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Abstract: Chronic kidney disease (CKD) presents a significant global health challenge, characterized
by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic
data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to
elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We
employed a range of analytical methods including cross-tissue transcriptome-wide association studies
(TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These
analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function.
Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with
MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as
a therapeutic target. Capsaicin displayed promising drug–target interactions in molecular docking
analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique
metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and
colocalized with CKD and kidney function. These insights deepen our understanding of CKD
pathogenesis and highlight novel targets for treatment and prevention.

Keywords: chronic kidney disease; kidney function; multi-omic analysis; genomics; transcrip-
tomics; proteomics; drug target; Mendelian randomization; inflammatory proteins; Golgi apparatus-
related genes

1. Introduction

CKD has emerged as a leading global cause of death, with one of the most significant
increases in mortality rates among all diseases over the past decade [1,2]. The complex
etiology of CKD, driven by various genetic and environmental factors, complicates un-
derstanding its pathophysiology [3]. Therefore, identifying the genetic determinants of
CKD and kidney function is crucial for developing prevention strategies, discovering
novel therapeutic targets, and implementing precision medicine strategies to improve
patient outcomes.

Recent advances in genome-wide association studies (GWASs) from the published
projects of the CKDGen Consortium have unveiled numerous genetic variants associated
with CKD and kidney function-related traits, including biomarkers used to quantify kidney
function, such as glomerular filtration rate estimated from creatinine levels (eGFRcrea),
glomerular filtration rate estimated from serum cystatin C levels (eGFRcys), and blood urea
nitrogen (BUN), as well as the urine albumin-to-creatinine ratio (UACR), which serves as a
measure of kidney damage [4–6]. However, the mechanisms by which these loci influence
CKD and kidney function progression remain largely unelucidated, primarily because
most GWAS findings reside in non-coding regions of the genome, making them difficult
to interpret. TWAS offers an effective solution to overcome this limitation by focusing on
genes that are more interpretable and functional units than variants [7–9]. Nonetheless, the
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effectiveness of TWAS may be diminished by small sample sizes in expression quantitative
trait locus (eQTL) data or the absence of data from causally relevant tissues [10]. Recent
research suggests that gene regulation is often conserved across tissues [11–13]. Therefore,
integrating eQTL data from multiple tissues can significantly enhance the power of TWAS
in complex traits, such as CKD [14]. Additionally, MR and SMR have emerged as powerful
approaches to establish risk factors and identify drug targets for diseases. Combining
MR and SMR with multi-omic data offers valuable insights into disease etiology and
potential therapeutic targets, enhancing our understanding of the genetic underpinnings of
diseases [15–17].

Our study employed a comprehensive multi-omic approach to uncover the genetic
architecture of CKD and kidney function and identify potential therapeutic targets (Figure 1
displays a study overview). Using TWAS, followed by fine-mapping and conditional anal-
yses, we identified high-confidence genes crucial to CKD and kidney function. Further en-
richment and SMR analyses shed light on the significant role of the Golgi apparatus in CKD
and kidney function, unveiling a potential therapeutic pathway. Additionally, drug–target
MR analysis identified promising therapeutic targets, with subsequent drug prediction and
molecular docking studies indicating effective drug–target interactions. Metabolome-wide
and proteome-wide MR analyses revealed significant associations among CKD, kidney
function, and specific metabolites and inflammatory proteins, suggesting potential ther-
apeutic pathways. In summary, our research facilitates the understanding of the genetic
underpinnings of CKD and kidney function, identifying promising therapeutic targets and
offering novel insights for CKD management and treatment.
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canonical correlation analysis, PP.H4: posterior probability of hypothesis 4. 

Figure 1. Study overview. An overview of this study’s data sources, analytical flow, and methodology.
Created with BioRender.com. GWAS: genome-wide association study, TWAS: transcriptome-wide
association study, FOCUS: fine-mapping of causal gene sets, eQTL: expression quantitative trait locus,
pQTL: protein quantitative trait locus, PheWAS: phenome-wide association study, MR: Mendelian
randomization, SMR: summary-based MR, PWMR: proteome-wide MR, sCCA: sparse canonical
correlation analysis, PP.H4: posterior probability of hypothesis 4.
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2. Results
2.1. TWASs Identify Key Genetic Determinants of CKD and Kidney Function

We used FUSION [18], cross-tissue eQTL weights [14], and GWAS summary statis-
tics to impute gene expression signatures associated with CKD and kidney function-
related traits, including eGFRcrea, eGFRcys, BUN, and UACR. Our extensive TWAS
results, documented in Supplementary Tables S1–S8, incorporate results of colocaliza-
tion analyses and permutation tests (Supplementary Tables S1–S5), conditional analyses
(Supplementary Table S6), and fine-mapping of causal gene sets (FOCUS) analysis [19]
(Supplementary Table S7). Our analysis delineated 28 cross-tissue features significantly
associated with CKD, 565 with eGFRcrea, 488 with eGFRcys, 100 with BUN, and 142 with
UACR, all surpassing the Bonferroni threshold of p < 1.32 × 10−6 (Figure 2). To address
potential bias from linkage disequilibrium (LD) among variants affecting gene expression
and phenotypes independently, we conducted colocalization analyses [20]. This analy-
sis affirmed that nearly half of the associations were underpinned by shared pleiotropic
single-nucleotide polymorphisms (SNPs), impacting both gene expression and respective
phenotypes (10/28 for CKD, 203/565 for eGFRcrea, 189/488 for eGFRcys, 40/100 for BUN,
and 61/142 for UACR). Furthermore, many of these significant findings were confirmed us-
ing strict permutation testing, indicating that they are likely true effects rather than spurious
findings linked to strong GWAS signals. Additionally, 14 CKD, 220 eGFRcrea, 164 eGFRcys,
28 BUN, and 41 UACR unique features passed conditional analyses, suggesting genes
that directly influence kidney function-related traits rather than those co-expressed due to
shared genetic factors in the same region. FOCUS fine-mapping subsequently pinpointed
potential causal genes with high confidence. Ultimately, we identified five high-confidence
features for CKD, 60 for eGFRcrea, 60 for eGFRcys, 10 for BUN, and 11 for UACR (Table 1
and Supplementary Table S8). Notably, 12 features shared between eGFRcrea and eGFRcys
likely reflect general kidney function attributes rather than specific to creatinine or cystatin
C metabolism (Figure 2). Among the five high-confidence features for CKD, DIP2C, and
RICTOR were each observed in eGFRcrea and eGFRcys, underscoring their critical role in
kidney health.

Table 1. High-confidence genes associated with CKD and kidney function (TWAS significant, condi-
tionally significant, and PIP > 0.5).

Trait Gene TWAS
Z-Score

FOCUS
PIP

Joint p Value
(Conditional Analysis) PP.H4 Permutation Test

p Value

CKD

ENSG00000279821 −7.03 0.957 2.10 × 10−12 0.947 3.41 × 10−2

PABIR1 −6.01 1 1.80 × 10−9 0.986 1.85 × 10−3

RICTOR −5.80 1 6.60 × 10−9 0.937 2.53 × 10−2

MAP3K11 −5.76 0.612 3.30 × 10−5 0.968 2.78 × 10−2

DIP2C −5.04 1 4.60 × 10−7 0.976 7.52 × 10−3

eGFRcrea

RPL19 −15.82 1 6.00 × 10−9 0.854 5.64 × 10−4

KDM5A −10.99 1 1.50 × 10−6 0.971 0
SGSM3 9.92 1 5.90 × 10−17 0.96 9.49 × 10−4

DNAJC16 −9.88 0.998 9.10 × 10−13 0.996 0
PHTF2 9.66 1 4.50 × 10−22 0.851 2.53 × 10−2

eGFRcys

FUBP1 −9.58 1 3.20 × 10−17 1 0
PRMT6 −7.10 1 1.20 × 10−12 0.989 9.01 × 10−3

CSF1 8.80 1 1.40 × 10−18 1 2.11 × 10−4

DPYD −5.15 0.998 2.60 × 10−07 0.917 4.17 × 10−2

NR1I3 −5.89 0.827 3.90 × 10−09 0.952 2.12 × 10−3
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Table 1. Cont.

Trait Gene TWAS
Z-Score

FOCUS
PIP

Joint p Value
(Conditional Analysis) PP.H4 Permutation Test

p Value

BUN

THBS3 13.60 1 1.50 × 10−27 0.997 0
MUC1 13.53 1 1.90 × 10−33 0.954 0
NTN5 10.14 0.704 3.80 × 10−24 0.984 8.00 × 10−5

MIER1 −8.21 1 2.20 × 10−16 0.983 2.10 × 10−2

NCK1-DT −8.07 0.975 1.50 × 10−7 0.976 1.28 × 10−2

UACR

MUC1 −6.83 0.976 1.60 × 10−4 0.996 1.31 × 10−2

GGCX −7.58 1 3.50 × 10−14 0.894 8.00 × 10−4

RPL12P16 −7.12 0.992 4.10 × 10−4 0.913 5.40 × 10−3

PRKCI −5.08 0.997 3.80 × 10−7 0.999 7.26 × 10−4

IRF1 6.47 0.929 9.60 × 10−11 0.899 3.23 × 10−3

High-confidence results from TWAS analyses. The top 5 most significant associations for each trait are presented
here. TWASs utilized cross-tissue expression weights generated from the GTEx V8 release using sCCA. Associa-
tions were deemed high-confidence if they met the following criteria: (1) exceeded the Bonferroni threshold of
p < 1.32 × 10−6 (0.05/37,917 cross-tissue sCCA features); (2) showed colocalization (PP.H4 > 0.8); (3) passed a
permutation analysis (p-value < 0.05); (4) passed conditional testing (joint p-value < 0.05); and (5) passed FOCUS
fine-mapping (PIP > 0.5). A Permutation test p-value of 0 signifies an association significantly stronger than any
permutation result, implying a p-value < 0.00001.

2.2. Cell-Type and Tissue Enrichment Analysis for High-Confidence TWAS Genes

Using the CellMarker database through Enrichr, we analyzed the cell and tissue
expression specificity of the high-confidence genes identified from our TWAS analysis.
The results indicate significant enrichment of these genes in several cell and tissue types
(Supplementary Figure S1). Notably, we observed significant enrichment in natural killer T
(NKT) cells from fetal kidney based on 45 high-confidence genes that are highly expressed
in this cell type. The significant enrichment of these genes in NKT cells from fetal kidney
suggests that they may play an essential role in the early development and immune
modulation of the kidney. Additionally, the enrichment of significant genes in other cell
and tissue types indicates the functional diversity of these genes and the complex genetic
underpinnings of CKD and kidney function.

2.3. High-Confidence TWAS Genes Are Associated with Diverse Biological Functions

To investigate the function of the high-confidence genes identified through the TWAS,
we conducted a comprehensive gene set enrichment analysis. The analysis revealed that
our high-confidence genes are associated with a broad range of biological processes, cel-
lular components, and molecular functions (Figure 3). Specifically, biological processes,
including ossification and vesicle organization, were found to be significantly enriched,
suggesting that these genes play significant roles in skeletal health and intracellular trans-
port. In terms of cellular components, notable enrichment in components such as the
endosome and Golgi apparatus underscores these genes’ vital roles in cellular trafficking
and processing. Moreover, molecular functions like activin-activated receptor activity were
prominently enriched, reflecting their potential involvement in signaling pathways. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the significant
engagement of these genes in pathways related to thyroid cancer, shigellosis, and tran-
scriptional misregulation in cancer. Additionally, Reactome pathway analysis identified
significant associations in pathways like signaling by bone morphogenetic protein (BMP),
RAB geranylgeranylation, and signaling by activin, which are closely associated with the
TGF-β signaling pathway [21–23]. The TGF-β signaling pathway is intimately linked to
kidney fibrosis and plays a critical role in the progression of CKD. These results underscore
the complex genetic underpinnings of these genes.

The diverse functions of the identified genes may offer novel insights into renal patho-
physiology and potential therapeutic targets. Notably, the enrichment analysis results
included multiple gene sets associated with the Golgi apparatus (Figure 3), possibly indi-



Int. J. Mol. Sci. 2024, 25, 6033 5 of 26

cating a close relationship between Golgi apparatus function and CKD as well as kidney
function. Further investigation into this connection may reveal new genetic mechanisms
and therapeutic targets.

1 
 

 

Figure 2. TWAS results for CKD and kidney function. (A–E). Manhattan plots of gene–trait asso-
ciations for CKD, eGFRcrea, eGFRcys, BUN, and UACR. The X-axis represents genomic positions,
and the Y−axis represents the Z-scores of the gene–trait associations. The blue lines indicate the
Bonferroni-corrected significance threshold (Z = 4.837, corresponding to p = 1.32 × 10−6). The top
30 statistically significant gene-trait associations are highlighted with red circles. (F). Venn diagram
illustrating the overlap of the 146 significant high-confidence TWAS features identified through the
integration of TWAS, colocalization, permutation analysis, and FOCUS fine-mapping. The numbers
within the diagram represent the count of significant features specific to each trait or shared among
multiple traits.
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Figure 3. Gene set enrichment analysis for high-confidence TWAS genes. The bar plot displays the
top 5 enriched gene sets in the study, categorized by biological process (BP), cellular component
(CC), molecular function (MF), KEGG pathways, and Reactome pathways. Alongside each bar, the
associated genes for the corresponding terms are specified.

2.4. SMR Identifies the Association of GARGs with CKD and Kidney Function

To further investigate the association of GARGs with CKD and kidney function, we
conducted SMR analyses of GARGs on CKD and kidney-related traits. The results showing
strong evidence of an association (false discovery rate (FDR)-adjusted PSMR < 0.1) were as-
sessed using the heterogeneity independent instruments (HEIDI) test (PHEIDI > 0.01), which
was implemented with SMR software (version 1.3.1). The HEIDI test was used to investigate
whether the association was due to a shared causal variant or pleiotropy. We thus identified
two unique genetic associations for CKD, 62 for eGFRcrea, 74 for eGFRcys, 22 for BUN, and
32 for UACR. Sensitivity analysis using additional MR methods relying on similar assump-
tions was conducted and shown to support our findings (Supplementary Tables S9–S13).
We further performed colocalization analysis to detect shared causal variants between
the target trait and GARG eQTLs. Results indicated that 16 genes exhibited strong evi-
dence of colocalization with the CKD and kidney-related traits (posterior probability of
hypothesis 4 (PP.H4) > 0.80) (Table 2). Higher ATF6B expression levels were associated with
an increased risk of CKD. Higher NFE2L2 expression was significantly linked to higher
eGFRcrea. Conversely, higher STK24 and PRKCE expression levels were associated with
lower eGFRcrea, with PRKCE additionally associated with lower eGFRcys, suggesting a
potentially detrimental impact on kidney function. Moreover, higher RASIP1 expression
was negatively associated with BUN levels and positively associated with UACR, illustrat-
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ing its complex role in kidney health. These results highlight the significant impact of Golgi
apparatus-related genes on CKD and kidney function.

Table 2. SMR identifies GARGs associated with CKD and kidney function.

Trait Gene Effect Size (95% CI) a FDR-Adjusted PSMR PHEIDI PP.H4

CKD ATF6B 1.144 (1.067, 1.227) 0.089 0.11 0.85

eGFRcrea

ZDHHC18 0.006 (0.004, 0.008) 1.51 × 10−5 0.50 0.93
WHAMM −0.007 (−0.010, −0.005) 3.74 × 10−5 0.34 0.98
NFE2L2 0.042 (0.025, 0.059) 1.15 × 10−4 0.06 0.97

ABO −0.003 (−0.004, −0.002) 1.15 × 10−4 0.23 0.88
PRKCE −0.015 (−0.021, −0.009) 1.97 × 10−4 0.52 1.00
STK24 −0.009 (−0.014, −0.005) 2.38 × 10−3 0.22 0.84

eGFRcys

COG5 0.004 (0.003, 0.005) 5.35 × 10−12 0.32 0.87
PRKCE −0.025 (−0.033, −0.018) 9.09 × 10−9 0.40 1.00
GLT8D1 −0.021 (−0.030, −0.012) 1.43 × 10−4 0.31 0.82

PJA2 0.005 (0.003, 0.007) 2.21 × 10−4 0.73 0.92
MAPK3 0.004 (0.002, 0.006) 1.11 × 10−3 0.84 0.87
DDHD2 0.010 (0.005, 0.014) 1.39 × 10−3 0.90 0.87

BUN
RASIP1 −0.112 (−0.144, −0.079) 1.47 × 10−8 0.51 0.99
MSH6 0.009 (0.005, 0.013) 4.65 × 10−3 0.02 0.93

UACR RASIP1 0.184 (0.123, 0.244) 9.66 × 10−7 0.19 0.97

Results from our SMR analysis. Genes showing significant associations with the trait, as determined with
FDR-adjusted PSMR < 0.1 and a PHEIDI > 0.01, and evidence of colocalization with PP.H4 > 0.8 is displayed.
a Effect size represents the odds ratio (OR) for CKD and the beta coefficient (β) for all other traits. 95% CI: 95%
confidence intervals.

2.5. MR Identifies Potential Drug Targets for CKD and Kidney Function

To identify additional potential therapeutic targets for CKD and kidney function, our
study embarked on a drug–target MR analysis, in parallel with our TWAS. Leveraging
eQTLs within 100 kb of each druggable gene as instrumental variables, we assessed their
impact on CKD and related kidney function traits [24]. Our primary MR analysis identified
six unique genetic targets for CKD, 58 for eGFRcrea, 61 for eGFRcys, 23 for BUN, and 31
for UACR, following Bonferroni correction (Supplementary Table S14).

However, sensitivity tests revealed that AKR1A1, DSTYK, GSR, MAPK3, PDIA3,
and SLC22A5 demonstrated inconsistent effect directions across different MR methods
(Supplementary Table S14), while BLK, PTGFR, NRG1, C12orf39, SLC22A5, and LTBP4
did not pass the horizontal pleiotropy assessment (p < 0.05, Supplementary Table S15).
Subsequent colocalization analyses aimed to ascertain whether SNPs linked to both the
target trait and eQTL share causal variants. Results indicated 34 genes exhibited substantial
colocalization with the target traits (PP.H4 > 0.80), positioning them as candidate therapeutic
targets (1/6 for CKD, 16/55 for eGFRcrea, 14/57 for eGFRcys, 6/22 for BUN, and 4/28
for UACR) (Table 3 and Supplementary Table S17). Notably, genes such as MAP3K11,
ACVR2A, ITIH4, KLHL24, LNPEP, and THBS3 were confirmed as high-confidence genes
from our TWAS, highlighting their potential critical roles in CKD and kidney function. In
particular, MR results suggest that decreased MAP3K11 expression correlates with a lower
CKD risk. Furthermore, CASP9 was significantly associated with eGFRcrea, eGFRcys, and
BUN, which is consistent with previous reports of its role in renal pathologies [25].
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Table 3. MR identifies druggable genes associated with CKD and kidney function.

Trait Gene Method Effect Size (95% CI) a p Value PP.H4

CKD MAP3K11 IVW b 1.102 (1.067, 1.139) 6.85 × 10−9 0.891

eGFRcrea

STK36 IVW −0.009 (−0.012, −0.005) 1.21 × 10−6 0.963
IMPDH2 Wald ratio −0.027 (−0.038, −0.016) 1.03 × 10−6 0.973

UCN Wald ratio 0.040 (0.022, 0.057) 6.90 × 10−6 0.952
LAMC1 IVW 0.002 (0.001, 0.003) 4.74 × 10−7 0.834
NRG4 Wald ratio −0.038 (−0.047, −0.028) 1.48 × 10−14 0.813
POR IVW 0.003 (0.002, 0.005) 1.23 × 10−5 0.888
GPX1 IVW −0.019 (−0.025, −0.013) 4.57 × 10−10 0.963

S × 10MA4B IVW −0.006 (−0.008, −0.003) 1.52 × 10−5 0.957
KCNMA1 IVW 0.004 (0.003, 0.005) 5.21 × 10−13 0.917
KBTBD2 IVW 0.003 (0.002, 0.005) 1.34 × 10−5 0.915
ACVR2A IVW −0.009 (−0.013, −0.005) 8.57 × 10−7 0.866
MAST3 IVW −0.006 (−0.008, −0.003) 9.11 × 10−6 0.956
CASP9 IVW −0.008 (−0.010, −0.005) 1.99 × 10−11 0.927

BTN3A2 IVW 0.002 (0.001, 0.003) 6.34 × 10−6 0.882
CA3 Wald ratio 0.038 (0.022, 0.053) 2.21 × 10−6 0.967

ITIH4 IVW 0.004 (0.003, 0.005) 1.32 × 10−18 0.979

eGFRcys

STK36 IVW −0.017 (−0.024, −0.010) 1.07 × 10−6 0.891
IMPDH2 Wald ratio −0.031 (−0.044, −0.017) 9.49 × 10−6 0.963
CHRNB1 IVW −0.006 (−0.009, −0.003) 1.59 × 10−5 0.916
MANBA IVW 0.017 (0.014, 0.020) 2.15 × 10−29 0.993
KLHL24 IVW −0.006 (−0.007, −0.004) 5.67 × 10−13 0.851

GPX1 IVW −0.027 (−0.035, −0.019) 1.07 × 10−10 0.924
MGMT IVW −0.003 (−0.004, −0.002) 5.81 × 10−9 0.875
PSMB10 IVW −0.023 (−0.031, −0.015) 1.63 × 10−8 0.972
FKBP5 Wald ratio −0.049 (−0.071, −0.028) 9.49 × 10−6 0.894
LNPEP IVW 0.009 (0.006, 0.011) 1.01 × 10−9 0.906
PPIA IVW 0.011 (0.008, 0.014) 3.73 × 10−13 0.970
NEU1 IVW 0.039 (0.031, 0.047) 4.90 × 10−20 0.981

TOP2A Wald ratio −0.053 (−0.077, −0.030) 1.08 × 10−5 0.887
CASP9 IVW −0.007 (−0.009, −0.005) 3.48 × 10−11 0.943

BUN

WFIKKN1 IVW 0.012 (0.007, 0.017) 1.18 × 10−5 0.946
NRG4 Wald ratio 0.074 (0.050, 0.097) 6.20 × 10−10 0.814
WNT6 Wald ratio −0.130 (−0.175, −0.084) 2.77 × 10−8 0.972
LDHA IVW −0.017 (−0.024, −0.009) 1.16 × 10−5 0.850
THBS3 IVW −0.019 (−0.023, −0.014) 6.00 × 10−16 1.000
CASP9 IVW 0.012 (0.008, 0.016) 5.89 × 10−8 0.899

UACR

UCN Wald ratio 0.269 (0.170, 0.368) 9.88 × 10−8 0.974
SLC22A4 IVW 0.028 (0.019, 0.038) 5.86 × 10−9 0.945

NEK4 Wald ratio −0.167 (−0.230, −0.105) 1.72 × 10−7 0.922
PNMT Wald ratio 0.180 (0.117, 0.242) 1.50 × 10−8 0.990

Genes exhibiting significant association with the trait, passing a Bonferroni threshold of 1.90 × 10−5 (p = 0.05/2644),
and exhibiting colocalization with PP.H4 > 0.8 are displayed. a Effect size represents the OR for CKD and the beta
coefficient for all other traits. b Inverse variance weighted (IVW).

2.6. Phenome-Wide Association Study (PheWAS) Analysis for MR-Identified Druggable Genes

To assess the implications of pharmacological intervention on genes identified us-
ing MR analysis, we conducted a PheWAS utilizing the AstraZeneca PheWAS Portal
database [26]. Our findings, detailed in Supplementary Table S18, indicate that the majority
of the druggable genes identified did not exhibit significant associations with non-renal
traits. This lack of association suggests minimal off-target effects and horizontal pleiotropy,
thus reinforcing the specificity and potential safety of these potential drug targets. No-
tably, eight genes were linked to 14 distinct phenotypes, with IMPDH2 and ITIH4 being
specifically related to inflammatory traits, while LAMC1 and NEU1 were correlated with
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cardiometabolic traits. Given the intricate interplay among kidney disease, inflammation,
and cardiometabolic processes, future research endeavors should prioritize investigating
how the multifaceted roles of these genes may influence kidney disease therapeutics.

2.7. Candidate Drug Prediction

We utilized the DSigDB database to identify potentially effective intervention drugs
for the druggable genes identified in the MR study. Based on the adjusted p-values, the
top 10 potential chemical compounds were shown (Figure 4). The result showed that
L-aspartic acid and capsaicin were the most significant drugs, linked to six druggable
genes. Furthermore, 5-fluorouracil, a therapeutic agent for various cancers, showed the
most extensive gene interactions.
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2.8. Molecular Docking Analysis Unraveling Drug–Target Affinity and Evaluating Druggability

To assess the potential druggability of targets by assessing the affinity of drug candi-
dates, we performed molecular docking to explore the interactions between the top three
drug candidates and the proteins encoded by the corresponding genes. The AutoDock Vina
was utilized to conduct the molecular docking studies, and a total of 23 docking results
were obtained, 17 of which had binding energies below −5.0 kcal/mol (Table 4, Figure 5
and Supplementary Figures S2–S16). Binding energy is a measure of the strength of the
interaction between a drug and its target, with lower values indicating more stable binding.
The interaction between capsaicin and CASP9, characterized by the lowest binding energy
of −7.483 kcal/mol, signifies highly stable binding, highlighting its potential as a drug
candidate. Specifically, capsaicin is situated at the dimer interface of CASP9, where it
forms hydrogen bonds with Gly241 (Monomer B) and Gln240 (Monomer A), alongside
hydrophobic interactions with several other residues, leading to a stable binding conforma-
tion (Figure 5A). Similarly, capsaicin forms both hydrophobic and hydrophilic interactions
at the catalytic region and D4 domain interface of LNPEP, indicating a potential regulatory
effect on LNPEP activity (Figure 5B). For all drug–target interactions with binding energies
below −5.0 kcal/mol, the formation of hydrogen bonds and the achievement of stable
conformations within the protein targets were consistently observed, highlighting the
potential of these drug candidates (Supplementary Figures S2–S16).
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Figure 5. Molecular docking analysis of capsaicin with CASP9 and LNPEP. (A). (Left) The overall
structure of the CASP9 dimer complexed with capsaicin, with monomer A depicted in yellow and
monomer B in cyan. (Right) A close-up view of the binding pocket, with capsaicin highlighted in
green, the amino acid residues involved in binding shown as pale red sticks, and polar interactions
indicated by blue dashed lines. (B). (Left) The overall structure of LNPEP in complex with capsaicin.
(Right) A close-up view of the binding pocket, with the color scheme and symbols corresponding to
those in panel A.
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Table 4. Molecular docking results of potential drug candidates with their target proteins.

Target PDB ID Drug PubChem ID Binding Energy b

CASP9 1JXQ Capsaicin 1548943 −7.483
LNPEP 4PJ6 Capsaicin 1548943 −6.626
ITIH4 AF-Q14624-F1 a Capsaicin 1548943 −6.411
LDHA 4ZVV Capsaicin 1548943 −6.298
GPX1 2F8A Capsaicin 1548943 −6.245
CA3 3UYQ Capsaicin 1548943 −5.875

TOP2A 6ZY5 5-Fluorouracil 3385 −5.827
NEK4 AF-P51957-F1 a 5-Fluorouracil 3385 −5.654

KLHL24 AF-Q6TFL4-F1 a 5-Fluorouracil 3385 −5.545
IMDH2 1B3O 5-Fluorouracil 3385 −5.502
LAMC1 AF-P11047-F1 a 5-Fluorouracil 3385 −5.391
MGMT 1QNT 5-Fluorouracil 3385 −5.312
CASP9 1JXQ 5-Fluorouracil 3385 −5.296
CASP9 1JXQ L-aspartic acid 5960 −5.066
LDHA 4ZVV 5-Fluorouracil 3385 −5.051
LNPEP 4PJ6 L-aspartic acid 5960 −5.018

CA3 3UYQ L-aspartic acid 5960 −5.009
LDHA 4ZVV L-aspartic acid 5960 −4.679
FKBP5 5OMP 5-Fluorouracil 3385 −4.66
GPX1 2F8A 5-Fluorouracil 3385 −4.622

PSMB10 6E5B 5-Fluorouracil 3385 −4.579
ITIH4 AF-Q14624-F1 a L-aspartic acid 5960 −4.511
GPX1 2F8A L-aspartic acid 5960 −4.189

a The structures predicted by the AlphaFold database (https://alphafold.ebi.ac.uk/, accessed on 26 February
2024) were utilized due to the absence of experimentally determined structures. b Binding energy, measured in
kcal/mol, quantifies the affinity between each drug and its target, with more negative values indicating stronger
binding interactions.

2.9. PWMR Identifies Links between Inflammatory Proteins and Kidney Disease

Given the significant link between inflammation and CKD, as highlighted by our
PheWAS findings, we performed a PWMR analysis of 91 circulating inflammatory proteins
on CKD and kidney-related traits to further investigate their roles in CKD and kidney func-
tion. The primary MR analysis revealed significant associations with two for eGFRcys, two
for BUN, and three for UACR after Bonferroni correction (Supplementary Tables S19–S23).
However, sensitivity analyses indicated that SULT1A1 showed an inconsistent direction of
effect across three methods (Supplementary Table S20). In addition, horizontal pleiotropy
was not detected using MR-Egger intercept tests (p > 0.05), supporting the robustness
of our results. The MR analysis highlighted the renoprotective potential of FGF5, with
higher plasma FGF5 levels associated with a lower risk of CKD (OR = 0.908), higher eGFR-
crea (β = 0.005) and eGFRcys (β = 0.004), and lower BUN levels (β = −0.007) (Table 5).
Further colocalization analysis revealed that five of the 13 proteins exhibited strong evi-
dence of colocalization with their respective target traits (PP.H4 > 0.8), especially FGF5,
which demonstrated significant colocalization with CKD, eGFRcrea, eGFRcys, and BUN,
reinforcing its potential as a therapeutic target for CKD.

https://alphafold.ebi.ac.uk/
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Table 5. PWMR identifies inflammatory proteins significantly associated with CKD and kidney function.

Trait Protein Method Effect Size (95% CI) a p Value PP.H4

CKD FGF5 IVW 0.908 (0.876, 0.942) 2.25 × 10−7 0.976
eGFRcrea FGF5 IVW 0.005 (0.004, 0.006) 3.54 × 10−13 0.958
eGFRcrea DNER IVW −0.005 (−0.008, −0.003) 1.55 × 10−4 0.960
eGFRcys FGF5 IVW 0.004 (0.002, 0.006) 3.05 × 10−5 0.995

BUN FGF5 IVW −0.007 (−0.009, −0.004) 2.60 × 10−6 0.975
Results from our PWMR analysis. Proteins exhibiting a significant association with the trait after Bonferroni
adjustment and exhibiting colocalization with PP.H4 > 0.8 are displayed. a Effect size represents the odds ratio
(OR) for CKD and the beta coefficient (β) for all other traits.

2.10. Metabolome-Wide MR Reveals Key Metabolites Associated with CKD and Kidney Function

To investigate the impact of circulating metabolites on CKD and kidney function, we
performed a metabolome-wide MR analysis of 1091 blood metabolites and 309 metabolite
ratios on CKD and kidney-related traits. The main analysis identified 34 metabolites or
metabolite ratios with significant effects on CKD, 21 on eGFRcrea, three on eGFRcys, six
on BUN, and 12 on UACR, after Bonferroni correction (Supplementary Table S24). No
horizontal pleiotropy was detected using MR-Egger intercept tests (p > 0.05), affirming the
robustness of our findings (Supplementary Table S25). Moreover, we eliminated genetic
variants associated with multiple metabolites and unidentified metabolites. Ultimately,
we identified a total of 33 metabolites that significantly impact CKD and kidney function-
related phenotypes (Figure 6). Notably, 2-hydroxyoctanoate (OR = 1.30) and Gamma-
glutamyl histidine (OR = 0.59) were the most positively and negatively correlated with
CKD, respectively. Palmitoleoylcarnitine (C16:1) showed the highest positive association
with eGFRcrea (β = 0.016), while the citrulline to phosphate ratio was most negatively
correlated (β = −0.017). For eGFRcys, the metabolite 1-myristoyl-2-arachidonoyl-GPC
(14:0/20:4) had the strongest positive correlation (β = 0.022). For BUN, 2-hydroxyoctanoate
also showed a strong positive correlation (β = 0.022), whereas N-alpha-acetylornithine
had a significant negative association (β = −0.023). Finally, for UACR, the glucose to
N-palmitoyl-sphinganine (d18:0 to 16:0) ratio showed the highest positive correlation
(β = 0.108), and the aspartate to mannose ratio emerged as the metabolite with the strongest
negative correlation (β = −0.109). Additionally, several metabolites were identified as being
significantly associated with multiple traits (Figure 6F). For example, 2-hydroxyoctanoate
was linked closely with both CKD and BUN, while N-acetylcitrulline was significantly
associated with CKD and eGFRcrea. Notably, higher levels of N-acetylalliin are associated
with a lower risk of CKD and decreased BUN levels, highlighting its potential protective
role in kidney health. These insights highlight the critical role of circulating metabolites
in kidney health, emphasizing their importance in CKD research and the need to explore
their mechanisms further.
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Figure 6. Results of metabolome-wide MR analysis on CKD and kidney function. (A–E). The volcano
plots illustrate the association of metabolites with CKD (A), eGFRcrea (B), eGFRcys (C), BUN (D), and
UACR (E). The effect size is plotted on the X-axis with odds ratio (OR) for CKD and beta coefficients
for other kidney function traits. The Y-axis represents the −log10(p-value), quantifying the statistical
significance of the metabolite associations. The dotted line corresponds to the Bonferroni-adjusted
significance threshold, with metabolites above this line considered significant. Red points denote
metabolites with a positive effect, blue points represent those with a negative effect, and yellow points
signify non-significant associations. (F). Venn diagram illustrating the overlap of the 33 significant
metabolites identified across the different kidney-related traits in the metabolome-wide MR. The
numbers within the diagram represent the count of significant metabolites specific to each trait or
shared among multiple traits.
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3. Discussion

Our study represents a significant advancement in understanding the complex ge-
netic underlying of CKD and kidney function by leveraging large genomic data sources
and a multi-omic approach. To enhance the study’s reliability and comprehensiveness,
we conducted comprehensive analyses across CKD, various kidney function markers
(eGFRcrea, eGFRcys, and BUN), and an indicator of kidney damage (UACR). Our TWAS
identified 146 high-confidence cross-tissue features closely linked to CKD and kidney
function, shedding light on the intricate genetic framework influencing the disease. Further
gene enrichment analysis revealed a significant association of these genes with various
processes, such as bone health and the Golgi apparatus, underscoring the complex genetic
basis of kidney function. Building on this foundation, we performed SMR analyses and
identified several GARGs significantly associated with CKD and kidney function, thereby
highlighting the critical role of GARGs in kidney pathology. In parallel, our drug–target
MR analysis identified 34 potential therapeutic targets, notably MAP3K11 and CASP9,
tied to causal relationships with CKD and kidney function, suggesting their viability as
treatment targets. Furthermore, our drug prediction and molecular docking analysis iden-
tified potential compounds, like L-aspartic acid and capsaicin, indicating new pathways
for CKD treatment through these targets. These findings offer promising avenues for the
development of targeted therapies for CKD. Further expanding our understanding, the
PWMR analysis highlighted the significance of FGF5 in CKD and kidney function, suggest-
ing it as a potential therapeutic target. The metabolome-wide MR analysis also identified
key metabolites associated with CKD and kidney function, such as 2-hydroxyoctanoate
and N-acetylalliin, illustrating the critical role of circulating metabolites in kidney health.
Overall, our study illuminates the complex genetic, metabolic, and inflammatory underpin-
nings of CKD and kidney function, providing novel insights into its complex etiology and
identifying promising therapeutic targets for future research and drug development.

Our TWAS identified many genes that have been previously reported to be closely
associated with kidney function and disease, supporting the validity of our approach. For
instance, the expression level RICTOR is significantly associated with a decreased risk of
CKD and an increased level of eGFRcys, corroborating previous studies that highlighted its
crucial role in protecting against kidney diseases, including acute kidney injury and renal
inflammation [27,28]. IRF5 significantly influences the progression of polycystic kidney
disease (PKD) by enhancing inflammatory cytokine production in resident macrophages,
a key factor in accelerating cystogenesis [29]. L3MBTL2 plays a protective role in kidney
injury, partly by inhibiting the DNA damage-p53-apoptosis pathway [30]. Specifically,
carboxy-terminal frameshift variants in TREX1 mutations have been associated with auto-
somal dominant renal thrombotic microangiopathy (TMA) and CKD [31]. SH3YL1 protein
plays a crucial role in mediating oxidative stress pathways leading to acute kidney injury
and serves as a predictive biomarker for renal outcomes in type 2 diabetes patients [32].
KLF5 contributes to the preservation of podocyte function and prevention of apoptosis
through the regulation of crucial pathways, which are pivotal in the context of kidney
diseases [33].

Among the 60 unique high-confidence TWAS genes associated with eGFRcrea, 20 over-
lapped with loci previously reported in the GWAS study by Stanzick KJ et al., who identified
424 non-overlapping loci for eGFRcrea [5]. This overlap underscores the robustness of
our findings and suggests that these genes play significant roles in kidney function, as
evidenced by their identification using both GWAS and TWAS methodologies. The method-
ological differences between TWASs and GWASs contribute to the complementary nature
of these findings. While GWASs identify loci associated with traits, TWASs link these loci to
specific gene expressions, offering a more functional understanding of genetic associations
and highlighting regulatory mechanisms.

The cell type and tissue enrichment analysis revealed significant enrichment of 45 high-
confidence TWAS genes in natural killer T (NKT) cells from fetal kidney. NKT cells play
crucial roles in kidney diseases, influencing inflammation, tissue repair, and fibrosis. The
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identified genes may modulate immune responses, contributing to renal pathophysiology.
Previous research has shown that NKT cells in the kidney increase with age and can
be further activated by synthetic ligands (alpha-galactosylceramide) or bacterial DNA
(CpG-ODN), causing acute kidney injury (AKI). They also play significant roles in lupus
nephritis through Th2 immune responses [34]. In summary, our findings of significant
gene enrichment in NKT cells from fetal kidney add a new dimension to the existing
understanding of NKT cells’ roles in kidney health and disease, potentially highlighting
new pathways for therapeutic intervention.

Our gene set enrichment analysis identified three TGF-β family members—ACVR2A,
ACVR2B, and UBE2D3—and three Rab family members—RAB25, RAB8B, and RAB22A—
that are closely associated with the TGF-β signaling pathway [23]. Kidney fibrosis, a
hallmark of CKD progression, is characterized by the excessive accumulation of extracellu-
lar matrix (ECM) components, leading to scarring and functional decline of the kidney [35].
The TGF-β signaling pathway plays a central role in this process by promoting the ac-
tivation of fibroblasts and the production of ECM proteins. Specifically, TGF-β1 drives
epithelial-mesenchymal transition (EMT) and ECM deposition in the kidney [36]. Accord-
ingly, these six genes may play significant roles in kidney fibrosis, and further experimental
investigation into their roles in the onset and progression of kidney disease is warranted.

Additionally, our gene set enrichment analysis identified the high-confidence TWAS
genes significantly associated with vesicle organization, endosome, trans-Golgi network
transport vesicle, and Golgi-associated vesicles. These processes are closely linked to the
Golgi apparatus, suggesting a potentially significant relationship between the function of
the Golgi apparatus and both CKD and kidney function. The Golgi apparatus is crucial for
a variety of cellular homeostatic functions, including trafficking, sorting, and modification
of proteins and lipids. Dysfunctions in Golgi-associated processes have been implicated
in a wide range of diseases, including neurodegenerative disorders, cancer, infectious
diseases, and cardiovascular conditions [37]. Prompted by these insights, we conducted
SMR analysis to explore the role of GARGs in CKD and kidney function, identifying several
GARGs, such as NFE2L2, STK24, and PRKCE, with significant associations with CKD and
kidney function. Our study demonstrated that increased PRKCE expression levels corre-
late with lower eGFRcrea, while recent research suggests that inhibiting PKC-ε signaling
could prevent hypoxia-induced acute kidney injury (AKI), indicating that suppressing
PRKCE expression might offer renal protective effects [38]. Additionally, recent research
has highlighted the role of the Pdcd10–STK24/25 complex in controlling kidney water re-
absorption, underscoring the importance of STK24 in kidney function [39]. Notably, NRF2,
a transcription factor encoded by NFE2L2, plays a critical role in regulating redox balance
and antioxidant responses, offering protection against oxidative stress and inflammation in
the kidney [40]. Several studies have demonstrated the protective roles of NRF2 activation
in various kidney diseases, including acute kidney injury, diabetic nephropathy, and CKD,
making it a promising therapeutic target for kidney diseases [41–43].

Our drug–target MR analysis underscored key genes that could serve as therapeu-
tic targets for CKD and kidney function. MAP3K11, with a strong positive association
with CKD supported by colocalization evidence, was also identified as a high-confidence
gene using TWAS. Additionally, members of the MAP3K family, such as MAP3K5 (ASK1)
and MAP3K14 (NIK), are known to be important in kidney disease [44], suggesting that
modulating MAP3K11 activity could be a promising therapeutic strategy. The associa-
tion between GPX1 and decreased eGFRcrea highlights its critical role in kidney disease
progression. As a vital enzyme that neutralizes hydrogen peroxide, GPX1 is essential
in protecting cells from oxidative damage [45]. Previous research suggests that GPX1
could act as both a biomarker and a therapeutic target for renal cell carcinoma (RCC) [46].
This insight positions GPX1 as a promising therapeutic target for CKD, underscoring the
tight connection between oxidative balance and kidney health. NRG4 shows a strong
association with preserved kidney function, alongside reduced mRNA expression in the
adipose tissue of diabetic kidney disease (DKD) mice and a positive impact on glucose
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and lipid profiles [47]. This underscores its dual therapeutic potential in tackling both
metabolic and renal diseases, emphasizing the intricate connection between kidney health
and metabolic regulation. Our analysis also identified a significant association between
CASP9 genetic variants and eGFR as well as BUN. Consistent with this, previous research
by Doke et al. demonstrated that CASP9 plays a crucial role in CKD pathogenesis, impli-
cating apoptosis, mitophagy, and inflammation in kidney damage [25], thus highlighting
the potential of CASP9 inhibition in preserving kidney function and offering a new avenue
for CKD treatment development. Furthermore, we identified several potential drug targets,
such as L-aspartic acid, capsaicin, and 5-fluorouracil (Figure 4). Remarkably, capsaicin has
shown therapeutic potential in managing kidney diseases attributed to its diverse biological
actions [48]. Experimental evidence suggests that capsaicin may slow the progression of
CKD by inhibiting key fibrotic signaling pathways, notably TGF-β1 and Smad2/3, and by
activating the TRPV1 channel [49–52]. Moreover, molecular docking analysis demonstrated
that the interaction between capsaicin and CASP9, with the lowest binding energy of
−7.483 kcal/mol, enhances its potential as a drug target (Table 4 and Figure 5A). Based on
our findings and corroborating evidence from previous studies, we propose that MAP3K11
and CASP9 be prioritized as key candidates for future experimental and clinical research.

Inflammation plays a critical role in the development and progression of CKD [53].
Our results reveal a correlation between higher FGF5 levels and a lower risk of CKD,
improvements in eGFR, and decreased BUN levels, underscoring its potential for renal
protection. Through our analysis, FGF5 has been identified as a key factor in managing CKD
and enhancing kidney health. Previous studies have established a relationship between
higher expression of FGF5 and increased eGFR [54,55]. Furthermore, recent research
highlights the ability of FGF5 to mitigate inflammation. For instance, FGF5 demonstrates a
protective effect against liver injury by diminishing liver inflammation [56]. In addition,
overexpression of FGF5 mitigates inflammation, oxidative stress, and spinal cord injury
through AMPK activation [57]. Given these findings, we hypothesize that FGF5 may
confer protection to kidney by alleviating inflammation. Our PWMR analyses, identifying
genetic loci and inflammatory proteins associated with CKD and kidney function, further
underscore the crucial influence of inflammation on kidney health and the potential of
targeted anti-inflammatory therapies in the management of CKD.

Our metabolome-wide MR analysis, leveraging the latest GWAS data on 1400 metabo-
lites [58], identified 33 metabolic traits that significantly impact CKD and kidney function,
highlighting the pivotal role of the plasma metabolome in kidney health. Notably, citrulline
significantly correlates with eGFRcrea, and its derivative, N-acetylcitrulline, also strongly
correlates with both eGFRcrea and CKD (Figure 6). These findings corroborate previous
studies that identified citrulline supplementation as promoting an anti-inflammatory profile
and nephron preservation, underscoring its vital roles in kidney health [59]. Furthermore,
our study found that elevated levels of N-acetylalliin are associated with a lower risk of
CKD and decreased BUN levels (Figure 6). These findings not only corroborate previous
research that indicated a positive correlation between N-acetylalliin and increased eGFR
levels but also expand upon our understanding of the crucial role of N-acetylalliin in
kidney health [60]. Intriguingly, our results further reveal that alliin, a chemically similar
compound, exerts opposite effects, with higher levels linked to an increased risk of CKD
and elevated BUN levels. This observation underscores the notion that similar compounds
can exhibit vastly divergent biological activities after undergoing distinct chemical modifi-
cations. The contrasting impacts of alliin and N-acetylalliin on kidney health emphasize the
significance of chemical modifications in determining the biological activity of compounds,
paving the way for future research into the potential therapeutic applications of chemically
modified natural compounds for kidney disease and beyond.

Our research boasts several strengths, marking significant advancements in the study
of CKD and kidney function. Key among these is the enrichment of large GWAS datasets
with transcriptomic imputation, leveraging cross-tissue gene expression weights created
using sparse canonical correlation analysis (sCCA) to enhance the statistical power of our
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TWAS. This approach not only facilitated the identification of key genetic factors related to
CKD and kidney function but also unveiled the disease’s complex, cross-tissue character-
istics. Employing the FUSION pipeline, we distinguished causal gene–trait associations
from correlations that merely reflect large GWAS signals or LD, enhancing the precision
of our results. Further refinement was achieved through FOCUS fine-mapping, which
identified putative causal genes among our TWAS discoveries. Subsequent enrichment
analysis and SMR revealed a significant link between the Golgi apparatus and kidney
health, identifying several key GARGs significantly associated with CKD and kidney func-
tion. Parallel to transcriptomic analysis, our drug–target MR analysis of the druggable
genome identified potential therapeutic targets. This was complemented by PheWAS to
explore the potential side effects of drugs targeting these MR-identified genes, ensuring a
comprehensive understanding of their safety profile. Molecular docking analysis provided
deeper insight, enabling us to identify potentially effective drugs and bridge the gap be-
tween genetic findings and therapeutic applications. Moreover, our study benefited from
the latest, expansive datasets, analyzing the impacts of 1400 circulating metabolites and
91 circulating inflammatory proteins on CKD and kidney function. This broad, multi-omic
approach not only illuminated the complex biology underpinning CKD but also generated
valuable insights for future research aimed at understanding and treating this complex
disease. Overall, our comprehensive analysis provides valuable insights for researchers
seeking to further investigate CKD and kidney function, laying the groundwork for future
pharmacological studies.

Our study also presents several limitations that must be highlighted to comprehend
the study’s scope and to guide future research directions. Firstly, our study relies predomi-
nantly on data from individuals of European ancestry, which may limit the generalizability
of our findings to diverse populations. Incorporating a broader range of genetic diver-
sity in future studies could significantly enhance the applicability and relevance of the
results. Secondly, while our cross-tissue gene expression approach is innovative, it may
not capture the expression weights of all genes relevant to CKD and kidney function. This
limitation suggests that further refinement and expansion of gene expression analyses
are required. Furthermore, MR analyses, although powerful for inferring causality, have
inherent limitations, such as the assumption of no pleiotropy and the accuracy of genetic
models used. These limitations necessitate a cautious interpretation of MR findings. In
addition, our SMR and drug–target MR analysis primarily focused on cis-eQTLs to under-
stand genetic regulation near gene loci. While this approach provides clear insights into
identifying gene targets for CKD, it misses the broader genetic interactions captured by
trans-eQTLs. Future research should include both cis- and trans-eQTL data to offer a more
comprehensive view of genetic regulation, potentially uncovering novel therapeutic targets
for more effective CKD treatments. In our study, we identified genetic associations with
the renal function markers eGFRcrea, eGFRcys, and BUN, enriching our understanding of
CKD genetics. While these associations provide insights into the physiological processes
that may regulate biomarker levels, such as creatinine and cystatin C metabolism, they do
not necessarily confirm direct involvement in CKD. Similarly, genetic variations linked to
BUN might reflect differences in urea production or clearance mechanisms that are not
yet fully understood in the context of CKD. Therefore, these genetic loci associated with
renal markers may require further research to determine their roles in the development
and progression of CKD. Moreover, all our findings, including high-confidence genes and
potential therapeutic targets, should serve as a foundation for generating hypotheses. They
require functional validation through experimental studies to confirm their roles in CKD
pathophysiology and the efficacy of proposed drug candidates.

4. Materials and Methods

A study overview is presented in Figure 1, including data sources, research objectives,
methods, and subsequent analyses. All MR analyses in this study are reported following
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the MR Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
guidelines [31].

4.1. Data Sources for CKD and Kidney Functions

Summary-level GWAS data correlating with CKD and kidney functions were sourced
from meta-analyses conducted on European ancestry GWASs by the CKDGen Consortium
(https://ckdgen.imbi.uni-freiburg.de, accessed on 11 December 2023) [61]. The CKDGen
Consortium is an international collaborative effort dedicated to investigating the genetic
underpinnings of kidney function and CKD. It involves population-based studies with
global participation, focusing on CKD-classifying quantitative traits, particularly GFR and
albuminuria. The consortium’s publicly available results foster global scientific collabora-
tion and advance research in the field. The GWAS data used for analysis had already been
comprehensively adjusted for sex, age, and multiple covariates, as detailed in the original
sources of the data. This comprehensive dataset includes:

1. CKD in European ancestry individuals including 41,395 cases and 439,303 controls [4];
2. eGFRcrea in European ancestry individuals including 567,460 participants [4];
3. eGFRcys in European ancestry individuals including 460,826 participants [5];
4. BUN in European ancestry individuals including 416,178 participants [4];
5. UACR in European ancestry individuals including 547,361 participants [6].

4.2. Gene Expression Weights for TWAS

In our TWAS, we aimed to translate SNP associations with CKD and kidney function
into gene transcript associations across various tissues, acknowledging the cross-tissue
nature of these traits. For this purpose, we utilized cross-tissue gene expression weights
generated with sCCA, derived from the GTEx v8 eQTL atlas [13,14].

4.3. Cross-Tissue TWAS Analyses

We employed the TWAS/Fusion pipeline to investigate the genetic influences on CKD
and kidney-related traits [18]. The GWAS summary statistics were formatted using the
munge_sumstats.py script from the LDSC toolkit to ensure compatibility with the FUSION
pipeline. Using the FUSION pipeline with default settings, we imputed transcriptomes rel-
evant to our study outcomes, restricting the analysis to autosomal chromosomes. Through
FUSION, we accomplished the following:

1. Identified cis-heritable, cross-tissue gene expression features, excluding those from
sex chromosomes;

2. Created SNP-based linear predictors of expression levels using our gene expression
weights;

3. Computed TWAS test statistics using these predictors and GWAS summary-level Z
scores.

The optimal gene expression model was selected by comparing out-of-sample R2

values among several models, including penalized linear regressions and Bayesian sparse
linear mixed models. To adjust for multiple comparisons and allow for follow-up analysis
on a manageable number of findings, we set a Bonferroni-corrected significance threshold
at p < 1.32 × 10−6 (0.05/37,917 cross-tissue sCCA features).

4.4. Joint/Conditional Tests, Permutation Tests, and Colocalization Analyses

To assess the robustness of the gene transcript–trait associations identified by TWAS,
we initially utilized the FUSION suite’s conditional tests. These tests determined whether
multiple TWAS significant sCCA features within a given locus (±500 kb) independently
correlated with our kidney-related outcomes, or if they merely reflected artifacts of a
single feature–trait association, attributable to correlated expression among features [18].
Joint/conditional analyses utilized GWAS associations remaining after accounting for
the predicted expression of other sCCA features within a specific chromosomal locus to

https://ckdgen.imbi.uni-freiburg.de
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estimate the conditionally independent effect of each feature of interest. We set conditional
significance at a p-value of 0.05. Additionally, to evaluate whether the significance of our
gene expression features was driven by strong GWAS signals, we performed permutation
tests for each locus, designed to halt after 100,000 permutations, with significance set at a
p-value of 0.05. Notably, the permutation testing statistic is highly conservative, potentially
causing truly causal genes to fail the test [18]. Finally, we conducted colocalization analysis
of our TWAS significant genes using the R package coloc (version 5.1.0.1) [20] implemented
in FUSION. This analysis aimed to identify evidence of a shared causal variant between
the gene expression feature and our trait. We defined strong evidence for colocalization as
a PP.H4 > 0.8.

4.5. Fine-Mapping of TWAS Associations and High-Confidence Findings

We applied fine-mapping of causal gene sets (FOCUS) to identify genes that likely
drove the TWAS gene–trait association signals within specific loci, potentially exerting
causal effects on kidney-related traits [19]. FOCUS employs a Bayesian framework that
considers LD, TWAS prediction weights, and the effects of pleiotropic SNPs to define gene
sets that probabilistically include a causal gene with 90% confidence. Uniquely, this model
calculates posterior inclusion probabilities (PIPs) for individual features, with a PIP greater
than 0.5 indicating the feature as the most likely causal feature within a risk region [62].
Diverging from conventional colocalization methods, FOCUS excels in scenarios where
multiple causal variants or genes are implicated within a locus for a specific trait. In
our study, genes with a PIP > 0.5, alongside significant TWAS and conditional analysis
p-values, were classified as high-confidence genes, suggesting their probable causal role in
influencing kidney-related traits.

4.6. Cell Type and Tissue Enrichment Analysis

To investigate the expression of high-confidence TWAS genes in various cells and
tissues, we utilized the CellMarker database and performed enrichment analysis using the
Enrichr tool [63,64]. The CellMarker database is a manually curated resource containing
a comprehensive list of cell markers for different cell types in human and mouse tissues.
The database includes data from over 100,000 published papers, recording 13,605 cell
markers of 467 cell types in 158 human tissues/sub-tissues and 9148 markers of 389 cell
types in 81 mouse tissues/sub-tissues. Integrating these data with our enrichment analysis,
we identified the specific cell types and tissues where our TWAS-identified genes are
significantly expressed, providing critical insights into their potential biological functions
and relevance in different cellular contexts.

4.7. Gene Set Enrichment Analysis

To elucidate the biological functions and pathways associated with our high-confidence
genes identified in the TWAS analysis, we executed a gene enrichment analysis. This anal-
ysis was performed utilizing the clusterProfiler R package, version 4.6.2, a tool selected
for its robust capabilities in analyzing and visualizing statistical enrichment of gene clus-
ters [65]. Our analysis leveraged gene sets across three domains from the Gene Ontology
(GO) database: biological processes, molecular functions, and cellular components [66].
Additionally, we included gene sets from the KEGG and Reactome databases to ensure a
comprehensive exploration of the associated biological pathways [67,68]. To focus on gene
sets of a manageable size and likely relevance, only gene sets containing between 10 and
1000 genes were included in our analysis.

4.8. SMR Analysis of GARGs in CKD and Kidney Function

SMR was employed to estimate the association of GARGs with CKD and kidney
function [69]. The list of GARGs was identified through the “GOCC_GOLGI_APPARATUS”
gene set using Gene Set Enrichment Analysis (GSEA) in the MSigDB database (http:
//www.gsea-msigdb.org/gsea/msigdb/index.jsp, accessed on 9 March 2024), includ-
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ing 1634 genes [70]. The eQTL data for these genes were obtained from the eQTLGen
Consortium, which contains a comprehensive database of eQTLs identified in blood sam-
ples from a large cohort, comprising predominantly 31,684 European individuals [71]. To
generate eQTL instruments for GARGs, cis-eQTLs located within 1000 kb on either side of
the coding sequence and with a significance threshold of p < 5 × 10−8 were selected.

The SMR and HEIDI tests were conducted using the SMR software tool (version
1.3.1), with the FDR adjusted for multiple testing corrections employing the Benjamini-
Hochberg method. Significant associations were identified based on an FDR-adjusted
p-value < 0.1 and a HEIDI p-value > 0.01. After completing the primary SMR analyses,
sensitivity analyses were conducted with the TwoSampleMR R package. The Wald ratio
method was used to calculate MR estimates for instruments with a single SNP, whereas
the IVW method was applied for instruments with two SNPs. The IVW, MR-Egger, and
weighted median methods were employed for proposed instruments comprising more
than two variants. For significant genes, colocalization analysis was conducted using the
coloc R package. A PP.H4 exceeding 0.8 was considered robust evidence of colocalization,
indicating a shared genetic foundation for the association between GARG expression and
CKD or kidney function.

4.9. Drug–Target MR

The eQTL data for this analysis were obtained from the eQTLGen Consortium [71]. The
list of druggable genes was informed by a previous study, including 1375 genes currently
under investigation as protein therapeutic targets, 646 genes associated with established
drug targets and compounds, and an additional 2281 genes linked to key drug target
families [24]. Considering that cis-eQTLs are typically in close proximity to the gene of
interest in drug development studies, we selected cis-eQTLs located within a ±100 kb range
of each gene’s genomic locus. Through this process, we obtained eQTLs for 2664 druggable
genes, subsequently used as exposure instruments in our drug–target MR analyses.

We employed the TwoSampleMR R package (version 0.5.6) for drug–target MR analy-
ses [72]. The initial step involved rigorous filtration of genetic instruments to ensure their
high quality. Specifically, SNPs demonstrating weak instrumental strength (F-statistic < 10)
were excluded, and conditionally independent SNPs without LD (r2 < 0.1, based on the
1000 Genomes European reference panel) were selected as instrumental variables [73]. Fur-
thermore, SNPs implying greater variance in the analyzed outcomes than in the exposure
using Steiger filtering were discarded [74].

In the main analysis, the Wald ratio method was used to calculate MR estimates for
instruments with a single SNP, whereas the IVW method was applied for instruments
with two SNPs. The IVW, MR-Egger, and weighted median methods were employed for
proposed instruments comprising more than two variants. The MR-Egger intercept test,
especially for instruments with more than two variants, was conducted to evaluate potential
pleiotropy in the associations between exposure and outcomes [75]. Cochran’s Q test was
performed using both the IVW and MR-Egger methods to assess heterogeneity among
Wald ratios (Supplementary Table S16). In cases of significant heterogeneity (p < 0.05), the
random-effects IVW approach was employed [76]. To adjust for multiple testing, we utilized
the Bonferroni correction method, considering p-values below 1.90 × 10−5 (p = 0.05/2644)
as significant. For significant genes, a colocalization analysis was conducted using the
coloc R package. A posterior probability PP.H4 > 0.80 was used to denote significant
colocalization, identifying strongly colocalized genes as potential drug targets.

4.10. Phenome-Wide Association Study (PheWAS)

To further assess the horizontal pleiotropy and ascertain potential side effects of the
potential drug targets, we conducted a PheWAS analysis utilizing the AstraZeneca PheWAS
Portal (https://azphewas.com/, accessed on 21 February 2024) [26]. This portal combines
exome sequencing data and phenotypic information from the UK Biobank, encompassing
approximately 500,000 participants, providing a powerful resource for extensively analyz-

https://azphewas.com/
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ing gene–phenotype associations. The portal enabled us to examine potential connections
between rare protein-coding variants and a wide range of phenotypes, including 17,361 bi-
nary phenotypes and 1419 quantitative phenotypes. This unique opportunity allowed
us to uncover novel gen–phenotype relationships and delve into gene multifunctional-
ity. The comprehensive methodological approach employed in this study, including data
preparation and analysis procedures, is documented in detail in the source article [26]. To
mitigate the risk of false positives, we applied multiple correction techniques and adhered
to a significance threshold of 1 × 10−8, in line with the default setting on the AstraZeneca
PheWAS Portal.

4.11. Candidate Drug Prediction

To ascertain the potential of target genes as viable drug targets through assessing
protein–drug interactions, we utilized the Drug Signatures Database (DSigDB, http://
dsigdb.tanlab.org/DSigDBv1.0/, accessed on 28 March 2024) [77]. DSigDB, containing
22,527 gene sets, 17,389 distinct compounds, and covering 19,531 genes, serves as an
extensive repository linking medications and chemicals to their target genes. The identified
drug target genes were uploaded to DSigDB to predict drug candidates and evaluate the
therapeutic potential of these genes.

4.12. Molecular Docking

To elucidate the interactions between drug targets and their corresponding genes,
molecular docking analysis was conducted using AutoDock Vina (version 1.2.5) [78]. The
three-dimensional structures of proteins encoded by the target genes were predominantly
sourced from the RCSB Protein Data Bank (PDB, https://www.rcsb.org/, accessed on
25 February 2024), a comprehensive repository of experimentally determined macromolec-
ular structures. However, for NEK4 and KLHL24, the structures predicted by the AlphaFold
database (https://alphafold.ebi.ac.uk/, accessed on 26 February 2024) were utilized due
to the absence of experimentally determined structures [79,80]. The structures of drug
molecules were acquired from the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/, accessed on 25 February 2024) or PDB [81]. Following the preprocessing of structural
data with AutoDock Vina, the grid box was configured to either encompass the entire
protein or specifically the active site, contingent upon whether an explicit active site was
identified for the target. Molecular docking was performed to simulate potential binding
scenarios, with results demonstrating binding energies below −5.0 kcal/mol visualized
using PyMOL (http://www.pymol.org/, accessed on 26 February 2024). This visualization
highlighted significant interactions and binding conformations, underscoring the therapeu-
tic relevance of the drug–gene associations examined. This targeted approach allowed for
a nuanced exploration of drug–target interactions, providing valuable insights into their
potential efficacy and specificity.

4.13. PWMR Analysis

To explore the potential causal links between inflammatory proteins and both CKD
and kidney function-related traits, we conducted PWMR analysis. Utilizing protein quan-
titative trait locus (pQTL) data for 91 circulating inflammatory proteins from previous
research [16], we accessed comprehensive GWAS summary statistics for each protein from
the University of Bristol (https://www.phpc.cam.ac.uk/ceu/proteins, accessed on 3 Febru-
ary 2024) and the EBI GWAS Catalog (accession numbers GCST90274758 to GCST90274848).
We defined a ±1000 kb window around the gene encoding each protein to extract relevant
pQTL summary statistics. cis-pQTLs data were selected at a conventional threshold of
p < 5 × 10−8, with instrumental variables being conditionally independent SNPs showing
no LD (r2 < 0.1, according to the 1000 Genomes European reference panel).

The MR analysis was conducted using the TwoSampleMR R package. For single-SNP
instruments, the Wald ratio method was applied for MR estimation. For instruments with
two SNPs, we employed the IVW method, and for those with more than two variants, we
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utilized the IVW, MR-Egger, and weighted median methods. The MR-Egger intercept test
was specifically performed for instruments with more than two variants to evaluate poten-
tial pleiotropy. Heterogeneity among Wald ratios was assessed using Cochran’s Q test via
both IVW and MR-Egger methods. Adjustments for multiple testing significance thresholds
were made using the Bonferroni correction, setting p-values below 8.06 × 10−4 (p = 0.05/62)
as significant for CKD and eGFRcrea and p-values below 8.19 × 10−4 (p = 0.05/61) as sig-
nificant for eGFRcys, BUN, and UACR. The coloc R package was utilized for colocalization
analysis of MR-significant associations, with a posterior probability PP.H4 > 0.80 indicating
significant colocalization. This comprehensive approach enabled us to meticulously inves-
tigate the causal relationships between inflammatory proteins and kidney health, yielding
insights with significant clinical and therapeutic potential.

4.14. Metabolome-Wide MR

To investigate the potential causal links of plasma metabolites with CKD and kidney-
related traits, we conducted a comprehensive MR analysis. We drew on GWAS summary
statistics from prior research on 1400 metabolites and ratios [58], sourced from the GWAS
catalog (https://www.ebi.ac.uk/gwas/, accessed on 10 February 2024) with accession num-
bers spanning from GCST90199621 to GCST90201020. SNPs associated with metabolites at
a genome-wide significance level (p < 5 × 10−8) and with no LD with other SNPs (r2 < 0.1)
were selected as instrumental variables. For metabolite-associated SNPs absent in the out-
come data, we chose proxy SNPs (r2 > 0.8) based on the 1000 Genomes European reference
panel [73], ensuring a thorough representation of genetic variations affecting metabolite
levels. The MR analysis was conducted using the TwoSampleMR R package. We applied
the Wald ratio method for single-SNP instruments, and the IVW method for dual-SNP
instruments. Moreover, we applied the IVW, MR-Egger, and weighted median methods for
instruments with more than two variants. The MR-Egger intercept test assessed potential
pleiotropy in multi-variant instruments, while Cochran’s Q test using IVW and MR-Egger
methods evaluated heterogeneity among Wald ratios. Genetic variants associated with
more than one metabolite were removed to minimize confounding. Metabolites and ratios
exceeding Bonferroni-corrected p-values of 5.94 × 10−5 for CKD, 6.25 × 10−5 for eGFRcrea,
6.52 × 10−5 for eGFRcys, 6.26 × 10−5 for BUN, and 6.20 × 10−5 for UACR were deemed
significantly causally related to kidney traits. This rigorous MR approach, leveraging
extensive GWAS summary statistics and robust statistical methods, facilitated a nuanced
analysis of the genetic factors underlying plasma metabolite associations with CKD and
kidney function.

5. Conclusions

In conclusion, our study advances the understanding of the genetic basis underlying
CKD and kidney function through a comprehensive multi-omic analysis, employing ad-
vanced methodologies such as cross-tissue TWAS, fine-mapping, SMR, MR, and molecular
docking. This multifaceted approach uncovered key genetic factors and potential therapeu-
tic targets closely associated with CKD and kidney function, expanding our understanding
of CKD’s genetic underpinnings and revealing new avenues for its prevention, diagnosis,
and treatment. Moreover, by integrating metabolome-wide and protein-wide analyses, our
study further illuminates the complex interplay among genetic factors, metabolites, and
inflammatory proteins, thereby opening novel strategies for CKD diagnosis and therapy.
Overall, our study provides valuable contributions to the field of CKD and kidney function
genetics, establishing a robust foundation for developing future clinical interventions.
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