 2 | 0 | 0 | G, Y 0.0123 |
chr2:13096390 | 55 bp insertion | ARHGEF4 | intron 5 | 0 | 0 | G, I, 0.0245 |
chr2:239642701-239643095 | duplication | intergenic | 0.98 (1/102) | 0 | G, I, 0.0208 | |
chr9:86053691 | 169 bp insertion | GOLM1 | intron 3 | 0.98 (1/102) | 0 | A, G, X 0.0026 |
chr12:120352608-120352795 | deletion | MSI1 | intron 10 | 1.96 (2/102) | 0 | J, R 0.0208 |
chr14:23717651-23718119 | deletion | ENSG 00000258464 | intron 3 | 1.96 (2/102) | 0 | I, R 0.0104 |
chr7:1295300-1295559 | deletion | intergenic | 1.96 (2/102) | 0 | G, H 0.0833 | |
chr11:69846056-69846309 | deletion | intergenic | 2.94 (3/102) | 0 | B, T 0.0078 | |
chr11:76170834 | 60 bp insertion | intergenic | 2.94 (3/102) | 0 | A, D, I 0.00004 | |
chr16:88401466-88401928 | duplication | ZNF469 2 | intron 1 | 2.94 (3/102) | 0 | G, I 0.0625 |
chr1: 231733094 | 51 bp insertion | DISC1 | intron 3 | 3.92 (4/102) | 0 | D, G, R 0.0005 |
chr15:55363346-55364831 | deletion | CCPG1 | intron 7 | 4.90 (5/102) | 0 | R, X 0.1041 |
chr18:28521456-28521598 | deletion | intergenic | 4.90 (5/102) | 0 | E, G 0.1041 | |
chr4:111086681-111087298- | inversion | ENSG 00000288692 | intron | 4.90 (5/102) | 0 | I, X 0.052 |
chr6:29931995-29933749 | deletion | intergenic | 4.90 (5/102) | 0 | G, X 0.2083 |
Term ID | Description | LogP | Genes in Which Variants Were Found: |
---|---|---|---|
GO:1900242 | regulation of synaptic vesicle endocytosis | −5.691 | AGRN, ARHGEF4, PRKN, ROCK1, SNX9, PTK2, RNF139, TJP1, B2M, S100A8, CD74, ZFYVE28, SERF2 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | −4.759 | ROCK1, PTK2, TJP1, ITGA8, COL4A1, TRAK1, NRXN3, ARHGEF4, SNX9, PRKN, B2M, S100A8, AGRN |
GO:0031252 | cell leading edge | −4.613 | PSD3, ARHGEF4, DOCK8, ITGA8, SNX9, ROCK1 |
GO:0031648 | protein destabilization | −4.424 | RNF139, PRKN, PTK2, SNX9, S100A8, ROCK1, SERF2 |
R-HSA-375165 | NCAM signaling for neurite outgrowth | −4.096 | ARHGEF4, COL4A1, AGRN, ITGA8, PTK2, ROCK1, PRKN |
GO:0007611 | learning or memory | −3.316 | NRXN3, ITGA8, B2M, PRKN, TJP1, PTK2, SNX9, ROCK1, S100A8 |
GO:0045785 | positive regulation of cell adhesion | −3.315 | CD74, B2M, DOCK8, PTK2, TJP1, COPB1, SNX9, SORCS2, PRMT8, DNAJC24, ROCK1 |
GO:0030135 | coated vesicle | −3.113 | CD74, B2M, COPB1, SNX9, SORCS2 |
GO:0043197 | dendritic spine | −2.825 | SORCS2, ITGA8, PTK2, TRAK1, PRKN |
GO:0019904 | protein domain specific binding | −2.797 | ARHGEF4, PRKN, PTK2, KHDRBS2, TRAK1 |
GO:0043484 | regulation of RNA splicing | −2.734 | SUPT3H, SRRM4, KHDRBS2 |
GO:2001242 | regulation of intrinsic apoptotic signaling pathway | −2.694 | PRKN, S100A8, CD74, AGRN |
R-HSA-9679506 | SARS-CoV Infections | −2.672 | B2M, TJP1, CD74, AGRN, ROCK1, PRMT8, DNAJC24, PTK2 |
GO:0043549 | regulation of kinase activity | −2.272 | PTK2, SNX9, CD74, PRKN, AGRN, TRAK1 |
Term ID | Description | LogP | Genes in Which Variants Were Found: |
---|---|---|---|
GO:0031256 | leading edge membrane | −4.057 | ARHGEF4, PSD3, USH2A |
GO:0051098 | regulation of binding | −3.645 | B2M, CCPG1, DISC1 |
GO:0098793 | presynapse | −2.611 | DISC1, EYS, NRXN3, USH2A |
GO:0045596 | negative regulation of cell differentiation | −2.285 | B2M, LDLRAD4, USH2A |
Family Code | Genomes (n = 124) [Males/Females] | GTS (n = 40) | Non-GTS TD (n = 40) | Cosegregation Probability | Healthy (n = 44) |
---|---|---|---|---|---|
A | 7 [4/3] | 3 | 1 | 0.0625 | 3 |
B | 8 [5/3] | 3 | 2 | 0.0156 | 3 |
C | 9 [4/5] | 2 | 4 | 0.0078 | 3 |
D | 7 [5/2] | 2 | 2 | 0.0156 | 3 |
E | 7 [4/3] | 2 | 2 | 0.0625 | 3 |
F | 11 [7/4] | 4 | 4 | 0.0078 | 3 |
G | 4 [2/2] | 1 | 2 | 0.250 | 1 |
H | 6 [4/2] | 2 | 3 | 0.125 or 0.125 * | 1 |
I | 6 [4/2] | 2 | 2 | 0.0625 | 2 |
J | 5 [2/3] | 1 | 2 | 0.250 | 2 |
R | 6 [4/2] | 1 | 3 | 0.125 | 2 |
S | 6 [2/4] | 4 | 0 | 0.125 | 2 |
T | 9 [4/5] | 2 | 3 | 0.125 or 0.250 * | 4 |
U | 6 [5/1] | 2 | 2 | 0.0625 | 2 |
W | 14 [7/7] | 4 | 4 | 0.000976 | 6 |
X | 5 [2/3] | 2 | 1 | 0.125 | 2 |
Y | 8 [4/4] | 3 | 3 | 0.03125 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fichna, J.P.; Chiliński, M.; Halder, A.K.; Cięszczyk, P.; Plewczynski, D.; Żekanowski, C.; Janik, P. Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. Int. J. Mol. Sci. 2024, 25, 5758. https://doi.org/10.3390/ijms25115758
Fichna JP, Chiliński M, Halder AK, Cięszczyk P, Plewczynski D, Żekanowski C, Janik P. Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. International Journal of Molecular Sciences. 2024; 25(11):5758. https://doi.org/10.3390/ijms25115758
Chicago/Turabian StyleFichna, Jakub P., Mateusz Chiliński, Anup Kumar Halder, Paweł Cięszczyk, Dariusz Plewczynski, Cezary Żekanowski, and Piotr Janik. 2024. "Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome" International Journal of Molecular Sciences 25, no. 11: 5758. https://doi.org/10.3390/ijms25115758
APA StyleFichna, J. P., Chiliński, M., Halder, A. K., Cięszczyk, P., Plewczynski, D., Żekanowski, C., & Janik, P. (2024). Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. International Journal of Molecular Sciences, 25(11), 5758. https://doi.org/10.3390/ijms25115758