The Association between Genetics and Response to Treatment with Biologics in Patients with Psoriasis, Psoriatic Arthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods and Materials
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Statistics
3. Results
3.1. Association between SNPs and Response to Biologics in Psoriasis
3.1.1. Association between SNPs and Response to TNFi in Psoriasis
3.1.2. Association between SNPs and Response to IL-12/-23i in Psoriasis
3.1.3. Association between SNPs and Response to IL-17i in Psoriasis
3.2. Association between SNPs and Response to Biologics in Psoriatic Arthritis
3.3. Association between SNPs and Response to Biologics in Rheumatoid Arthritis
3.3.1. Association between SNPs and Response to TNFi in Rheumatoid Arthritis
3.3.2. Association between SNPs and Response to Rituximab in Rheumatoid Arthritis
3.3.3. Association between SNPs and Response to Tocilizumab in Rheumatoid Arthritis
3.3.4. Association between SNPs and Response to IL-1Ri in Rheumatoid Arthritis
3.3.5. Association between SNPs and Response to Abatacept in Rheumatoid Arthritis
3.4. Association between SNPs and Response to Biologics in Inflammatory Bowel Diseases
3.4.1. Association between SNPs and Response to TNFi in Inflammatory Bowel Diseases
3.4.2. Association between SNPs and Response to IL-12/-23i in Inflammatory Bowel Diseases
3.5. Association between SNPs and Response to Biologics for All Chronic Inflammatory Diseases Together
4. Discussion
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
ACR | American College of Rheumatology |
bDMARDs | biologic disease-modifying anti-rheumatic drugs |
CAI | clinical activity index |
CD | Crohn’s disease |
CD-20 | cluster of differentiate-20 |
CDAI | Crohn’s Disease Activity Index |
CRP | C-reactive protein |
DMARDs | disease-modifying anti-rheumatic drugs |
DAS28 | disease activity score 28 joints |
EULAR | European League Against Rheumatism |
HBI | Harvey–Bradshaw index |
HLA | human leukocyte antigen |
IBD | inflammatory bowel disease |
IBDQ | Inflammatory Bowel Disease Questionnaire |
IFN-γ | Interferon-γ |
IL-17 | Interleukin-17 |
IL12/23i | Interleukin-12/23-inhibitor |
NCBI | National Center of Biotechnology Information |
NIH | National Institute of Health |
OR (95%) CI | odds ratio (95% Confidence interval) |
PASI | psoriasis area and severity index |
PRISMA | Preferred Reporting Items for systematic Reviews and Meta-analyses |
PsA | psoriatic arthritis |
PUCAI | Pediatric Ulcerative Colitis Activity Index |
RA | rheumatoid arthritis |
SNP | single nucleotide polymorphism |
Th-cell | T-helper-cell |
TNF-α | tumor necrosis factor-α |
TNFi | tumor necrosis factor-inhibitor |
UC | ulcerative colitis |
References
- Parisi, R.; Symmons, D.P.M.; Griffiths, C.E.; Ashcroft, D.M.; on behalf of the Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) Project Team. Global Epidemiology of Psoriasis: A Systematic Review of Incidence and Prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Scotti, L.; Franchi, M.; Marchesoni, A.; Corrao, G. Prevalence and incidence of psoriatic arthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2018, 48, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.W.; Barrett, J.C.; Parkes, M.; Satsangi, J. New IBD genetics: Common pathways with other diseases. Gut 2011, 60, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Begovich, A.B. Unraveling the genetics of complex diseases: Susceptibility genes for rheumatoid arthritis and psoriasis. Semin. Immunol. 2009, 21, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.P.; Schett, G.P. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 2017, 389, 2328–2337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Li, Y.-Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J. Role of Th17 Cells in the Pathogenesis of Human IBD. ISRN Inflamm. 2014, 2014, 928461. [Google Scholar] [CrossRef] [PubMed]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [PubMed]
- Langer, V.; Vivi, E.; Regensburger, D.; Winkler, T.H.; Waldner, M.J.; Rath, T.; Schmid, B.; Skottke, L.; Lee, S.; Jeon, N.L.; et al. IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin–directed vascular barrier disruption. J. Clin. Investig. 2019, 129, 4691–4707. [Google Scholar] [CrossRef] [PubMed]
- Schurich, A.; Raine, C.; Morris, V.; Ciurtin, C. The role of IL-12/23 in T cell-related chronic inflammation: Implications of immunodeficiency and therapeutic blockade. Rheumatology 2018, 57, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zheng, Y.; Chen, X. Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics. Front. Pharmacol. 2017, 8, 460. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.H.; Ainsworth, M.A.; Nielsen, O.H.; Ainsworth, M.A. Tumor Necrosis Factor Inhibitors for Inflammatory Bowel Disease. New Engl. J. Med. 2013, 369, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet 2007, 370, 1861–1874. [Google Scholar] [CrossRef] [PubMed]
- Honap, S.; Meade, S.; Ibraheim, H.; Irving, P.M.; Jones, M.P.; Samaan, M.A. Effectiveness and Safety of Ustekinumab in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2021, 67, 1018–1035. [Google Scholar] [CrossRef] [PubMed]
- Thatiparthi, A.; Martin, A.; Liu, J.; Egeberg, A.; Wu, J.J. Biologic Treatment Algorithms for Moderate-to-Severe Psoriasis with Comorbid Conditions and Special Populations: A Review. Am. J. Clin. Dermatol. 2021, 22, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Geale, K.; Lindberg, I.; Paulsson, E.C.; Wennerström, E.C.M.; Tjärnlund, A.; Noel, W.; Enkusson, D.; Theander, E. Persistence of biologic treatments in psoriatic arthritis: A population-based study in Sweden. Rheumatol. Adv. Pract. 2020, 4, rkaa070. [Google Scholar] [CrossRef] [PubMed]
- Nast, A.; Jacobs, A.; Rosumeck, S.; Werner, R.N. Efficacy and Safety of Systemic Long-Term Treatments for Moderate-to-Severe Psoriasis: A Systematic Review and Meta-Analysis. J. Investig. Dermatol. 2015, 135, 2641–2648. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.K.; Jones, G.-R.; Plevris, N.; Lynch, R.W.; Jenkinson, P.W.; Lees, C.W.; A Manship, T.; Jagger, F.A.M.; Brindle, W.M.; Shivakumar, M.; et al. The ACE (Albumin, CRP and Endoscopy) Index in Acute Colitis: A Simple Clinical Index on Admission that Predicts Outcome in Patients With Acute Ulcerative Colitis. Inflamm. Bowel Dis. 2020, 27, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Baert, F.; Casteele, N.V.; Tops, S.; Noman, M.; Van Assche, G.; Rutgeerts, P.; Gils, A.; Vermeire, S.; Ferrante, M. Prior response to infliximab and early serum drug concentrations predict effects of adalimumab in ulcerative colitis. Aliment. Pharmacol. Ther. 2014, 40, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Enevold, C.; Loft, N.; Bregnhøj, A.; Zachariae, C.; Iversen, L.; Skov, L.; Nielsen, C.H. Circulating Brodalumab Levels and Therapy Outcomes in Patients With Psoriasis Treated With Brodalumab. JAMA Dermatol. 2022, 158, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Loft, N.; Bregnhoj, A.; Fage, S.; Nielsen, C.H.; Enevold, C.; Zachariae, C.; Iversen, L.; Skov, L. Effectiveness of brodalumab after previous treatment failure of interleukin-17A inhibitors in patients with psoriasis. Dermatol. Ther. 2021, 34, e15106. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.S.B.; Kvist-Hansen, A.; Siewertsen, M.; Enevold, C.; Hansen, P.R.; Kaur-Knudsen, D.; Zachariae, C.; Nielsen, C.H.; Loft, N.; Skov, L. Blood Cell Biomarkers of Inflammation and Cytokine Levels as Predictors of Response to Biologics in Patients with Psoriasis. Int. J. Mol. Sci. 2023, 24, 6111. [Google Scholar] [CrossRef] [PubMed]
- Loft, N.D.; Skov, L.; Iversen, L.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenomics J. 2017, 18, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Conigliaro, P.; Ciccacci, C.; Politi, C.; Triggianese, P.; Rufini, S.; Kroegler, B.; Perricone, C.; Latini, A.; Novelli, G.; Borgiani, P.; et al. Polymorphisms in STAT4, PTPN2, PSORS1C1 and TRAF3IP2 Genes Are Associated with the Response to TNF Inhibitors in Patients with Rheumatoid Arthritis. PLoS ONE 2017, 12, e0169956. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Montoro, M.; Cañadas-Garre, M.; González-Utrilla, A.; Plaza-Plaza, J.C.; Calleja-Hernández, M. Genetic and clinical biomarkers of tocilizumab response in patients with rheumatoid arthritis. Pharmacol. Res. 2016, 111, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D. Association of rs1568885, rs1813443 and rs4411591 polymorphisms with anti-TNF medication response in Greek patients with Crohn’s disease. World J. Gastroenterol. 2014, 20, 3609–3614. [Google Scholar] [CrossRef] [PubMed]
- Julià, A.; Fernandez-Nebro, A.; Blanco, F.; Ortiz, A.; Cañete, J.D.; Maymó, J.; Alperi-López, M.; Fernández-Gutierrez, B.; Olivè, A.; Corominas, H.; et al. A genome-wide association study identifies a new locus associated with the response to anti-TNF therapy in rheumatoid arthritis. Pharmacogenomics J. 2015, 16, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Swierkot, J.; Bogunia-Kubik, K.; Nowak, B.; Bialowas, K.; Korman, L.; Gebura, K.; Kolossa, K.; Jeka, S.; Wiland, P. Analysis of associations between polymorphisms within genes coding for tumour necrosis factor (TNF)-alpha and TNF receptors and responsiveness to TNF-alpha blockers in patients with rheumatoid arthritis. Jt. Bone Spine 2015, 82, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Andersen, P.S.; Burisch, J.; Pedersen, N.; Roug, S.; Galsgaard, J.; Turino, S.Y.; Brodersen, J.B.; Rashid, S.; Rasmussen, B.K.; et al. Associations between functional polymorphisms in the NFκB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenomics J. 2014, 14, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Benito, M.C.; Munoz-Aceituno, E.; Sabador, D.; Almoguera, B.; Prieto-Perez, R.; Hakonarson, H.; Coto-Segura, P.; Carretero, G.; Reolid, A.; Llamas-Velasco, M.; et al. Genome-wide association analysis of psoriasis patients treated with anti-TNF drugs. Exp. Dermatol. 2020, 29, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Solano-López, G.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Baniandrés, O.; López-Estebaranz, J.L.; de la Cueva, P.; Daudén, E.; et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics J. 2016, 18, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Siewertsen, M.; Al-Sofi, R.; Dridi, H.; Ajenthen, G.D.; Zachariae, C.; Skov, L.; Loft, N. Association between HLA-Cw6 and response to treatment with biologics in patients with psoriasis: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2023, 37, E611–E614. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Ovejero-Benito, M.C.; Prieto-Pérez, R.; Llamas-Velasco, M.; Belmonte, C.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Saiz-Rodríguez, M.; Daudén, E.; et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2017, 18, 631–638. [Google Scholar] [CrossRef] [PubMed]
- De Simone, C.; Farina, M.; Maiorino, A.; Fanali, C.; Perino, F.; Flamini, A.; Caldarola, G.; Sgambato, A. TNF-alpha gene polymorphisms can help to predict response to etanercept in psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1786–1790. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Cabaleiro, T.; Román, M.; Solano-López, G.; Abad-Santos, F.; García-Díez, A.; Daudén, E. The relationship between tumour necrosis factor (TNF)-α promoter andIL12B/IL-23Rgenes polymorphisms and the efficacy of anti-TNF-α therapy in psoriasis: A case-control study. Br. J. Dermatol. 2013, 169, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Hassan Hadi, A.M.; Abbas, A.A.H.; Abdulamir, A.S.; Fadheel, B.M. The effect of TnFaip3 gene polymorphism on disease susceptibility and response of etanercept in psoriatic patients. Eur. J. Mol. Clin. Med. 2020, 7, 240–246. [Google Scholar]
- Vasilopoulos, Y.; Manolika, M.; Zafiriou, E.; Sarafidou, T.; Bagiatis, V.; Krüger-Krasagaki, S.; Tosca, A.; Patsatsi, A.; Sotiriadis, D.; Mamuris, Z.; et al. Pharmacogenetic Analysis of TNF, TNFRSF1A, and TNFRSF1B Gene Polymorphisms and Prediction of Response to Anti-TNF Therapy in Psoriasis Patients in the Greek Population. Mol. Diagn. Ther. 2012, 16, 29–34. [Google Scholar] [CrossRef]
- Ito, M.; Hirota, T.; Momose, M.; Ito, T.; Umezawa, Y.; Fukuchi, O.; Asahina, A.; Nakagawa, H.; Tamari, M.; Saeki, H. Lack of association of TNFA, TNFRSF1B and TNFAIP3 gene polymorphisms with response to anti-tumor necrosis factor therapy in Japanese patients with psoriasis. J. Dermatol. 2019, 47, E110–E111. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Prieto-Pérez, R.; Llamas-Velasco, M.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Belmonte, C.; Román, M.; Ochoa, D.; Talegón, M.; et al. Polymorphisms associated with adalimumab and infliximab response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2018, 19, 7–16. [Google Scholar] [CrossRef] [PubMed]
- González-Lara, L.; Batalla, A.; Coto, E.; Gómez, J.; Eiris, N.; Santos-Juanes, J.; Queiro, R.; Coto-Segura, P. The TNFRSF1B rs1061622 polymorphism (p.M196R) is associated with biological drug outcome in Psoriasis patients. Arch. Dermatol. Res. 2014, 307, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.; Galluzzo, M.; Madonna, S.; Scarponi, C.; Scaglione, G.L.; Galluccio, T.; Andreani, M.; Pallotta, S.; Girolomoni, G.; Bianchi, L.; et al. HLA-Cw6 and other HLA-C alleles, as well as MICB-DT, DDX58, and TYK2 genetic variants associate with optimal response to anti-IL-17A treatment in patients with psoriasis. Expert Opin. Biol. Ther. 2020, 21, 259–270. [Google Scholar] [CrossRef] [PubMed]
- van Vugt, L.; Reek, J.v.D.; Meulewaeter, E.; Hakobjan, M.; Heddes, N.; Traks, T.; Kingo, K.; Galluzzo, M.; Talamonti, M.; Lambert, J.; et al. Response to IL-17A inhibitors secukinumab and ixekizumab cannot be explained by genetic variation in the protein-coding and untranslated regions of the IL-17A gene: Results from a multicentre study of four European psoriasis cohorts. J. Eur. Acad. Dermatol. Venereol. 2019, 34, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Morales-Lara, M.; Conesa-Zamora, P.; Simón, G.; Pedrero, F.; Santaclara, V.; Perez-Guillermo, M.; Soriano-Navarro, E. Association between theFCGR3AV158F polymorphism and the clinical response to infliximab in rheumatoid arthritis and spondyloarthritis patients. Scand. J. Rheumatol. 2010, 39, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Fernández-Sueiro, J.L.; López-Mejías, R.; Montilla, C.; Arias, M.; Moll, C.; Alsina, M.; Sanmarti, R.; Lozano, F.; Cañete, J.D. FCGR2A/CD32AandFCGR3A/CD16AVariants and EULAR Response to Tumor Necrosis Factor-α Blockers in Psoriatic Arthritis: A Longitudinal Study with 6 Months of Followup. J. Rheumatol. 2012, 39, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Gestal, M.; Perez-Pampin, E.; Calaza, M.; Gomez-Reino, J.J.; Gonzalez, A. Lack of replication of genetic predictors for the rheumatoid arthritis response to anti-TNF treatments: A prospective case-only study. Arthritis Res. Ther. 2010, 12, R72. [Google Scholar] [CrossRef] [PubMed]
- Krintel, S.B.; Palermo, G.; Johansen, J.S.; Germer, S.; Essioux, L.; Benayed, R.; Badi, L.; Østergaard, M.; Hetland, M.L. Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFα inhibitors in patients with rheumatoid arthritis. Pharmacogenetics Genom. 2012, 22, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Batliwalla, F.; Li, W.; Lee, A.; Roubenoff, R.; Beckman, E.; Khalili, H.; Damle, A.; Kern, M.; Furie, R.; et al. Genome-Wide Association Scan Identifies Candidate Polymorphisms Associated with Differential Response to Anti-TNF Treatment in Rheumatoid Arthritis. Mol. Med. 2008, 14, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Sode, J.; Vogel, U.; Bank, S.; Andersen, P.S.; Thomsen, M.K.; Hetland, M.L.; Locht, H.; Heegaard, N.H.H.; Andersen, V. Anti-TNF Treatment Response in Rheumatoid Arthritis Patients Is Associated with Genetic Variation in the NLRP3-Inflammasome. PLoS ONE 2014, 9, e100361. [Google Scholar] [CrossRef] [PubMed]
- Sode, J.; Vogel, U.; Bank, S.; Andersen, P.S.; Hetland, M.L.; Locht, H.; Heegaard, N.H.H.; Andersen, V. Confirmation of an IRAK3 polymorphism as a genetic marker predicting response to anti-TNF treatment in rheumatoid arthritis. Pharmacogenomics J. 2016, 18, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, R.; Perez-Pampin, E.; Marquez, A.; Blanco, F.J.; Joven, B.; Carreira, P.; Ferrer, M.A.; Caliz, R.; Valor, L.; Narvaez, J.; et al. Validation study of genetic biomarkers of response to TNF inhibitors in rheumatoid arthritis. PLoS ONE 2018, 13, e0196793. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.P.; Lee, K.W.; Yoo, D.H.; Bae, S.C. The influence of a polymorphism at position -857 of the tumour necrosis factor gene on clinical response to etanercept therapy in rheumatoid arthritis. Rheumatology 2005, 44, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Rooryck, C.; Barnetche, T.; Richez, C.; Laleye, A.; Arveiler, B.; Schaeverbeke, T. Influence of FCGR3A-V212F and TNFRSF1B-M196R genotypes in patients with rheumatoid arthritis treated with infliximab therapy. Clin. Exp. Rheumatol. 2008, 26, 340–342. [Google Scholar] [PubMed]
- Montes, A.; Perez-Pampin, E.; Joven, B.; Carreira, P.; Fernandez-Nebro, A.; del Carmen Ordonez, M.; Navarro-Sarabia, F.; Moreira, V.; Vasilopoulos, Y.; Sarafidou, T.; et al. FCGR polymorphisms in the treatment of rheumatoid arthritis with Fc-containing TNF inhibitors. Pharmacogenomics. 2015, 16, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Kastbom, A.; Bratt, J.; Ernestam, S.; Lampa, J.; Padyukov, L.; Söderkvist, P.; Skogh, T. Fcγ receptor type IIIA genotype and response to tumor necrosis factor α–blocking agents in patients with rheumatoid arthritis. Arthritis Rheum. 2007, 56, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Dávila-Fajardo, C.L.; Van Der Straaten, T.; Baak-Pablo, R.; Medarde Caballero, C.; Cabeza Barrera, J.; Huizinga, T.W.; Guchelaar, H.-J.; Swen, J.J. FcGR genetic polymorphisms and the response to adalimumab in patients with rheumatoid arthritis. Pharmacogenomics. 2015, 16, 373–381. [Google Scholar] [CrossRef]
- Canete, J.D.; Suarez, B.; Hernandez, M.V.; Sanmarti, R.; Rego, I.; Celis, R.; Moll, C.; A Pinto, J.; Blanco, F.J.; Lozano, F. Influence of variants of Fcγ receptors IIA and IIIA on the American College of Rheumatology and European League Against Rheumatism responses to anti-tumour necrosis factor α therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, S.; Ikari, K.; Sato, E.; Yamanaka, H.; Hara, M.; Tomatsu, T.; Momohara, S.; Kamatani, N.; Katsunori Ikari, K.; Institute of Rheumatology, Tokyo Women’s Medical University. A polymorphism in the gene encoding the Fc [GAMMA] IIIA receptor is a possible genetic marker to predict the primary response to infliximab in Japanese patients with rheumatoid arthritis. Ann Rheum Dis. 2008, 67, 1791. [Google Scholar] [CrossRef] [PubMed]
- Tutuncu, Z.; Kavanaugh, A.; Zvaifler, N.; Corr, M.; Deutsch, R.; Boyle, D. Fcγ receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor α–blocking agents. Arthritis Rheum. 2005, 52, 2693–2696. [Google Scholar] [CrossRef] [PubMed]
- Montes, A.; Perez-Pampin, E.; Narváez, J.; Cañete, J.D.; Navarro-Sarabia, F.; Moreira, V.; Fernández-Nebro, A.; Ordóñez, M.d.C.; de la Serna, A.R.; Magallares, B.; et al. Association of FCGR2A with the response to infliximab treatment of patients with rheumatoid arthritis. Pharmacogenetics Genom. 2014, 24, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Eektimmerman, F.; Swen, J.J.; Böhringer, S.; Huizinga, T.W.; Kooloos, W.M.; Allaart, C.F.; Guchelaar, H.-J.; I Danila, M.; Hughes, L.B.; Bridges, S.L.; et al. Pathway analysis to identify genetic variants associated with efficacy of adalimumab in rheumatoid arthritis. Pharmacogenomics 2017, 18, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Avila-Pedretti, G.; Tornero, J.; Fernández-Nebro, A.; Blanco, F.; González-Alvaro, I.; Cañete, J.D.; Maymó, J.; Alperiz, M.; Fernández-Gutiérrez, B.; Olivé, A.; et al. Variation at FCGR2A and Functionally Related Genes Is Associated with the Response to Anti-TNF Therapy in Rheumatoid Arthritis. PLoS ONE 2015, 10, e0122088. [Google Scholar] [CrossRef] [PubMed]
- Ruyssen-Witrand, A.; Rouanet, S.; Combe, B.; Dougados, M.; Le Loët, X.; Sibilia, J.; Tebib, J.; Mariette, X.; Constantin, A. Association between -871C>T promoter polymorphism in the B-cell activating factor gene and the response to rituximab in rheumatoid arthritis patients. Rheumatology 2012, 52, 636–641. [Google Scholar] [CrossRef]
- Fabris, M.; Quartuccio, L.; Vital, E.; Pontarini, E.; Salvin, S.; Fabro, C.; Zabotti, A.; Benucci, M.; Manfredi, M.; Ravagnani, V.; et al. The TTTT B lymphocyte stimulator promoter haplotype is associated with good response to rituximab therapy in seropositive rheumatoid arthritis resistant to tumor necrosis factor blockers. Arthritis Rheum. 2012, 65, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Kastbom, A.; Cöster, L.; Ärlestig, L.; Chatzidionysiou, A.; van Vollenhoven, R.F.; Padyukov, L.; Rantapää-Dahlqvist, S.; Saevarsdottir, S. Influence ofFCGR3Agenotype on the therapeutic response to rituximab in rheumatoid arthritis: An observational cohort study. BMJ Open 2012, 2, e001524. [Google Scholar] [CrossRef] [PubMed]
- Pál, I.; Szamosi, S.; Hodosi, K.; Szekanecz, Z.; Váróczy, L. Effect of Fcγ-receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. RMD Open 2017, 3, e000485. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.J.; Maldonado-Montoro, M.; de la Plata, J.E.M.; Ramirez, C.P.; Daddaoua, A.; Payer, C.A.; Exposito-Ruiz, M.; Collado, C.G. FCGR2A/FCGR3A Gene Polymorphisms and Clinical Variables as Predictors of Response to Tocilizumab and Rituximab in Patients With Rheumatoid Arthritis. J. Clin. Pharmacol. 2019, 59, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Quartuccio, L.; Fabris, M.; Pontarini, E.; Salvin, S.; Zabotti, A.; Benucci, M.; Manfredi, M.; Biasi, D.; Ravagnani, V.; Atzeni, F.; et al. The 158VV Fcgamma receptor 3A genotype is associated with response to rituximab in rheumatoid arthritis: Results of an Italian multicentre study. Ann. Rheum. Dis. 2013, 73, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Ruyssen-Witrand, A.; Rouanet, S.; Combe, B.; Dougados, M.; Le Loët, X.; Sibilia, J.; Tebib, J.; Mariette, X.; Constantin, A. Fcγ receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann. Rheum. Dis. 2012, 71, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Montoro, M.; Cañadas-Garre, M.; González-Utrilla, A.; Calleja-Hernández, M. Influence of IL6R gene polymorphisms in the effectiveness to treatment with tocilizumab in rheumatoid arthritis. Pharmacogenomics J. 2016, 18, 167–172. [Google Scholar] [CrossRef]
- Luxembourger, C.; Ruyssen-Witrand, A.; Ladhari, C.; Rittore, C.; Degboe, Y.; Maillefert, J.-F.; Gaudin, P.; Marotte, H.; Wendling, D.; Jorgensen, C.; et al. A single nucleotide polymorphism of IL6-receptor is associated with response to tocilizumab in rheumatoid arthritis patients. Pharmacogenomics J. 2019, 19, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Enevold, C.; Baslund, B.; Linde, L.; Josephsen, N.L.; Tarp, U.; Lindegaard, H.; Jacobsen, S.; Nielsen, C.H. Interleukin-6-receptor polymorphisms rs12083537, rs2228145, and rs4329505 as predictors of response to tocilizumab in rheumatoid arthritis. Pharmacogenetics Genom. 2014, 24, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Camp, N.J.; Cox, A.; di Giovine, F.S.; McCabe, D.; Rich, W.; Duff, G.W. Evidence of a pharmacogenomic response to interleukin-l receptor antagonist in rheumatoid arthritis. Genes Immun. 2005, 6, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Pete, N.M.; Montoro, M.d.M.M.; Ramírez, C.P.; Martínez, F.M.; de la Plata, J.E.M.; Daddaoua, A.; Morales, A.J. Influence of the FCGR2A rs1801274 and FCGR3A rs396991 Polymorphisms on Response to Abatacept in Patients with Rheumatoid Arthritis. J. Pers. Med. 2021, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, P.; Alegria, G.C.; Devauchelle-Pensec, V.; Jamin, C.; Lemerle, J.; Bendaoud, B.; Brooks, W.H.; Saraux, A.; Cornec, D.; Renaudineau, Y. Memory B Cells and Response to Abatacept in Rheumatoid Arthritis. Clin. Rev. Allergy Immunol. 2017, 53, 166–176. [Google Scholar] [CrossRef]
- Yoon, S.M.; Haritunians, T.; Chhina, S.; Liu, Z.; Yang, S.; Landers, C.; Li, D.; Ye, B.D.; Shih, D.; Vasiliauskas, E.A.; et al. Colonic Phenotypes Are Associated with Poorer Response to Anti-TNF Therapies in Patients with IBD. Inflamm. Bowel Dis. 2017, 23, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- E Burke, K.; Khalili, H.; Garber, J.J.; Haritunians, T.; McGovern, D.P.B.; Xavier, R.J.; Ananthakrishnan, A.N. Genetic Markers Predict Primary Nonresponse and Durable Response to Anti–Tumor Necrosis Factor Therapy in Ulcerative Colitis. Inflamm. Bowel Dis. 2018, 24, 1840–1848. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Julsgaard, M.; Abed, O.K.; Burisch, J.; Brodersen, J.B.; Pedersen, N.K.; Gouliaev, A.; Ajan, R.; Rasmussen, D.N.; Grauslund, C.H.; et al. Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 49, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Urabe, S.; Isomoto, H.; Ishida, T.; Maeda, K.; Inamine, T.; Kondo, S.; Higuchi, N.; Sato, K.; Uehara, R.; Yajima, H.; et al. Genetic Polymorphisms ofIL-17FandTRAF3IP2Could Be Predictive Factors of the Long-Term Effect of Infliximab against Crohn’s Disease. BioMed Res. Int. 2015, 2015, 416838. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Martin, S.; Bossacoma, F.; Pujol-Muncunill, G.; Navas-Lopez, V.M.; Gallego-Fernandez, C.; Viada, J.; Munoz-Codoceo, R.; Magallares, L.; Martinez-Ojinaga, E.; Moreno-Alvarez, A.; et al. Genetic Predictors of Long-term Response to Antitumor Necrosis Factor Agents in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Netz, U.; Carter, J.V.; Eichenberger, M.R.; Dryden, G.W.; Pan, J.; Rai, S.N.; Galandiuk, S. Genetic polymorphisms predict response to anti-tumor necrosis factor treatment in Crohn’s disease. World J. Gastroenterol. 2017, 23, 4958–4967. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Hamada, S.; Shimizu, M.; Nanki, K.; Mizuno, S.; Kiyohara, H.; Arai, M.; Sugimoto, S.; Iwao, Y.; Ogata, H.; et al. Factors predicting the therapeutic response to infliximab during maintenance therapy in Japanese patients with Crohn’s disease. PLoS ONE 2018, 13, e0204632. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.; El Ghoul, Z.; Vermeire, S.; Dall’Ozzo, S.; Rutgeerts, P.; Paintaud, G.; Belaiche, J.; De Vos, M.; Van Gossum, A.; Colombel, J.; et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment. Pharmacol. Ther. 2004, 19, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Papamichaela, K.; Gazoulib, M.; Karakoidasa, C.; Panayotouc, I.; Roma-Giannikouc, E.; Mantzarisa, G.J. Association of TNF and FcγRIIA gene polymorphisms with differential response to infliximab in a Greek cohort of crohn’s disease patients. Ann Gastroenterol. 2011, 24, 35–40. [Google Scholar]
- Curci, D.; Lucafò, M.; Cifù, A.; Fabris, M.; Bramuzzo, M.; Martelossi, S.; Franca, R.; Decorti, G.; Stocco, G. Pharmacogenetic variants of infliximab response in young patients with inflammatory bowel disease. Clin. Transl. Sci. 2021, 14, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.J.; Watier, H.E.; Schreiber, S.; Hampe, J.; Taillard, F.; Olson, A.; Thorne, N.; Zhang, H.; Colombel, J.-F. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn’s disease: A subanalysis of the ACCENT I study. Pharmacogenetics Genom. 2006, 16, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.; Lamerz, D.; Hill, P.; Kirchner, M.; Gauss, A. Gene Polymorphisms of NOD2, IL23R, PTPN2 and ATG16L1 in Patients with Crohn’s Disease: On theWay to Personalized Medicine? Genes 2021, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.; Cordell, H.J.; Barton, A.; Daly, A.K.; Hyrich, K.L.; Mann, D.A.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS). Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NF B signalling pathways. Ann. Rheum. Dis. 2010, 69, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Zervou, M.I.; Myrthianou, E.; Flouri, I.; Plant, D.; Chlouverakis, G.; Castro-Giner, F.; Rapsomaniki, P.; Barton, A.; Boumpas, D.T.; Sidiropoulos, P.; et al. Lack of Association of Variants Previously Associated with Anti-TNF Medication Response in Rheumatoid Arthritis Patients: Results from a Homogeneous Greek Population. PLoS ONE 2013, 8, e74375. [Google Scholar] [CrossRef]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Cañete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Sarafidou, T.; Caliz, R.; A Ferrer, M.; et al. Replication of PTPRC as genetic biomarker of response to TNF inhibitors in patients with rheumatoid arthritis. Pharmacogenomics J. 2015, 16, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, Y.; Bagiatis, V.; Stamatopoulou, D.; Zisopoulos, D.; Alexiou, I.; Sarafidou, T.; Settas, L.; Sakkas, L.; Mamouris, Z. Association of anti-CCP positivity and carriage of TNFRII susceptibility variant with anti-TNF-α response in rheumatoid arthritis. Clin. Exp. Rheumatol. 2011, 29, 701–704. [Google Scholar] [PubMed]
- Jančić, I.; Šefik-Bukilica, M.; Živojinović, S.; Damjanov, N.; Spasovski, V.; Kotur, N.; Klaassen, K.; Pavlović, S.; Bufan, B.; Arsenović-Ranin, N. Influence Of Promoter Polymorphisms Of The Tnf-α (-308g/A) And IL-6 (-174g/C) Genes On Therapeutic Response To Etanercept In Rheumatoid Arthritis. J. Med Biochem. 2015, 34, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Cuchacovich, M.; Soto, L.; Edwardes, M.; Gutierrez, M.; Llanos, C.; Pacheco, D.; Sabugo, F.; Alamo, M.; Fuentealba, C.; Villanueva, L.; et al. Tumour necrosis factor (TNF)α −308 G/G promoter polymorphism and TNFα levels correlate with a better response to adalimumab in patients with rheumatoid arthritis. Scand. J. Rheumatol. 2006, 35, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L.; Lampa, J.; Heimbürger, M.; Ernestam, S.; Cederholm, T.; Lundkvist, I.; Andersson, P.; Hermansson, Y.; Harju, A.; Klareskog, L.; et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Guis, S.; Balandraud, N.; Bouvenot, J.; Auger, I.; Toussirot, E.; Wendling, D.; Mattei, J.-P.; Nogueira, L.; Mugnier, B.; Legeron, P.; et al. Influence of −308 A/G polymorphism in the tumor necrosis factor α gene on etanercept treatment in rheumatoid arthritis. Arthritis Rheum. 2007, 57, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.A.; Rego, I.; Rodríguez-Gomez, M.; Cañete, J.D.; Fernandez-López, C.; Freire, M.; Fernandez-Sueiro, J.L.; Sanmarti, R.; Blanco, F.J. Polymorphisms in genes encoding tumor necrosis factor-α and HLA-DRB1 are not associated with response to infliximab in patients with rheumatoid arthritis. J Rheumatol. 2008, 35, 546. [Google Scholar]
- Maxwell, J.R.; Potter, C.; Hyrich, K.L.; Barton, A.; Worthington, J.; Isaacs, J.D.; Morgan, A.W.; Wilson, A.G. Braggss Association of the tumour necrosis factor-308 variant with differential response to anti-TNF agents in the treatment of rheumatoid arthritis. Hum. Mol. Genet. 2008, 17, 3532–3538. [Google Scholar] [CrossRef] [PubMed]
- Miceli-Richard, C.; Comets, E.; Verstuyft, C.; Tamouza, R.; Loiseau, P.; Ravaud, P.; Kupper, H.; Becquemont, L.; Charron, D.; Mariette, X. A single tumour necrosis factor haplotype influences the response to adalimumab in rheumatoid arthritis. Ann. Rheum. Dis. 2007, 67, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Marotte, H.; Arnaud, B.; Diasparra, J.; Zrioual, S.; Miossec, P. Association between the level of circulating bioactive tumor necrosis factor α and the tumor necrosis factor α gene polymorphism at −308 in patients with rheumatoid arthritis treated with a tumor necrosis factor α inhibitor. Arthritis Rheum. 2008, 58, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.; Vermeire, S.; Rutgeerts, P.; De Vos, M.; Van Gossum, A.; Pescatore, P.; Fiasse, R.; Pelckmans, P.; Reynaert, H.; D’Haens, G.; et al. Inflammatory Bowel Disease A Positive Response to Infliximab in Crohn Disease: Association with a Higher Systemic Inflammation Before Treatment But Not With -308 TNF Gene Polymorphism. Scand. J. Gastroenterol. 2002, 37, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Dideberg, V.; Théâtre, E.; Farnir, F.; Vermeire, S.; Rutgeerts, P.; De Vos, M.; Belaiche, J.; Franchimont, D.; Van Gossum, A.; Louis, E.; et al. The TNF/ADAM 17 system: Implication of an ADAM 17 haplotype in the clinical response to infliximab in Crohn’s disease. Pharmacogenetics Genom. 2006, 16, 727–734. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, R.; Valdés, M.; Campillo, J.A.; Martínez-Garcia, P.; Salama, H.; Salgado, G.; Boix, F.; Moya-Quiles, M.R.; Minguela, A.; Sánchez-Torres, A.; et al. Genetic polymorphisms of tumour necrosis factor alpha (TNF-α) promoter gene and response to TNF-α inhibitors in Spanish patients with inflammatory bowel disease. Int. J. Immunogenetics 2013, 41, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Duricova, D.; Pedersen, N.; Lenicek, M.; Hradsky, O.; Bronsky, J.; Adamcova, M.; Elkjaer, M.; Andersen, P.S.; Vitek, L.; Larsen, K.; et al. Infliximab dependency in children with Crohn’s disease. Aliment. Pharmacol. Ther. 2009, 29, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Mendrinou, E.; Patsatsi, A.; Zafiriou, E.; Papadopoulou, D.; Aggelou, L.; Sarri, C.; Mamuris, Z.; Kyriakou, A.; Sotiriadis, D.; Roussaki-Schulze, A.; et al. FCGR3A-V158F polymorphism is a disease-specific pharmacogenetic marker for the treatment of psoriasis with Fc-containing TNFα inhibitors. Pharmacogenomics J. 2016, 17, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Julià, M.; Guilabert, A.; Lozano, F.; Suarez-Casasús, B.; Moreno, N.; Carrascosa, J.M.; Ferrándiz, C.; Pedrosa, E.; Alsina-Gibert, M.; Mascaró, J.M. The Role of Fcγ Receptor Polymorphisms in the Response to Anti–Tumor Necrosis Factor Therapy in Psoriasis. JAMA Dermatol. 2013, 149, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Batalla, A.; Coto, E.; Coto-Segura, P. Influence of Fcγ Receptor Polymorphisms on Response to Anti–Tumor Necrosis Factor Treatment in Psoriasis. JAMA Dermatol. 2015, 151, 1376–1378. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Perez, R.; Solano-Lopez, G.; Cabaleiro, T.; Roman, M.; Ochoa, D.; Talegon, M.; Baniandres, O.; Lopez Estebaranz, J.L.; de la Cueva, P.; Dauden, E.; et al. The polymorphism rs763780 in the IL-17F gene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics 2015, 16, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Caldarola, G.; Sgambato, A.; Fanali, C.; Moretta, G.; Farina, M.; Lucchetti, D.; Peris, K.; De Simone, C. HLA-Cw6 allele, NFkB1 and NFkBIA polymorphisms play no role in predicting response to etanercept in psoriatic patients. Pharmacogenetics Genom. 2016, 26, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Mugnier, B.; Balandraud, N.; Darque, A.; Roudier, C.; Roudier, J.; Reviron, D. Polymorphism at position −308 of the tumor necrosis factor α gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum. 2003, 48, 1849–1852. [Google Scholar] [CrossRef] [PubMed]
- Cuchacovich, M.; Ferreira, L.; Aliste, M.; Soto, L.; Cuenca, J.; Cruzat, A.; Gatica, H.; Schiattino, I.; Pérez, C.; Aguirre, A.; et al. Tumour necrosis factor?? (TNF??) levels and influence of ?308 TNF?? promoter polymorphism on the responsiveness to infliximab in patients with rheumatoid arthritis. Scand. J. Rheumatol. 2004, 33, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Chatzikyriakidou, A.; Georgiou, I.; Voulgari, P.V.; Venetsanopoulou, A.I.; Drosos, A.A. Combined tumour necrosis factor- and tumour necrosis factor receptor genotypes could predict rheumatoid arthritis patients’ response to anti-TNF- therapy and explain controversies of studies based on a single polymorphism. Rheumatology 2007, 46, 1034–1035. [Google Scholar] [CrossRef] [PubMed]
- Morales-Lara, M.J.; Cañete, J.D.; Torres-Moreno, D.; Hernández, M.V.; Pedrero, F.; Celis, R.; García-Simón, M.S.; Conesa-Zamora, P. Effects of polymorphisms in TRAILR1 and TNFR1A on the response to anti-TNF therapies in patients with rheumatoid and psoriatic arthritis. Jt. Bone Spine 2012, 79, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Matsukura, H.; Ikeda, S.; Yoshimura, N.; Takazoe, M.; Muramatsu, M. Genetic polymorphisms of tumour necrosis factor receptor superfamily 1A and 1B affect responses to infliximab in Japanese patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2008, 27, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Medrano, L.; Taxonera, C.; Márquez, A.; Acosta, M.B.-D.; Gómez-García, M.; González-Artacho, C.; Pérez-Calle, J.; Bermejo, F.; Lopez-Sanromán, A.; Arranz, M.; et al. Role of TNFRSF1B polymorphisms in the response of Crohn’s disease patients to infliximab. Hum. Immunol. 2013, 75, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Toonen, E.J.M.; Coenen, M.J.H.; Kievit, W.; Fransen, J.; Eijsbouts, A.M.; Scheffer, H.; Radstake, T.R.D.J.; Creemers, M.C.W.; Rooij, D.-J.R.A.M.d.; van Riel, P.L.C.M.; et al. The tumour necrosis factor receptor superfamily member 1b 676T>G polymorphism in relation to response to infliximab and adalimumab treatment and disease severity in rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Pers, Y.-M.; Cadart, D.; Rittore, C.; Ravel, P.; Daïen, V.; Fabre, S.; Jorgensen, C.; Touitou, I. TNFRII polymorphism is associated with response to TNF blockers in rheumatoid arthritis patients seronegative for ACPA. Jt. Bone Spine 2014, 81, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Canet, L.M.; Filipescu, I.; Cáliz, R.; Lupiañez, C.B.; Canhão, H.; Escudero, A.; Segura-Catena, J.; Soto-Pino, M.J.; Ferrer, M.A.; García, A.; et al. Genetic variants within the TNFRSF1B gene and susceptibility to rheumatoid arthritis and response to anti-TNF drugs. Pharmacogenetics Genom. 2015, 25, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Mascheretti, S.; Hampe, J.; Kühbacher, T.; Herfarth, H.; Krawczak, M.; Fölsch, U.R.; Schreiber, S. Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn’s disease treated with infliximab. Pharmacogenomics J. 2002, 2, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Steenholdt, C.; Enevold, C.; Ainsworth, M.A.; Brynskov, J.; Thomsen, O.; Bendtzen, K. Genetic polymorphisms of tumour necrosis factor receptor superfamily 1b and fas ligand are associated with clinical efficacy and/or acute severe infusion reactions to infliximab in Crohn’s disease. Aliment. Pharmacol. Ther. 2012, 36, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Antonatos, C.; Stavrou, E.F.; Evangelou, E.; Vasilopoulos, Y. Exploring pharmacogenetic variants for predicting response to anti-TNF therapy in autoimmune diseases: A meta-analysis. Pharmacogenomics 2021, 22, 435–445. [Google Scholar] [CrossRef] [PubMed]
- O’Rielly, D.D.; Roslin, N.M.; Beyene, J.; Pope, A.; Rahman, P. TNF-α −308 G/A polymorphism and responsiveness to TNF-α blockade therapy in moderate to severe rheumatoid arthritis: A systematic review and meta-analysis. Pharmacogenomics J. 2009, 9, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Andersen, P.S.; Burisch, J.; Pedersen, N.; Roug, S.; Galsgaard, J.; Turino, S.Y.; Brodersen, J.B.; Rashid, S.; Rasmussen, B.K.; et al. Polymorphisms in the Inflammatory Pathway Genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG Are Associated with Susceptibility of Inflammatory Bowel Disease in a Danish Cohort. PLoS ONE 2014, 9, e98815. [Google Scholar] [CrossRef] [PubMed]
- I Robinson, J.; Barrett, J.H.; Taylor, J.C.; Naven, M.; Corscadden, D.; Barton, A.; Wilson, A.G.; Emery, P.; Isaacs, J.D.; Morgan, A.W.; et al. Dissection of the FCGR3A association with RA: Increased association in men and with autoantibody positive disease. Ann. Rheum. Dis. 2009, 69, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 2009, 41, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Hatjiharissi, E.; Xu, L.; Santos, D.D.; Hunter, Z.R.; Ciccarelli, B.T.; Verselis, S.; Modica, M.; Cao, Y.; Manning, R.J.; Leleu, X.; et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood J. Am. Soc. Hematol. 2007, 110, 2561–2564. [Google Scholar] [CrossRef] [PubMed]
- Koene, H.R.; Kleijer, M.; Algra, J.; Roos, D.; EGKr von dem Borne, A.; de Haas, M. FcγRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell FcγRIIIa, independently of the FcγRIIIa-48L/R/H phenotype. Blood J. Am. Soc. Hematol. 1997, 90, 1109–1114. [Google Scholar]
- Robinson, J.I.; Yusof, Y.M.; Davies, V.; Wild, D.; Morgan, M.; Taylor, J.C.; El-Sherbiny, Y.; Morris, D.L.; Liu, L.; Rawstron, A.C.; et al. Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine 2022, 86, 104343. [Google Scholar] [CrossRef]
- Isaacs, J.D.; Cohen, S.B.; Emery, P.; Tak, P.P.; Wang, J.; Lei, G.; Williams, S.; Lal, P.; Read, S.J. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: A meta-analysis. Ann. Rheum. Dis. 2012, 72, 329–336. [Google Scholar] [CrossRef]
- Sandberg, M.E.C.; Bengtsson, C.; Källberg, H.; Wesley, A.; Klareskog, L.; Alfredsson, L.; Saevarsdottir, S. Overweight decreases the chance of achieving good response and low disease activity in early rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 2029–2033. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-H.; Chi, C.-C.; Yeh, M.-L.; Wang, S.-H.; Tsai, Y.-S.; Hsu, M.-Y. Lifestyle changes for treating psoriasis. Emergencias 2019, 2019, CD011972. [Google Scholar] [CrossRef]
- Upala, S.; Sanguankeo, A. Effect of lifestyle weight loss intervention on disease severity in patients with psoriasis: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Højgaard, P.; Glintborg, B.; Hetland, M.L.; Hansen, T.H.; Lage-Hansen, P.R.; Petersen, M.H.; Holland-Fischer, M.; Nilsson, C.; Loft, A.G.; Andersen, B.N.; et al. Association between tobacco smoking and response to tumour necrosis factor α inhibitor treatment in psoriatic arthritis: Results from the DANBIO registry. Ann. Rheum. Dis. 2014, 74, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.W.; Loft, N.; Rasmussen, M.K.; Nissen, C.V.; Dam, T.N.; Ajgeiy, K.K.; Egeberg, A.; Skov, L. Predictors of Response to Biologics in Patients with Moderate-to-severe Psoriasis: A Danish Nationwide Cohort Study. Acta Derm. Venereol. 2021, 101, adv00579. [Google Scholar] [CrossRef] [PubMed]
Gene (rs Number) | Drug | Studies (n) | Patients (n) | Odds Ratio (95% CI) # | I2 (95% CI) |
---|---|---|---|---|---|
FCGR2A (rs1801274) | TNFi-combined | 10 | Total: 1675 PsO: 202 [61] + 302 [57] + 291 [62] + 85 [58] + 348 [63] = 1228 RA: 100 [105] + 70 [106] + 144 [32] + 30 [107] = 344 PsA: 103 [46] | 0.88 (0.54–1.45) | 68.1% (24.9% to 81.9%) |
FCGR2A (rs1801274) | Etanercept | 4 | Total: 264 PsO: 55 [105] + 30 [107] = 85 RA: 124 [63] PsA: 55 [46] | 1.12 (0.57–2.24) | 6% (0% to 69.8%) |
FCGR3A (rs396991) | TNFi-combined | 18 | Total: 2562 PsO: 100 [105] + 56 [106] + 115 [107] = 271 RA: 301 [57] + 377 [55] + 37 [45] + 77 [58] + 282 [56] + 78 [54] + 36 [59] + 33 [60] = 1221 IBD: 120 [82] + 121 [83] + 200 [84] + 106 [85] + 76 [86] + +344 [87] = 967 PsA: 103 [46] | 0.77 (0.65–0.93) * | 46.7% (0% to 68.1%) |
FCGR3A (rs396991) | Etanercept | 4 | Total: 264 PsO: 55 [105] + 30 [107] = 85 RA: 124 [63] PsA: 55 [46] | 1.04 (0.15–7.35) | 79.7% (0% to 91.7%) |
FCGR3A (rs396991) | Infliximab | 9 | Total: 1012 RA: 37 [45] + 78 [54] + 77 [58] + 29 [59] = 144 IBD: 121 [83] + 200 [84] + 106 [85] + 76 [86] + 344 [87] = 868 | 0.71 (0.54–0.93) * | 38% (0% to 70.2%) |
GBP6 (rs928655) | TNFi-combined | 5 | Total: 531 PsO: 144 [32] + 68 [35] = 212 RA: 135 [48] + 89 [49] + 95 [47] = 319 | 2.06 (0.83–5.10) | 74.2% (1.9% to 87.7%) |
IL-17A (rs2275913) | TNFi-overall | 6 | Total: 1525 PsO: 143 [108] + 132 [44] + 249 [24] = 524 IBD: 103 [80] + 209 [81] + 689 [30] = 1001 | 0.79 (0.48–1.31) | 61.8% (0% to 82.3%) |
MYD88 (rs7744) | TNFi-overall | 6 | Total: 3168 PsO: 144 [32] + 249 [24] = 393 RA: 902 [89] + 183 [90] + 689 [91] + 991 [51] = 2765 | 1.24 (1.02–1.51) * | 31.1% (0% to 72%) |
NFKBIA (rs696) | TNFi-combined | 4 | Total: 2121 PsO: 96 [109] + 247 [24] = 343 IBD: 725 [30] + 1053 [79] =1778 | 1.31 (0.95–1.80) | 35.8 (0% to 78.1%) |
NLRP3 (rs4612666) | TNFi-overall | 5 | Total: 3819 RA: 516 [50] + 988 [51] + 532 [52] = 2036 IBD: 1053 [79] + 730 [30] = 1783 | 0.71 (0.58–0.87) * | 0% (0% to 64.1%) |
TNF-α-238 (rs361525) | TNFi-combined | 14 | Total: 2989 PsO: 102 [37] + 97 [36] + 249 [24] = 448 RA: 70 [53] + 360 [99] + 113 [97] + 476 [98] + 190 [29] = 1209 IBD: 222 [102] + 34 [103] + 729 [30] + 120 [82] + 121 [83] + 106 [85] = 1332 | 0.77 (0.52–1.13) | 40.1% (0% to 66.9%) |
TNF-α-238 (rs361525) | Adalimumab | 4 | Total: 516 PsO: 28 [37] RA: 59 [29] + 360 [99] + 69 [98] = 488 | 1.61 (0.78– 3.33) | 0% (0% to 67.9%) |
TNF-α-238 (rs361525) | Etanercept | 5 | Total:521 RA: 70 [53] + 198 [98] + 102 [29] = 370 PsO: 97 [36] + 54 [37] = 151 | 0.44 (0.18–1.02) | 40.3% (0% to 76.9%) |
TNF-α-238 (rs361525) | Infliximab | 7 | Total: 818 PsO: 27 [37] RA:113 [97] + 209 [98] + 20 [29] = 342 IBD: 222 [102] + 121 [83] + 106 [85] = 449 | 0.57 (0.34–0.96) * | 0% (0% to 58.5%) |
TNF-α-308 (rs1800629) | TNFi-combined | 25 | Total: 4341 PsO: 102 [37] + 97 [36] + 249 [24] + 100 [38] = 548 RA: 187 [29] + 73 [93] + 78 [94] + 123 [95] + 260 [62] + 53 [96] + 86 [96] + 113 [97] + 474 [98] + 369 [99] + 198 [100] + 100 [92] = 2114 IBD: 214 [101] + 222 [102] + 34 [103] + 119 [82] + 121 [83] + 734 [30] + 107 [85] + 76 [86] + 52 [104] = 1679 | 0.71 (0.55–0.92) * | 53% (17.9% to 69.2%) |
TNF-α-308 (rs1800629) | Etanercept | 7 | Total: 775 RA: 73 [93] + 123 [95] + 86 [96] + 197 [98] + 99 [29] =578 PsO: 97 [36] + 100 [38] =197 | 0.48 (0.26–0.86) * | 57.3% (0% to 79.6%) |
TNF-α-308 (rs1800629) | Infliximab | 11 | Total: 1195 RA: 53 [110] + 113 [97] + 198 [100] + 19 [29] + 20 [111] = 403 IBD: 222 [102] + 214 [101] + 121 [83] + 107 [85] + 76 [86] + 52 [104] = 792 | 0.84 (0.58–1.21) | 17.4% (0% to 59.3%) |
TNF-α-857 (rs1799724) | TNFi-combined | 12 | Total: 1218 PsO: 80 [39] + 102 [37] + 97 [36] + 49 [40] = 328 RA: 190 [29] + 357 [99] + 70 [53] + 100 [92] = 717 IBD: 222 [102] + 121 [83] + 106 [85] + 52 [104] = 501 | 0.71 (0.42–1.19) | 67.1% (29.1% to 80.6%) |
TNF-α-857 (rs1799724) | Etanercept | 5 | Total: 366 PsO: 97 [36] + 54 [37] + 44 [39] = 195 RA: 101 [29] + 70 [53] = 171 | 1.15 (0.36–3.71) | 73.1% (0% to 87.3%) |
TNF-α-857 (rs1799724) | Infliximab | 6 | Total: 543 PsO: 27 [37] RA: 15 [29] IBD: 222 [102] + 121 [83] + 106 [85] + 52 [104] = 501 | 0.40 (0.15–1.04) | 55.7% (0% to 80.2%) |
TNFR1A (rs767455) | TNFi-combined | 6 | Total: 819 RA: 58 [112] + 89 [113] + 187 [29] = 334 IBD: 81 [114] + 283 [115] + 121 [83] =485 | 1.06 (0.76–1.46) | 0% (0% to 61%) |
TNFR1A (rs767455) | Infliximab | 6 | Total: 653 RA: 58 [112] + 89 [113] + 21 [29] = 168 IBD: 81 [114] + 283 [115] + 121 [83] = 485 | 1.00 (0.69–1.46) | 0% (0% to 61%) |
TNFRSF1A (rs4149570) | TNFi-combined | 5 | Total: 2260 PsO: 144 [32] + 249 [24] = 393 IBD: 80 [114] + 718 [30] + 1069 [79] = 1867 | 0.97 (0.59–1.60) | 65% (0% to 84.5%) |
TNFRSF1B (rs1061622) | TNFi-combined | 17 | Total: 2004 PsO: 80 [39] + 90 [42] + 144 [32] + 95 [41] + 49 [40] + 100 [38] = 558 RA: 212 [116] + 122 [54] + 190 [29] + 15 [117] + 456 [118] + 100 [92] = 1095 IBD: 90 [119] + 80 [114] + 67 [120] + 293 [115] + 121 [83] = 651 | 0.77 (0.56–1.08) | 62.5% (28.4% to 76.5%) |
TNFRSF1B (rs1061622) | Infliximab | 7 | Total: 794 RA: 122 [54] + 21 [29] = 143 IBD: 90 [119] + 80 [114] + 67 [120] + 293 [115] + 121 [83] = 651 | 1.06 (0.62–1.81) | 62.8% (0% to 81.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sofi, R.F.; Bergmann, M.S.; Nielsen, C.H.; Andersen, V.; Skov, L.; Loft, N. The Association between Genetics and Response to Treatment with Biologics in Patients with Psoriasis, Psoriatic Arthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 5793. https://doi.org/10.3390/ijms25115793
Al-Sofi RF, Bergmann MS, Nielsen CH, Andersen V, Skov L, Loft N. The Association between Genetics and Response to Treatment with Biologics in Patients with Psoriasis, Psoriatic Arthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2024; 25(11):5793. https://doi.org/10.3390/ijms25115793
Chicago/Turabian StyleAl-Sofi, Rownaq Fares, Mie Siewertsen Bergmann, Claus Henrik Nielsen, Vibeke Andersen, Lone Skov, and Nikolai Loft. 2024. "The Association between Genetics and Response to Treatment with Biologics in Patients with Psoriasis, Psoriatic Arthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 25, no. 11: 5793. https://doi.org/10.3390/ijms25115793
APA StyleAl-Sofi, R. F., Bergmann, M. S., Nielsen, C. H., Andersen, V., Skov, L., & Loft, N. (2024). The Association between Genetics and Response to Treatment with Biologics in Patients with Psoriasis, Psoriatic Arthritis, Rheumatoid Arthritis, and Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 25(11), 5793. https://doi.org/10.3390/ijms25115793