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Abstract: A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to
the diversity and adaptability of mammalian RNA signatures, aligning with developmental and
physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene
stands out in this context due to its brain-specific expression and the evolutionary conservation of its
codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are
still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-
dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate
Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed
that mice with the “gain-of-editing” variant (Unc80G/G) exhibit heightened basal neuronal activity in
critical olfactory regions, compared to the “loss-of-editing” (Unc80S/S) counterparts. Moreover, an
increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered
neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to
novel odors—both Unc80 deficient (Unc80+/−) and Unc80S/S mice demonstrated prolonged explo-
ration times and heightened dishabituation responses. Further elucidating the olfactory connection
of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in
gene expression that corroborate the behavioral and physiological findings. Collectively, our research
advances the understanding of Unc80’s neurophysiological functions and the impact of its editing on
the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory
perception and neuronal activity.

Keywords: RNA editing; Unc80; olfactory perception; neuronal activity

1. Introduction

RNA editing is a co-transcriptional mechanism that modifies specific nucleotides
within an RNA molecule, altering its sequence after being transcribed from DNA. This
process can occur at various sites within the RNA, leading to multiple functional outcomes,
such as changes in the amino acid sequence of the encoded protein and modifications to
transcript stability [1]. Notably, A-to-I editing by the ADAR2 enzyme often results in amino
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acid substitutions that diversify protein isoforms, playing a critical role in neurotrans-
mission [2,3]. This includes the editing of ligand-gated and voltage-gated ion channels,
as well as G protein-coupled receptors within the nervous system. A prime example
of such editing involves the mRNA for GluA2, an AMPA receptor subunit essential for
fast excitatory synaptic transmission in the brain. The precise editing of GluA2 is crucial
for neuronal survival, preventing excessive calcium influx that can lead to the death of
neurons [4] and motor neurons [5,6]. Engineering the essential edits into the Gria2 (the
GluA2-encoding gene) of Adar2-knockout (KO) mice has been shown to prevent mortality,
indicating the critical nature of this editing event [7]. However, even with developmental
rescue, these mice exhibit subtle but varied phenotypes [8], the basis of which remains to
be fully elucidated, including the related substrates and mechanisms.

In the field of behavioral neuroscience, RNA editing is recognized for its involvement
in various critical processes, such as synapse formation [9], ion channel regulation [10], and
the modulation of neurotransmitter release [11,12]. This editing plays a vital role in the
development and functioning of the central nervous system, particularly in modulating
the activity of specific neurotransmitter receptors [2,3]. Studies have also highlighted the
importance of RNA editing in the operation of certain brain regions and neural circuits
that govern behavior. As a result, disruptions in RNA editing processes are associated
with the onset of numerous neurological and psychiatric conditions, including Alzheimer’s
disease [13], Parkinson’s disease [14], and schizophrenia [15,16]. Such irregularities in
RNA editing are closely linked to the development of these disorders, underscoring their
significant physiological roles in the central nervous system [17]. Intriguingly, RNA editing
of the 5-HT2C receptor influences its cell surface expression by affecting the efficiency of
intracellular trafficking, thereby regulating the density of 5-HT2C receptor binding sites
in the brain [18]. Consequently, this editing event is pivotal for various physiological and
behavioral functions, including circadian rhythms, emotional regulation, and appetite
control [11–13].

Interestingly, Unc80 has been recognized by several deep-sequencing studies, includ-
ing ours, as one of many RNA-recoding targets [19–21]. A notable A-to-I editing event
within Unc80 is believed to recode the Ser2732 to a Gly residue in Unc80’s primary sequence,
suggesting that this specific RNA alteration could influence the structure and functionality
of this novel protein. Encoded by a 45-exon gene, Unc80 is a substantial protein comprising
3300 amino acids and is predominantly expressed in neurons. This gene is highly con-
served, with functional homologs identified in C. elegans and fruit flies, and reportedly
associated with the maintenance of neuronal networks [22–24]. Functionally, UNC80, in
concert with UNC79, serves as a scaffold for Src Family Kinases (SFKs) and interacts with
the NALCN channel to form a sodium-leak channel complex linked to G protein-coupled
receptors [25,26]. As a critical component of the UNC79-UNC80-NALCN complex, UNC80
facilitates NALCN’s function in basal sodium leak conductance in neurons, thereby modu-
lating neuronal excitability through extracellular calcium ions. Structural studies, such as
cryo-EM analysis of the NALCN complex, have revealed that UNC79 and UNC80 form a
substantial heterodimer that is crucial for the correct cellular localization of NALCN [27].

Developmentally, the absence of Unc80 results in severe apnea at birth, mirroring
some defects seen in Nalcn knockout models [28]. In humans, mutations in UNC80 are
linked to profound neurological and cognitive issues, including hypotonia and severe
intellectual disabilities [29–31], echoing the critical developmental role of Unc80 observed
in mouse models. Collectively, these findings emphasize Unc80’s essential regulatory
function in neuronal signaling and networks, although the unique phenotypes observed in
Unc80 knockout mice highlight the need for further investigation into its diverse roles [28].
Intriguingly, mutations in Unc80 have been shown to impact various biological processes.
For instance, in honeybees, differences in Unc80 expression, observed through NGS-Seq
of brains from odor-learning tasks, suggest a correlation between Unc80 and olfactory
learning [32]. In C. elegans, mutations in Unc80 led to impaired avoidance behavior to
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Methyl salicylate, which could be significantly mitigated by neuron-specific transgenic
rescue, further underscoring Unc80’s role in neural function [33].

Our previous work has identified a significant codon-altering RNA editing event in
the Unc80 gene through deep sequencing of the RNA editome (annotation of RNA editing
events) in mammals [34]. The physiological and developmental roles of Unc80 and its
editing, which are both brain-specific and evolutionarily conserved, are yet to be fully
understood. To explore these aspects, we have engineered Unc80 knockout mice and mice
with loss- or gain-of-editing in Unc80 using the CRISPR/Cas-9 system. Our study provides
insights into the function and regulation of Unc80 and its editing, particularly in relation to
olfactory function and the associated molecular mechanisms.

2. Results
2.1. Characterization of the Expression and RNA Editing Event of Unc80

Among potential candidate editing events uncovered in our previous high-throughput
sequencing approach [34], Unc80 was chosen for its notable features: (1) its editing is
evolutionarily conserved among mammals; (2) both Unc80 and its RNA editing are pre-
dominantly found in the brain (Figure 1A,B), indicating their significant roles in neuronal
processes; (3) Sanger sequencing of tissues from specific brain regions confirmed that this
editing event relies on the ADAR2 enzyme, as evidenced quantitatively by the absence
of the A-to-G conversion in Adar2 knockout mice. In addition, the Unc80 editing was
particularly abundant in the cerebellum and olfactory bulb in wild-type mice, directing our
research towards a detailed examination of Unc80 and its editing within these brain areas
(Figure 1B). To explore whether the editing event occurring in the coding sequence of Unc80
caused any changes to the protein, we applied a computational method, AlphaFold2 [35],
to predict the possible conformational change due to the Ser to Gly substitution at residue
2732. We systematically modeled the 3-dimensional protein structures of the full-length
Unc80 (3267 amino acids) (Supplementary Figure S1A) and used PyMOL [36] for subse-
quent analysis to visualize and analyze the detailed protein structures between Ser2732 and
Gly2732 as well as the nearby amino acid residues (Supplementary Figure S1B). Interest-
ingly, our results indicated a secondary structure change in this specific region: compared
to the wild-type protein, the secondary structure, especially around this editing region,
has changed from a loop to approximately two turns of a helix, with the editing residue
Gly2732 as the center (Figure 1C). This change may lead to alterations in the function and
properties of the protein or how the protein interacts with other molecules within the cell.

Based on the findings from honeybees and C. elegans [32,33], and in line with our data,
we further explored the physiological importance of Unc80 by examining its expression
patterns, especially in the olfactory bulb, where the editing rate was higher. The localization
of Unc80 showed significant enrichment in the mitral cell layer (MCL) and rostral migratory
stream (RMS), critical components of a functional olfactory bulb. Some of these signals
overlapped spatially with the expression of NeuN, a neuronal cell marker, thus establishing
the link of Unc80 to odor perception (Figure 1D). Moreover, we also set out to examine and
confirm Unc80 editing in the primary recipients of olfactory bulb (OB) outputs: the anterior
olfactory nucleus (AON) and the anterior piriform cortex (APC), both of which are vital for
odor perception and forming the anterior olfactory cortex (AOC) [37–39]. As the sequence
chromatograms showed in Supplementary Figure S2, the same editing event was verified
quantitatively in AON and APC.
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Figure 1. Expression patterns of ADAR2-mediated RNA editing of Unc80 in the brain and its 
structural implications. Total RNA was extracted from various tissues and brain regions from wild-
type (WT) and Adar2-knockout (KO) mice. The samples were then analyzed using RT-PCR (A) and 
Sanger sequencing (B). The sequencing chromatograms highlight the absence of guanine (“G”) 
signals (indicated by arrows) in the KO samples, demonstrating the reliance of Unc80 editing on 
ADAR2’s enzymatic function. Differences in RNA editing levels across brain regions were also 
observed. The percentage represents the editing frequency, calculated by taking the peak area of G 
peak over the sum of A and G peaks. (C) Prediction of 3-dimensional protein structure models of 
Unc80WT and Unc80S2732G. The magnified view of the region of interest highlights the residue change 
from Ser to Gly due to editing. (D) Immunofluorescence analysis on olfactory bulb coronal sections, 
specifically localizing Unc80 (green) and NeuN (red) protein. The a and b correspond to magnified 
views of the white dashed boxes in left panel. The arrows indicate the positions of overlapping 
fluorescence (green and red). Scale bars = 200 µm in the left panel and 40 µm in the magnified 
images. (TA: Tibialis anterior muscle, GA: Gastrocnemius muscle, CT: cortex, CB: cerebellum, HP: 
hippocampus, OB: olfactory bulb). 
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genomic deletion and site-specific A-to-G mutations at the editing locus of the Unc80 gene 
(corresponding to AGC of the Ser2732 codon), resulting in “gain-of-editing” (AGC→GGC; 
Unc80G/G) and “loss-of-editing” (codon-neutral mutation, AGC→TCC; Unc80S/S) knock-in 
models for subsequent breeding (Figure 2B,C). Initial evaluations of these mice have 

Figure 1. Expression patterns of ADAR2-mediated RNA editing of Unc80 in the brain and its
structural implications. Total RNA was extracted from various tissues and brain regions from wild-
type (WT) and Adar2-knockout (KO) mice. The samples were then analyzed using RT-PCR (A) and
Sanger sequencing (B). The sequencing chromatograms highlight the absence of guanine (“G”) signals
(indicated by arrows) in the KO samples, demonstrating the reliance of Unc80 editing on ADAR2’s
enzymatic function. Differences in RNA editing levels across brain regions were also observed. The
percentage represents the editing frequency, calculated by taking the peak area of G peak over the
sum of A and G peaks. (C) Prediction of 3-dimensional protein structure models of Unc80WT and
Unc80S2732G. The magnified view of the region of interest highlights the residue change from Ser to
Gly due to editing. (D) Immunofluorescence analysis on olfactory bulb coronal sections, specifically
localizing Unc80 (green) and NeuN (red) protein. The a and b correspond to magnified views of
the white dashed boxes in left panel. The arrows indicate the positions of overlapping fluorescence
(green and red). Scale bars = 200 µm in the left panel and 40 µm in the magnified images. (TA: Tibialis
anterior muscle, GA: Gastrocnemius muscle, CT: cortex, CB: cerebellum, HP: hippocampus, OB:
olfactory bulb).

2.2. Engineering and Phenotyping of the Unc80 Knockout and Knock-In Mouse Models

To elucidate the biological implications of the Unc80 gene product and the associated
gene recoding event, we set out to create mouse models with (1) a deletion of the gene
and (2) an A-to-G point mutation at the editing site (see schematics in Figure 2A for
experimental workflow). Utilizing the CRISPR/Cas9 system and the detailed experimental
scheme we performed (Figure 2A), we successfully established engineered mice with a
genomic deletion and site-specific A-to-G mutations at the editing locus of the Unc80 gene
(corresponding to AGC of the Ser2732 codon), resulting in “gain-of-editing” (AGC→GGC;
Unc80G/G) and “loss-of-editing” (codon-neutral mutation, AGC→TCC; Unc80S/S) knock-
in models for subsequent breeding (Figure 2B,C). Initial evaluations of these mice have
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revealed several notable phenotypes. When heterozygous mice with the deletion allele
were crossed, the resulting homozygous deletion offspring were born at a significantly
lower frequency than Mendelian genetics would predict (Figure 2D,E), indicating partial
embryonic lethality and growth retardation, which suggests that Unc80 is crucial for normal
development. Analysis of Unc80-deficient mouse brains through immunoblotting and
qRT-PCR showed no significant change in the levels of transcripts encoding Nalcn, a
protein that interacts with Unc80 (Figure 2F,G). In addition, to elucidate whether the genetic
manipulation of the coding sequence may affect the proper localization of the protein,
we first performed olfactory bulb immunohistochemical (IHC) staining on Unc80S/S and
Unc80G/G mice (Supplementary Figure S3A). According to the images, the distribution of
Unc80 protein expression in the olfactory bulb showed no difference between Unc80S/S

and Unc80G/G mice. Secondly, we transfected specific GFP-tagged wild-type Unc80 or
Unc80S2732G encoding plasmids into a mouse neuroblastoma cell line (Neuro 2a cells) and
performed immunofluorescence microscopy analyses to verify the localization of the fusion
protein. By following the GFP signals, our results showed that both wild-type Unc80 and
Unc80S2732G exhibited the same localization inside the cell, predominantly in the cytosol
(Supplementary Figure S3B).

2.3. Neuronal Activity in the Unc80 Animal Models Revealed by MRI

The severe clinical manifestations observed in individuals with Unc80 mutations
suggest that Unc80 is a critical regulator in neuronal signaling and networks [40]. To
investigate the neuronal activity in the olfactory system, we applied in vivo MR spec-
troscopy in Unc80-targeted animal models to map neural activation patterns and assess
neurotransmitter levels, including glutamate and dopamine, in the brain. Additionally,
we utilized manganese-enhanced MRI (MEMRI), a method for imaging neuronal activity
through systemic administration of manganese ions, which act as a T1-shortening contrast
agent. Specifically, during functional stimulation, the manganese ions (Mn2+) enter active
neurons via voltage-gated calcium channels [41,42]. Following sustained stimulation, Mn2+

accumulates in activated brain regions, resulting in enhanced signals on T1-weighted
imaging. Toward this end, we utilized MEMRI to monitor neuronal activity within the
olfactory system. This technique involves the systemic administration of Mn2+ ions as a T1-
shortening contrast agent to delineate the activity within the olfactory tract, including the
olfactory bulb (OB), anterior olfactory nucleus (AON), and anterior piriform cortex (APC).
These imaging modalities aimed to uncover any signs of brain pathology in Unc80 mouse
models. Our findings indicated an increased MEMRI signal intensity in the selected nuclei
of the gain-of-editing Unc80G/G mice, suggesting enhanced neuronal activity along the ol-
factory tract (Figure 3A,B). Furthermore, we utilized chemical exchange saturation transfer
(CEST)-MRI to quantitatively map the distribution and influx of neurotransmitters, such as
glutamate and dopamine, in specific brain areas. This functional imaging revealed signifi-
cant differences in glutamate levels between Unc80S/S and Unc80G/G mice, particularly in
the olfactory bulbs and hippocampus (Figure 3C,D). This altered resting neurotransmission
reinforces the central role of Unc80 RNA recoding in olfactory perception.

2.4. Implication of Unc80 Editing Event in Mediating Olfactory Response

To understand the impact of differential Unc80 editing on neuronal activity in the ol-
factory bulbs and its potential effects on olfactory responses, we conducted an odor-evoked
sniffing test. This test assessed the mice’s ability to detect and differentiate between various
odors. We measured the degree of odor habituation (sensitization) and dishabituation
(desensitization) across successive 7 rounds of odor exposure, along with the latency to
habituation. Additionally, an eighth trial introduced a new odor to evaluate re-sensitization
and the potential reversal of habituation. Intriguingly, Unc80 heterozygous mice (Unc80+/−)
demonstrated a more pronounced decrease in odor sensitivity over the initial seven trials
compared to wild-type mice, which showed a more gradual habituation process (Figure 4A).
Furthermore, when presented with a new odor, the response of Unc80 heterozygous mice
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was significantly heightened relative to that of wild-type mice, indicating increased time
spent investigating the novel odor source. These findings thus suggest that a deficiency
in Unc80 may lead to an overly sensitized olfactory response characterized by increased
dishabituation. Notably, Unc80S/S mice, which lack the editing modification, exhibited a
habituation/dishabituation pattern similar to that of the Unc80 heterozygous mice, hinting
that the absence of editing might similarly affect olfactory perception (Figure 4B).
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Figure 2. Generation of Unc80-deleted and site-specific RNA editing mouse models: (A) Experi-
mental schematic of the CRISPR/Cas9-based genetic engineering to generate deficient and knock-in
mouse models. gRNA (nucleotide with orange background) together with Cas9 created indels, thus
establishing knockout mice. In parallel, the addition of synthesized homologous DNA templates cor-
responding to the Unc80 sequence region with a substitution for the “pre-edited” (G-form) allele (gain
of editing) or the “unedited” version (loss of editing) resulted in the knock-in models. (B) Breeding
schemes of mice with site-specific knock-ins at the Unc80 editing site. (C) Genomic DNA sequencing
for genotyping demonstrates the WT sequence (top) and mutations in founder strains (Unc80+/−).
Deletions and point mutations are indicated by a red background and purple boxes, respectively, in
heterozygous deletion (Unc80+/−) or knock-in mice (Unc80S/S, Unc80G/G, and Unc80S/G). The green
box denotes the targeted editing site. (D) Gross morphological comparison and body weights of
newborn (P0) mice across genotypes. (E) Offspring genotyping from heterozygous Unc80+/− crosses
reveals a lower-than-expected birth rate for homozygous deletion offspring, whereas knock-in alleles
followed an approximately Mendelian inheritance pattern. (F,G) Unc80 protein and mRNA levels in
brain tissue lysates (cortex and olfactory bulb) from CRISPR-engineered Unc80-deficient mice were
assessed via immunoblotting (F) and qRT-PCR (OB, (G)).
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Figure 3. MEMRI-based neuronal activity assessment in the olfactory systems of Unc80S/S and
Unc80G/G mice: (A) Anatomical MRI images and corresponding color mapping generated during
odor stimulation. (B) Variation in MEMRI signal intensity in response to odor stimulation, with error
bars representing the SD. (C) In vivo glutamate- and dopamine-sensitive CEST-MRI images showing
anatomical and color mapping in various brain nuclei. (D) Quantitative changes in CEST-MRI signals
across different brain nuclei for Unc80S/S and Unc80G/G mice, depicting both glutamate (left) and
dopamine (right) contrasts. Brain regions assessed include the olfactory bulb (OB), anterior olfactory
nucleus (AON), and anterior piriform cortex (APC). Error bars indicate SD. Statistical significance is
denoted as follows: ns (not significant); p > 0.05; * p < 0.05; ** p < 0.01.

For the odor-induced neuronal activity assay, we used the strong scent of banana oil
(isoamyl acetate) to stimulate nerve signals in the olfactory bulbs, as indicated by c-Fos
expression [43]. Mice with or without Unc80 editing were tested for differences in odor-
sensing nerve stimulation. After a 30 min exposure to banana oil, mice were sacrificed
either immediately or at 60 min post-exposure. The olfactory bulbs were then collected
for gene expression analysis via qRT-PCR and immunoblotting. Our results (Figure 4C,D)
showed that Unc80S/S mice exhibited a significantly greater increase in c-Fos expression
immediately following odor exposure compared to Unc80G/G mice, suggesting differing
sensitivities to external odor stimuli. Moreover, immunoblotting of olfactory bulbs for
c-Fos protein expression revealed a substantial increase in Unc80S/S mice in response to
odor stimuli compared to Unc80G/G mice, which already exhibited a high baseline level of
c-Fos signal (Figure 4D). This enhanced induction of c-Fos in response to odors may be
influenced by the editing state of Unc80.
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Figure 4. Neurophysiological connection of Unc80 editing event to olfactory sensing and motor
control: Habituation and dishabituation behaviors, in response to odors, were analyzed for Unc80
knockout and site-specific editing variants (A,B), along with odor-induced neuronal activity assays
(C,D). Mice with different genotypes (wild-type vs. Unc80+/− in (A), Unc80S/S vs. Unc80G/G in (B))
were exposed to odors, and their explorative times near the odor source were recorded and presented
as mean ± SD. The cohorts consisted of: WT (n = 13), Unc80+/− (n = 5), Unc80S/S (n = 9), Unc80G/G

(n = 8). For the neuronal activation assay, knock-in mice with site-specific edits were either not
exposed or exposed to banana oil for up to 60 min and subsequently sacrificed for olfactory bulb
isolation, from which total RNA and proteins were prepared for qRT-PCR (C) and Western blot
(D) analyses, respectively. Changes in the expression of c-Fos were monitored as a readout for
neuronal activation. The bar graph represents the relative mRNA expression levels of Fos. Statistical
significance is indicated as follows: ns (not significant); p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

2.5. Transcriptome Profiling of Unc80 Knock-In Mice Revealed Altered Neuronal State in
Olfactory Bulb

After phenotyping the Unc80 editing knock-in mouse model, we next aimed to sub-
stantiate the biological significance by exploring possible molecular perturbations resulting
from the Unc80 recoding event. In this regard, we conducted RNA-seq-based profiling to
examine transcriptome-wide alterations in the olfactory bulbs of Unc80S/S and Unc80G/G

mice, identifying molecular changes triggered by the editing event. The overall distribu-
tion of transcriptome profiles, illustrated by a PCA plot (Figure 5A) and a volcano plot
(Figure 5B), revealed genotype-specific, significant changes in gene expression. A total
of 70 genes exhibited substantial expression differences between the transgenic Unc80S/S

and Unc80G/G mice, with 27 genes upregulated and 43 genes downregulated. The distinct
clusters of differentially expressed genes showed at least a 1.5-fold change for all significant
DEGs (Figure 5C). Subsequently, we used Ingenuity Pathway Analysis (IPA, version Spring
Release Q1 2024) to explore the functional enrichment pathway contributed by DEGs.
The bubble chart indicated that several neuron-related categories were highly enriched,
including cellular growth, proliferation and development, neurotransmitters and other
nervous system signaling, transcriptional regulation, organismal growth and development,
and intracellular and second messenger signaling (Figure 5D and Supplementary Table S1).
In addition, according to previous studies, many of these are closely related to brain devel-
opment, the olfactory system, neuronal activity, and neuro-related diseases. This includes
three functional categories: G protein-coupled receptor (GPCR), ion channels, and tran-
scription factors. Specifically, the expression levels of genes associated with GPCRs, such
as Nkain3 and Gpsm3, showed notable differences between the Unc80S/S and Unc80G/G
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mice. Transcription factors known to regulate neuronal activity, such as Nr4a2 and FosB,
also displayed significant expression changes between these mouse models [44,45]. These
results suggest that the phenotypic outcomes of Unc80 recoding are associated with dis-
tinct signaling alterations, including enrichment in ERK-associated, cAMP-mediated, and
neuronal-related signaling pathways, along with the expression of unique neuronal gene
signatures (Figure 5E). These molecular insights lay a crucial foundation for our mechanistic
understanding of this editing event.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 17 
 

 

distinct clusters of differentially expressed genes showed at least a 1.5-fold change for all 
significant DEGs (Figure 5C). Subsequently, we used Ingenuity Pathway Analysis (IPA, 
version Spring Release Q1 2024) to explore the functional enrichment pathway 
contributed by DEGs. The bubble chart indicated that several neuron-related categories 
were highly enriched, including cellular growth, proliferation and development, 
neurotransmitters and other nervous system signaling, transcriptional regulation, 
organismal growth and development, and intracellular and second messenger signaling 
(Figure 5D and Supplementary Table S1). In addition, according to previous studies, 
many of these are closely related to brain development, the olfactory system, neuronal 
activity, and neuro-related diseases. This includes three functional categories: G protein-
coupled receptor (GPCR), ion channels, and transcription factors. Specifically, the 
expression levels of genes associated with GPCRs, such as Nkain3 and Gpsm3, showed 
notable differences between the Unc80S/S and Unc80G/G mice. Transcription factors known 
to regulate neuronal activity, such as Nr4a2 and FosB, also displayed significant 
expression changes between these mouse models [44,45]. These results suggest that the 
phenotypic outcomes of Unc80 recoding are associated with distinct signaling alterations, 
including enrichment in ERK-associated, cAMP-mediated, and neuronal-related 
signaling pathways, along with the expression of unique neuronal gene signatures (Figure 
5E). These molecular insights lay a crucial foundation for our mechanistic understanding 
of this editing event. 

 
Figure 5. Transcriptomic analysis of the olfactory bulb in Unc80 editing variant mice. Transcriptome-
wide RNA-seq was conducted to identify changes in the olfactory bulb of Unc80S/S and Unc80G/G

mice. (A–C) The overall transcriptome distribution is represented in a principal component analysis
(PCA) plot (A) and a volcano plot (B), delineating genotype-specific gene expression profiles. A
heatmap (C) displays genes with significant differential expression (|fold-change| > 1.5, p < 0.05;
n = 6 per genotype, with samples pooled from three mice each) between the two strains. (D) Bubble
chart of the enriched canonical pathway from IPA analysis. The x-axis represents the significance
(p-value), and the y-axis shows the top 17 significantly enriched pathways based on differentially
expressed genes (DEGs). The size of the circles corresponds to the number of genes associated with
each pathway. The colors of the bubbles denote the Z-score, indicating whether the pathway is
activated (orange, positive Z-score) or inhibited (blue, negative Z-score). (E) Normalized read count
plots highlight expression variations in gene sets linked to neuronal signaling between Unc80S/S and
Unc80G/G mice. Statistical significance in this figure is indicated as follows: * p < 0.05; ** p < 0.01;
*** p < 0.001.
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3. Discussion

In the context of odor stimulation, honeybees with Unc80 deletions exhibit altered
odor-evoked responses, along with changes in their transcriptome. Similarly, in C. elegans,
the absence of Unc80 impairs the avoidance response to methyl salicylate, a phenotype
that is reversible with the restoration of Unc80. These observations from olfactory behavior
analyses suggest a critical link between Unc80 and the olfactory system. Furthermore,
the involvement of Unc80 in a voltage-independent ‘leak’ ion-channel complex, which
is extensively regulated by neurotransmitters and GPCR activation, underscores its dis-
tinctive role in odor discrimination. Nevertheless, the neurobiological outcomes and
mechanisms by which Unc80 influences the sense of smell remain largely unexplored. In
our study, building upon our preliminary findings, we initially mapped the distinctive
Unc80 editing patterns explicitly expressed in the brain, particularly in the olfactory bulb
area (Figure 1B). Subsequently, to investigate the effects of mRNA recoding of Unc80 in
an in vivo model, we generated transgenic knock-in mice either lacking (Unc80S/S) or
expressing the recoding event of Unc80 (Unc80G/G) using the CRISPR/Cas9-based method
(Figure 2A). By employing these transgenic mice in anatomical and functional MRI anal-
yses, olfactory behavior tests, and high-throughput transcriptomic approaches, we have
highlighted its significance in regulating olfactory function. This work has begun to unravel
a comprehensive network of genes involved in brain development, olfactory function, and
neurodegenerative diseases.

Our results have demonstrated a regulatory role for Unc80 editing in odor detection.
However, the notion that the NACLN complex is also involved in this physiological context
is not yet clear. Previous studies have shown that Unc80 and Unc79 in the brain are
crucial for the formation of the NALCN complex, which is integral to calcium channel
function [46,47]. This suggests that Unc80 may function in a manner dependent on Unc79.
Remarkably, homozygous Unc80 knockout pups display severe apnea shortly after birth,
a phenotype also observed in NALCN knockout models, suggesting similar functional
roles [28,48]. However, clinical data from the MalaCards human disease database indicates
that certain pathologies associated with Unc80 deficiency are distinct from those arising
from mutations in Nalcn or Unc79. For instance, issues such as mitochondrial dysfunction
and neurodegenerative diseases, like ALS, are uniquely associated with UNC80 loss [49,50].
This implies that UNC80 may also have functions independent of the NALCN complex,
which have yet to be explored. Moreover, the severe phenotypes observed both in mouse
models with targeted Unc80 disruption and in humans with UNC80 mutations underscore
its critical role in neurodevelopment [28]. The distinct genetic abnormalities associated with
UNC80 hint at a unique molecular function that could be independent of its established
interaction with the NALCN complex, suggesting additional yet-to-be-identified roles for
UNC80 in cellular functions.

One of the critical findings in the study is to explore the comprehensive gene expression
profile of olfactory bulbs in mice harboring the Unc80 editing site, compared to those
without it. The wide spectrum of gene regulation mediated by Unc80 editing is consistent
with the notion that the recoding of Unc80 impacts the olfactory system by modulating a
network of genes closely associated with olfactory functions. Significantly altered genes
were categorized into three groups: channels and receptors, GPCRs, and transcription
factors. The channel and receptor group includes genes related to neuronal signaling, such
as Pkd2L1, a transient receptor potential cation channel implicated in recovery from spinal
cord injury [51,52]. Moreover, the sensation of smell in mice is facilitated by a multitude
of chemosensory receptors. Approximately 1,400 olfactory receptors, which form one of
the largest families of GPCRs, are expressed on olfactory sensory neurons and are essential
for olfactory discrimination [53–56]. Upon odorant binding, these receptors trigger GPCR
signaling, leading to a cascade of signal transduction. Thus, the targets of Unc80 editing we
identified may provide a foundation for elucidating the mechanisms underlying olfactory
perception. Moreover, transcription factors affected by Unc80 editing play a vital role
in determining the sensory identity of olfactory receptor neurons. Incidentally, specific
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transcription factors, such as Nr4a2 and FosB, have been implicated in the processing
of odor information, with alterations in their expression correlating with early olfactory
dysfunction in Alzheimer’s disease mouse models [45]. In conclusion, through detailed
transcriptomic analysis, Unc80 editing emerges as a key regulator of transcriptomic changes
within the olfactory bulb, establishing a new framework for understanding the functional
implications of Unc80 recoding.

The olfactory perception pathway initiates when an odorant binds to its receptor,
triggering a GPCR and subsequently causing a rise in intracellular cAMP concentration.
This increase in cAMP generates an action potential through ion influx, leading to neu-
ronal transduction [57–60]. Our high-throughput data suggest a signaling output tied to
Unc80-mediated neuronal regulation, potentially involved in neuronal differentiation or
electrophysiological alterations, signifying cellular changes at the molecular level. One par-
ticular gene, Zebd6, shows a significant change in expression in our dataset and is known to
play a role in metabolism and signal transduction pathways [61–63]. However, its specific
functions in the olfactory system and the associated signaling cascades remain undefined.
Given the intricacies of upstream regulation, it is plausible that the signaling cascade dy-
namically responds to changes in the expression or editing of intracellular Unc80. Our
research delineates novel regulatory functions of Unc80 and its RNA editing in olfactory
perception, presenting the first evidence of a previously unrecognized association between
Unc80 editing and olfactory function. This link opens up new avenues for understanding
sensory processes’ complexity and underlying molecular mechanisms.

4. Materials and Methods
4.1. CRISPR-Mediated Genome Editing for Generation of Point Mutant Mice

The CRISPR/Cas9 system was used to engineer Unc80 editing site mutations in vivo
in wild-type mice. Briefly, the linearized T7-Cas9 and T7-sgRNA PCR products were
gel purified and used as the templates for in vitro transcription (IVT) using mMESSAGE
mMACHINE T7 ULTRA kit (Thermo Fisher, Waltham, MA, USA) and MEGAshortscript T7
kit (Thermo Fisher), respectively. The resulting Cas9 mRNA and the sgRNAs were purified
using a MEGAclear kit (Thermo Fisher) and eluted in RNase-free water. B6D2F1 female
mice and ICR mouse strains were used as embryo donors and foster mothers, respectively.
Pre-determined concentrations of Cas9 mRNA, sgRNA, and oligonucleotides were mixed
and co-injected into the cytoplasm or pronucleus of fertilized eggs with well-recognized
pronuclei in the M2 medium (Sigma-Aldrich, Saint Louis, MO, USA). Injected zygotes
were cultured until the blastocyst stage by 3.5 days and then transferred to the uterus of
pseudopregnant ICR females. The single-stranded DNA oligonucleotide donor carrying
“pre-edited” alleles or silent mutations disrupting the editing substrate was synthesized
for co-injection.

4.2. Animals

Mice had ad libitum access to a standard diet and were housed in a pathogen-free
facility under a 12 h light/dark cycle. All breeding and experimental procedures were
conducted following IACUC guidelines at Chang Gung University, and the approval was
CGU111-164. For experimental purposes, male mice aged 2–5 months were utilized.

4.3. RNA Extraction, RT-PCR, and qPCR

RNA from specified tissues was extracted using TRIzol reagent (Invitrogen, Carls-
bad, CA, USA) and reverse-transcribed into cDNA using MML-V reverse transcriptase
(Invitrogen) with random hexamers according to the manufacturer’s instructions. The
Unc80 editing ratio was monitored by Sanger sequencing of PCR-amplified products using
primers for targeted regions. Gene expression was quantified by real-time PCR (Bio-Rad
CFX Connect Real-time system) with specific primers and analyzed with CFX Manager
Software version 3.1 (Bio-Rad, Hercules, CA, USA). Amplification was performed with
SYBR® Green Master Mix (Bio-Rad), starting with a 3-min heat at 95 ◦C, followed by
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40 cycles (95 ◦C for 10 s, 60 ◦C for 30 s), with a final dissociation curve stage. Relative gene
expression was normalized to internal control genes, with controls as reference. All results
were obtained from at least three independent experiments, presented as mean ± SEM,
and statistically evaluated using Student’s t-test.

4.4. Immunofluorescent Staining of Brain Tissue

Mice were transcardially perfused with cold phosphate-buffered solution (PBS) fol-
lowed by 4% paraformaldehyde after deep anesthesia. The whole brains were fixed in
4% paraformaldehyde for 48 hours and then stored in 30% sucrose solution for 48 hours.
Sagittal frozen sections (30 µm) were cut with a cryostat (Leica Microsystems, Wetzlar,
Germany, SM 2010R), permeabilized, and blocked with 10% BSA in 0.5% Triton X-100 for
2 h, then incubated overnight at 4 ◦C with primary antibodies against Unc80 (BS-12121R,
BIOSS, Woburn, MA, USA) and NeuN (MAB377, Merck Millipore, Darmstadt, Germany).
Images of the slices were acquired with a fluorescence microscope (BioTek Lionheart FX
Automated Microscope, Agilent, Santa Clara, CA, USA).

4.5. Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

The MRI technique involves placing anesthetized mice in a prone position within
an acrylic holder inside a cryo probe coil for MRI scans. The spin echo-planar imag-
ing DTI sequence, covering ten 200 µm coronal slices, matches the spatial dimensions
of T2-weighted reference images. Acquisition parameters such as field of view, ma-
trix dimensions, spatial resolution, and echo time are tailored to the experiment. Post-
processing includes fiber tractography and DTI index analysis using DSI studio software
(http://dsi-studio.labsolver.Org). Specifically, fiber tracts between both hippocampi are
evaluated, and regions-of-interest (ROIs) analyses quantify DTI indices like fractional
anisotropy (FA) and fiber tract numbers. For MEMRI, manganese (Mn2+), a natural cellular
constituent, serves as a T1-shortening MR contrast agent due to its paramagnetic properties
and cellular uptake similar to calcium ions [41,42]. Used in various imaging contexts,
including cardiac and hepatic imaging, MEMRI is particularly effective for imaging neu-
ronal activity. Mn2+ enters active neurons through voltage-gated calcium channels during
functional stimulation, accumulating in brain regions and enhancing T1-weighted images.
Additionally, manganese ions validate the principal eigenvector of the diffusion tensor in
axonal fiber orientation studies, aligning dMRI with Mn-enhanced MRI of neural tracts.

4.6. Chemical Exchange Saturation Transfer (CEST)-MRI

This high-resolution imaging technique maps specific elements in the brain by target-
ing exchangeable protons on molecules like OH groups. CEST-MRI selectively saturates
these protons with radio-frequency pulses, transferring their magnetization to bulk water
and reducing the water signal in a concentration-dependent manner. Sensitive to solute–
water proton interactions at specific frequencies, CEST-MRI can detect low-concentration
metabolites through their effects on the water signal without exogenous contrast agents.
This method has applications in mapping pH levels and protein concentrations in the
brain, exploiting amide protons (NH). In our study, CEST-MRI was applied to explore
glutamate and dopamine regulation in Unc80-based neural disorder models, aiming to
detect neurotransmission dynamics.

4.7. The Olfactory Habituation/Dishabituation Test

This test evaluates mice’s ability to detect and recognize odors, leveraging their natural
inclination for novelty [64]. Adult mice were exposed to filter papers infused with a first
odor for 45 s over seven trials for habituation, with odor refreshment between each trial.
For dishabituation, a second odor was introduced once in the same way. During the assays,
the mice’s behavior was recorded with a video camera. The duration of the investigation,
defined as the mouse making nasal contact with the filter paper within a 1 mm distance,
was recorded. To eliminate learning biases, the test was conducted only once.

http://dsi-studio.labsolver.Org
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4.8. RNA-Sequencing

Olfactory bulbs from CRISPR-engineered Unc80S/S and Unc80G/G mice were harvested,
and RNA was extracted using TRIzol reagent (Invitrogen). cDNA libraries prepared fol-
lowing the TruSeq® Stranded Total RNA Sample Preparation Guide (Illumina, San Diego,
CA, USA, Part # 15031048) were sequenced on a NextSeq 500 (Illumina) platform, gen-
erating 75 bp paired-end reads. Quality control and primer-adaptor sequence trimming
were conducted using Partek® Flow® Genomic Analysis Software version 10.0.23.0214
(Partek, San Diego, CA, USA), which also performed alignment to the mouse genome as-
sembly GRCm38 (mm10). Differential expression, volcano plots, and hierarchical clustering
analyses were executed using Partek’s statistical package.

4.9. In Silico Prediction of Unc80WT and Unc80S2367G Protein Structures

All protein models were generated using AlphaFold2 [35]. Structure alignment and
visualization were using the PyMOL Molecular Graphics System (Ver. 2.5.7, Schrödinger,
Portland, OR, USA) [36].

4.10. Neuro 2a Cell Culture and Transfection

Mouse Neuro 2a neuroblastoma cells were grown in MEM (Corning, Corning, NY,
USA) supplemented with NEAA (Invitrogen), L-Glutamine (Invitrogen), sodium pyruvate
(Invitrogen), 10% FBS (Gibco), 100 IU/L penicillin (Corning), and 10 µg/mL streptomycin
(Corning) at 37 ◦C in a 5% CO2 atmosphere. Cells were transfected using TransIT X2 (Mirus,
Marietta, GA, USA) following the manufacturer’s protocols. For Unc80 overexpression
experiments, cells were transfected for 24 h with 2.5 µg of pcDNA3.1(−) vectors encoding
GFP-tagged wild-type Unc80 or Unc80S2732G.

4.11. Indirect Immunofluorescence and Confocal Microscopy

Cells were fixed with 4% paraformaldehyde, permeabilized in 0.25% Triton X-100, and
blocked in blocking buffer (5% BSA in PBS). Cells were subsequently counter-stained with
DAPI in the dark for 5 min. Coverslips were mounted and analyzed by Confocal LSM780
microscopy (Zeiss, Oberkochen, Germany).
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