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Abstract: Skeletal muscle atrophy (SMA) is caused by a rise in muscle breakdown and a decline in
protein synthesis, with a consequent loss of mass and function. This study characterized the effect of
an amino acid mixture (AA) in models of SMA, focusing on mitochondria. C57/Bl6 mice underwent
immobilization of one hindlimb (I) or cardiotoxin-induced muscle injury (C) and were compared
with controls (CTRL). Mice were then administered AA in drinking water for 10 days and compared
to a placebo group. With respect to CTRL, I and C reduced running time and distance, along with
grip strength; however, the reduction was prevented by AA. Tibialis anterior (TA) muscles were
used for histology and mitochondria isolation. I and C resulted in TA atrophy, characterized by a
reduction in both wet weight and TA/body weight ratio and smaller myofibers than those of CTRL.
Interestingly, these alterations were lightly observed in mice treated with AA. The mitochondrial
yield from the TA of I and C mice was lower than that of CTRL but not in AA-treated mice. AA
also preserved mitochondrial bioenergetics in TA muscle from I and C mice. To conclude, this study
demonstrates that AA prevents loss of muscle mass and function in SMA by protecting mitochondria.

Keywords: immobilization; cardiotoxin; sarcopenia; amino acids

1. Introduction

Skeletal muscle represents the most important reservoir of proteins in humans and
most animals, and maintenance of its integrity is important not only for preserving body
structure and mobility but also for regulating glucose, lipid and protein metabolism [1].
Thus, metabolic changes that occur in skeletal muscle may influence the course of diseases
so that preservation of muscle mass and function is determinant for maintaining a high
quality of life [2]. Skeletal muscle atrophy can be described as a deficiency of muscle
mass dependent on disuse (immobilization or bed rest) or metabolic alterations triggered
by inflammation/oxidative stress [3]. Skeletal muscle atrophy and loss of mass/function
rapidly occur after acute immobilization or direct injury [4,5]. Even though exercise training
has been demonstrated as the most powerful intervention to preserve skeletal muscle mass
and function, this strategy is feasible with difficulty in several conditions, including critical
illnesses, environmental restrictions, and physical exhaustion [6,7].

To date, several amino acid-based treatments have been tried to counteract skeletal
muscle atrophy, leading to controversial results [8–10]. However, the potential efficacy of
amino acid supplementations may depend on their formulation, which should contain
a mixture of both essential (EAAs) and non-essential amino acids (NEAAs, including
glutamine, cysteine, and tyrosine). Indeed, whereas EAAs are more effective than NEEAs
to induce net protein synthesis, glutamine reduces catabolism and modulates immune
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cells, cysteine mitigates oxidative stress through its thiol group, and tyrosine enhances
physical performance by stimulating catecholamine neurotransmitter synthesis [11–14]. An
amino acid mixture of EAAs combined with glutamine, cysteine and tyrosine demonstrated
effectiveness in improving the cognitive, functional, nutritional, and clinical status of old
hospitalized patients [15]. Testing this mixture on old patients with hospital-related bed
immobilization, we reported its beneficial impact on skeletal muscle mass and function,
as well as circulating markers of inflammation and oxidative stress [16]. Nevertheless, we
could not further characterize the mechanisms underlying such positive effects in humans.

Preservation of skeletal muscle mass and function mostly relies on mitochondrial
bioenergetics [17,18]. Skeletal muscle disuse induces severe mitochondrial perturbations
that contribute to tissue atrophy [19]. Furthermore, mitochondrial dysfunction is pivotal in
skeletal muscle atrophy induced by inflammation/oxidative stress [20]. Thus, therapeutic
approaches that target mitochondria could be promising for counteracting skeletal muscle
atrophy and preventing the loss of mass and function [18].

Considering these premises, we aimed to characterize the effect of an amino acid
mixture (AA) containing EEAs plus glutamine, cysteine, and tyrosine in rodent models
of skeletal muscle atrophy, focusing on mitochondrial bioenergetics. To this end, AA was
tested in acute models of immobilization and acute inflammation/oxidative stress-induced
muscle atrophy.

2. Results
2.1. Effect of AA Supplementation on Skeletal Muscle Mass and Performance

After 10 days of treatment, no modifications of body weight were reported in all the
groups studied (Figure 1a). Of interest, an effect of the model (F2,24 = 7.961, p = 0.0022),
treatment (F1,24 = 62.07, p < 0.0001) and interaction (F2,24 = 27.80, p < 0.0001) on TA weight
was observed. In particular, with respect to control animals, muscle weight was significantly
reduced in the immobilization and cardiotoxin groups treated with the placebo but not in
mice treated with AA (Figure 1b). Similarly, a model (F2,24 = 4.648, p = 0.0192), treatment
(F1,24 = 66.22, p < 0.0001) and interaction (F2,24 = 19.42, p < 0.0001) effect on TA muscle
weight relative to body weight was reported, describing a decrease in the placebo-treated
immobilization and cardiotoxin groups but not in AA-treated animals (Figure 1c). Finally,
an effect of the model (F2,24 = 4.906, p = 0.0164), treatment (F1,24 = 9.791, p = 0.0046)
and interaction (F2,24 = 4.724, p = 0.0186) on TA protein content was also observed. The
post hoc analysis showed that the reduction in muscle protein content described after
immobilization or cardiotoxin treatment, as compared to the controls, was counteracted by
AA supplementation (Figure 1d).
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(c) (d) 

Figure 1. Impact of AA on skeletal muscle mass. (a) Mice body weight; (b) Tibialis anterior (TA) 

muscle weight; (c) TA weight relative to body weight; (d) Protein content in TA muscle. Data are 

expressed as mean ± standard deviation of 5 different experiments. Statistical differences were 

assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test. ^ = p < 0.05, ^^ = p < 

0.01, ^^^ = p < 0.001, ^^^^ = p < 0.0001 vs. control groups; * = p < 0.05; ** = p < 0.01; *** = p < 0.001, **** 

= p < 0.0001 vs. placebo groups. 

To verify whether AA could improve skeletal muscle performance after hindlimb 

immobilization or cardiotoxin-induced injury, mice were subjected to a treadmill test and 

grip strength test at the end of the treatment period. 

A significant effect of the model (F2,24 = 6.311, p = 0.0063), treatment (F1,24 = 12.62, p = 

0.0016) and interaction (F2,24 = 4.900, p = 0.0164) on running time was observed. In 

particular, with respect to control animals, running time was significantly reduced in the 

immobilization and cardiotoxin groups treated with the placebo but not in mice treated 

with AA (Figure 2a). Correspondingly, a model (F2,24 = 23.12, p < 0.0001), treatment (F1,24 = 

20.17, p = 0.0002) and interaction (F2,24 = 6.030, p = 0.0076) effect on running distance was 

reported, for which a decrease in the placebo-treated immobilization and cardiotoxin 

groups but not in AA-treated animals was described (Figure 2b). Of interest, an effect of 

the model (F2,24 = 20.87, p < 0.0001) and treatment (F1,24 = 24.09, p < 0.0001) on the grip 

strength score of the right hindlimb was observed. The post hoc analysis showed that AA 

supplementation counteracted the reduction in grip strength described after 

immobilization or cardiotoxin treatment, as compared to the controls (Figure 2c). 

Figure 1. Cont.
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Figure 1. Impact of AA on skeletal muscle mass. (a) Mice body weight; (b) Tibialis anterior (TA) 

muscle weight; (c) TA weight relative to body weight; (d) Protein content in TA muscle. Data are 

expressed as mean ± standard deviation of 5 different experiments. Statistical differences were 

assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test. ^ = p < 0.05, ^^ = p < 

0.01, ^^^ = p < 0.001, ^^^^ = p < 0.0001 vs. control groups; * = p < 0.05; ** = p < 0.01; *** = p < 0.001, **** 

= p < 0.0001 vs. placebo groups. 

To verify whether AA could improve skeletal muscle performance after hindlimb 

immobilization or cardiotoxin-induced injury, mice were subjected to a treadmill test and 

grip strength test at the end of the treatment period. 

A significant effect of the model (F2,24 = 6.311, p = 0.0063), treatment (F1,24 = 12.62, p = 

0.0016) and interaction (F2,24 = 4.900, p = 0.0164) on running time was observed. In 

particular, with respect to control animals, running time was significantly reduced in the 

immobilization and cardiotoxin groups treated with the placebo but not in mice treated 

with AA (Figure 2a). Correspondingly, a model (F2,24 = 23.12, p < 0.0001), treatment (F1,24 = 

20.17, p = 0.0002) and interaction (F2,24 = 6.030, p = 0.0076) effect on running distance was 

reported, for which a decrease in the placebo-treated immobilization and cardiotoxin 

groups but not in AA-treated animals was described (Figure 2b). Of interest, an effect of 

the model (F2,24 = 20.87, p < 0.0001) and treatment (F1,24 = 24.09, p < 0.0001) on the grip 

strength score of the right hindlimb was observed. The post hoc analysis showed that AA 

supplementation counteracted the reduction in grip strength described after 

immobilization or cardiotoxin treatment, as compared to the controls (Figure 2c). 

Figure 1. Impact of AA on skeletal muscle mass. (a) Mice body weight; (b) Tibialis anterior (TA)
muscle weight; (c) TA weight relative to body weight; (d) Protein content in TA muscle. Data
are expressed as mean ± standard deviation of 5 different experiments. Statistical differences
were assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test. ˆ = p < 0.05,
ˆˆ = p < 0.01, ˆˆˆ = p < 0.001, ˆˆˆˆ = p < 0.0001 vs. control groups; * = p < 0.05; ** = p < 0.01; *** = p < 0.001,
**** = p < 0.0001 vs. placebo groups.

To verify whether AA could improve skeletal muscle performance after hindlimb
immobilization or cardiotoxin-induced injury, mice were subjected to a treadmill test and
grip strength test at the end of the treatment period.

A significant effect of the model (F2,24 = 6.311, p = 0.0063), treatment (F1,24 = 12.62,
p = 0.0016) and interaction (F2,24 = 4.900, p = 0.0164) on running time was observed. In
particular, with respect to control animals, running time was significantly reduced in the
immobilization and cardiotoxin groups treated with the placebo but not in mice treated with
AA (Figure 2a). Correspondingly, a model (F2,24 = 23.12, p < 0.0001), treatment (F1,24 = 20.17,
p = 0.0002) and interaction (F2,24 = 6.030, p = 0.0076) effect on running distance was reported,
for which a decrease in the placebo-treated immobilization and cardiotoxin groups but
not in AA-treated animals was described (Figure 2b). Of interest, an effect of the model
(F2,24 = 20.87, p < 0.0001) and treatment (F1,24 = 24.09, p < 0.0001) on the grip strength score
of the right hindlimb was observed. The post hoc analysis showed that AA supplementation
counteracted the reduction in grip strength described after immobilization or cardiotoxin
treatment, as compared to the controls (Figure 2c).
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Figure 2. Impact of AA on skeletal muscle performance. (a) Running duration for treadmill test; (b) 

Running distance for treadmill test; (c) Hind limb force score for grip strength test. Data are 

expressed as mean ± standard deviation of 5 different experiments. Statistical differences were 

assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test. ^ = p < 0.05, ^^ = p < 

0.01, ^^^ = p < 0.001, ^^^^ = p < 0.0001 vs. control groups; * = p < 0.05; ** = p < 0.01 vs. placebo groups. 

2.2. Effect of AA Supplementation on Skeletal Muscle Injury, Architecture and Regeneration 

To estimate skeletal muscle injury, the activity of LDH and CPK was measured in the 

sera of mice after 10 days of treatment. For both enzymes’ activity, a model (F2,24 = 70.86, 

p < 0.0001; F2,24 = 25.80, p < 0.0001, respectively), treatment (F1,24 = 24.60, p < 0.0001; F1,24 = 

58.26, p < 0.0001, respectively) and interaction (F2,24 = 9.104, p = 0.0011; F2,24 = 14.56, p < 

0.0001, respectively) effect was reported. As compared to the controls, an increase in the 

placebo-treated immobilization and cardiotoxin groups but not in AA-treated animals 

was described (Figure 3a,b). 

Figure 2. Cont.
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Figure 2. Impact of AA on skeletal muscle performance. (a) Running duration for treadmill test;
(b) Running distance for treadmill test; (c) Hind limb force score for grip strength test. Data are
expressed as mean ± standard deviation of 5 different experiments. Statistical differences were
assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test. ˆ = p < 0.05, ˆˆ = p < 0.01,
ˆˆˆ = p < 0.001, ˆˆˆˆ = p < 0.0001 vs. control groups; * = p < 0.05; ** = p < 0.01 vs. placebo groups.

2.2. Effect of AA Supplementation on Skeletal Muscle Injury, Architecture and Regeneration

To estimate skeletal muscle injury, the activity of LDH and CPK was measured in the
sera of mice after 10 days of treatment. For both enzymes’ activity, a model (F2,24 = 70.86,
p < 0.0001; F2,24 = 25.80, p < 0.0001, respectively), treatment (F1,24 = 24.60, p < 0.0001;
F1,24 = 58.26, p < 0.0001, respectively) and interaction (F2,24 = 9.104, p = 0.0011; F2,24 = 14.56,
p < 0.0001, respectively) effect was reported. As compared to the controls, an increase in
the placebo-treated immobilization and cardiotoxin groups but not in AA-treated animals
was described (Figure 3a,b).
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Figure 3. Impact of AA on skeletal muscle damage. (a) Serum lactate dehydrogenase (LDH) activity;
(b) Serum creatin phosphokinase (CPK) activity. Data are expressed as mean ± standard deviation
of 5 different experiments. Statistical differences were assessed by two-way analysis of variance
(ANOVA) and Tukey’s post hoc test. ˆˆˆ = p < 0.001, ˆˆˆˆ = p < 0.0001 vs. control groups; ** = p < 0.01,
*** = p < 0.001, **** = p < 0.0001 vs. placebo groups.

Muscle architecture was analyzed by hematoxylin and eosin staining, and represen-
tative images are shown in Figure 4a. An effect of both the model and treatment on
cross-sectional area was observed (F2,24 = 13.60, p = 0.0001; F1,24 = 12.36, p = 0.0018, respec-
tively), and a model (F2,24 = 13.09, p = 0.0001), treatment (F1,24 = 14.67, p = 0.0008) and
interaction (F2,24 = 9.272, p = 0.001) effect on the mean fiber diameter of TA muscle was
described. Both variables were reduced in the immobilization and cardiotoxin models
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treated with the placebo but not in those treated with AA supplementation (Figure 4b).
Similar results were obtained by analyzing the fiber size distribution (Figure S1).
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Figure 4. Impact of AA on skeletal muscle architecture. (a) Representative images of hematoxylin and
eosin staining of tibialis anterior muscle (scale bars = 250 µm); (b) Cross-sectional area (% of controls,
top panel) and mean fiber diameter (bottom panel) of tibialis anterior muscle. Data are expressed as
mean ± standard deviation of 5 different experiments. Statistical differences were assessed by two-
way analysis of variance (ANOVA) and Tukey’s post hoc test. ˆ = p < 0.05, ˆˆ = p < 0.01, ˆˆˆ = p < 0.001,
ˆˆˆˆ = p < 0.0001 vs. control groups; * = p < 0.05, ** = p < 0.01 vs. placebo groups.

To investigate the effect of AA treatment on skeletal muscle regeneration after 10 days,
the number of PAX7-positive cells in TA muscle was quantified by digital pathology
(representative hotspot images are shown in Figure 5a). Of note, a model effect was
observed (F2,24 = 13.66, p = 0.0001), with a significant decrease in both the immobilization
and cardiotoxin groups, irrespective of treatment (Figure 5b).
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Figure 5. Impact of AA on skeletal muscle regeneration. (a) Representative images of hotspot analysis
of PAX7 staining (red color) of tibialis anterior muscle (scale bars = 250 µm), blue color indicates cell
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nuclei, while green dashed boxes indicate positive staining areas; (b) PAX7-positive cells (% of
controls, top panel) in tibialis anterior muscle. Data are expressed as mean ± standard deviation
of 5 different experiments. Statistical differences were assessed by two-way analysis of variance
(ANOVA) and Tukey’s post hoc test. ˆ = p < 0.05 vs. control groups.

2.3. Effect of AA Supplementation on Skeletal Muscle Mitochondria Content and Bioenergetics

To verify the impact of AA treatment on mitochondrial content and bioenergetics in
the models of skeletal muscle atrophy, mitochondria were freshly isolated from TA muscle
after 10 days of supplementation. Of note, a significant effect of the model (F2,24 = 13.30,
p < 0.0001) and treatment (F1,24 = 26.86, p < 0.0001) on mitochondrial density was observed.
The post hoc analysis showed a reduction in mitochondrial density after immobilization
or cardiotoxin-induced atrophy, as compared to the controls; nevertheless, treatment with
AA resulted in higher mitochondrial density with respect to the placebo (Figure 6a). We
also described a model (F2,24 = 6.339, p = 0.0062), treatment (F1,24 = 30.35, p < 0.0001) and
interaction (F2,24 = 6.259, p = 0.0065) effect on mitochondrial membrane potential, for which
a decrease in the placebo-treated immobilization and cardiotoxin groups, recovered by
AA-treated animals, was described (Figures 6b and S2).
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Figure 6. Impact of AA on skeletal muscle mitochondria density and bioenergetics. (a) Mitochondrial
density in tibialis anterior (TA) muscle; (b) Membrane potential in mitochondria from TA muscle;
(c) Respiratory control ratio (RCR) of mitochondrial Complex I from TA muscle; (d) RCR of mi-
tochondrial Complex II from TA muscle; (e) ATP content in TA muscle; (f) Enzymatic activity of
ATPase (Complex V) from TA muscle. Data are expressed as mean ± standard deviation of 5 different
experiments. Statistical differences were assessed by two-way analysis of variance (ANOVA) and
Tukey’s post hoc test. ˆ = p < 0.05, ˆˆ = p < 0.01, ˆˆˆ = p < 0.001, ˆˆˆˆ = p < 0.0001 vs. control groups;
* = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001.

To deepen our study on mitochondrial bioenergetics in TA muscle, we detected the res-
piratory control ratio (RCR, the ratio between state 3—or ADP-dependent respiration—and
state 4—or ADP-independent respiration), which represents an index of oxidative phos-
phorylation activity. Representative polarographic curves are shown in Figures S3 and S4.
The RCR from Complex I- and Complex II-linked substrates was impacted by the model
(F2,24 = 27.32, p < 0.0001; F2,24 = 14.45, p < 0.0001, respectively), treatment (F1,24 = 25.35,
p < 0.0001; F1,24 = 25.51, p < 0.0001, respectively) and interaction (F2,24 = 17.63, p < 0.0001;
F2,24 = 7.018, p = 0.0040, respectively). With respect to the controls, both indexes were sig-
nificantly reduced in the immobilization and cardiotoxin groups treated with the placebo
but not in groups treated with AA (Figure 6c,d). As shown by the data reported in
Tables 1 and 2, changes in the RCR were sustained by state 3 rather than state 4 respiration.
Indeed, for both Complex I- and Complex II-linked substrates, an effect of the model
(F2,24 = 16.02, p < 0.0001; F2,24 = 11.48, p = 0.0003, respectively), treatment (F1,24 = 7.27,
p = 0.0126; F1,24 = 20.88, p = 0.0001, respectively) and interaction (F2,24 = 10.42, p = 0.0006;
F2,24 = 7.785, p = 0.0025, respectively) was observed.

Table 1. Oxygen consumption rates in mitochondria isolated from tibialis anterior muscle of different
models used in this study, adding Complex I-linked substrates.

Glutamate + Malate State 3 Respiration
(nmol O2/min/mg)

State 4 Respiration
(nmol O2/min/mg)

Controls + Placebo 10.09 ± 2.04 1.56 ± 0.21
Controls + AA 7.94 ± 2.18 1.38 ± 0.17
Immobilization + Placebo 3.49 ± 0.83 ˆˆˆˆ 1.49 ± 0.19
Immobilization + AA 7.09 ± 1.44 * 1.29 ± 0.12
Cardiotoxin + Placebo 4.35 ± 1.03 ˆˆˆ 1.31 ± 0.24
Cardiotoxin + AA 7.54 ± 1.44 * 1.53 ± 0.21

Statistical differences were assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test.
ˆˆˆ = p < 0.001, ˆˆˆˆ = p < 0.0001 vs. control groups; * = p < 0.05 vs. placebo groups.
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Table 2. Oxygen consumption rates in mitochondria isolated from tibialis anterior muscle of different
models used in this study, adding Complex II-linked substrates.

Succinate State 3 Respiration
(nmol O2/min/mg)

State 4 Respiration
(nmol O2/min/mg)

Controls + Placebo 19.27 ± 4.88 4.31 ± 1.15
Controls + AA 18.15 ± 4.25 3.98 ± 1.32
Immobilization + Placebo 7.20 ± 2.79 ˆˆˆ 4.14 ± 0.99
Immobilization + AA 15.51 ± 4.07 * 4.51 ± 1.91
Cardiotoxin + Placebo 5.89 ± 2.15 ˆˆˆ 4.24 ± 0.94
Cardiotoxin + AA 17.87 ± 4.14 *** 4.09 ± 1.56

Statistical differences were assessed by two-way analysis of variance (ANOVA) and Tukey’s post hoc test.
ˆˆˆ = p < 0.001 vs. control groups; * = p < 0.05, *** = p < 0.001 vs. placebo groups.

To verify whether changes in mitochondrial bioenergetics would cause modifications
of ATP homeostasis in models of skeletal muscle atrophy, ATP content was measured in TA
muscle and compared to the activity of Complex V (ATP synthase). Interestingly, an effect
of the model (F2,24 = 16.43, p < 0.0001), treatment (F1,24 = 14.39, p = 0.0009) and interaction
(F2,24 = 3.914, p = 0.0338) on ATP content was observed. In particular, with respect to
the control animals, the ATP content was significantly reduced in the immobilization and
cardiotoxin groups treated with the placebo but not in mice treated with AA (Figure 6e).
On the contrary, no modifications were observed in Complex V (ATP synthase) activity
between all the groups studied (Figure 6f).

3. Discussion

The present study demonstrates that a supplementation with an AA mixture contain-
ing EEAs plus glutamine, cysteine, and tyrosine enhances skeletal muscle mass, function,
and architecture in rodent models of muscle atrophy. In particular, our results suggest
that the beneficial effect of such AA supplementation is associated with the prevention of
mitochondrial dysfunction and bioenergetics impairment in skeletal muscle.

Being one of the most dynamic tissues in the body, skeletal muscle accounts not only
for movement but also for metabolism, thermogenesis, and protein homeostasis [21]. Even
though the main skeletal muscle function consists of switching chemicals toward mechani-
cal energy for posture and physical activity, this tissue is the most important determinant
of basal energy metabolism and is a repository of amino acids required for the synthesis
of organ-specific proteins and for maintaining glucose homeostasis during starvation [22].
Thus, the preservation of skeletal muscle homeostasis is crucial for retaining a satisfactory
health status. Nevertheless, this homeostasis can be altered by several factors, including
acute and chronic diseases, denervation, fasting, immobilization, and aging, which lead
to skeletal muscle atrophy [23]. This condition severely affects the ability to counteract
diseases and stress, with negative consequences on quality of life, a high socio-economic
burden, and increased morbidity and mortality [24]. Even though physical exercise is
currently the most effective therapy for skeletal muscle atrophy, training protocols can-
not be applied for immobilized or acutely ill patients. Nutritional strategies based on
AA supplementations may limit skeletal muscle atrophy induced by immobilization and
counteract inflammation/oxidative stress [25,26]. Indeed, since skeletal muscle atrophy is
sustained by metabolic changes that lead to increased protein degradation and reduced
protein synthesis, AA supplementation may be beneficial for boosting protein synthesis
and preserving muscle mass [27]. Several AA supplementations are available for these
purposes, even though there is no consensus about the compound with the best efficacy
for treating skeletal muscle atrophy [28,29]. We have already tested this AA mixture con-
taining EEAs plus glutamine, cysteine, and tyrosine in a group of patients subjected to bed
immobilization, reporting beneficial effects on muscle structure and function, as well as
systemic markers of immune response and redox balance [16]. The results from this study
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confirm the effectiveness of such an AA mixture on skeletal muscle mass, architecture, and
function in pre-clinical models.

First of all, this study confirms the detrimental impact that hindlimb immobilization
and cardiotoxin injection exert on skeletal muscle. Indeed, surgical stapler hindlimb
immobilization induces a reduction in TA mass, which is associated with a decreased
myofiber size [30]. A similar effect is determined by cardiotoxin-induced TA muscle injury,
which is the most reliable model for studying homogeneous damage to skeletal muscle
due to a single belly and its mixed composition of fibers [31]. Even though cardiotoxin
injection is not commonly applied as a model of skeletal muscle atrophy, it induces rapid
fiber breakdown with extensive necrosis and inflammatory infiltration, reducing muscle
mass and impairing muscle architecture [32]. Of note, supplementation with the AA
mixture for 10 days resulted in the preservation of TA mass and architecture. Previous
studies have demonstrated the beneficial effects of AA supplementation in murine models
of hindlimb immobilization, even though supplementations were mostly enriched with
branched-chain AA [33,34]. On the contrary, to our knowledge, no studies have been
performed testing the effects of AA supplementation in models of cardiotoxin-induced
muscle damage. EAAs and particularly branched-chain AAs (such as leucine, isoleucine,
and valine) are generally described as anabolic compounds able (i) to trigger protein
synthesis through the mammalian target of the rapamycin (mTOR) pathway and (ii) to
inhibit protein catalysis through a reduction in ubiquitin–proteasome activity [35,36]. Even
though our study was not specifically designed to investigate the impact of this AA
mixture on protein homeostasis, future research will elucidate how this mechanism can
be perturbated by such supplementation. It is worth noting that the AA mixture used in
our study contains—other than branched-chain AAs—a great amount of glutamine, which
also exerts a role in muscle maintenance [37]. Of interest, glutamine supplementation has
already demonstrated effectiveness in relieving skeletal muscle loss in a rodent model of
hindlimb immobilization [38].

More than being characterized by structural abnormalities, such as fading, lessen-
ing, and reducing mass and fibers, skeletal muscle atrophy leads to a functional deficit
manifested by reduced force and exercise ability [39]. Both immobilization-induced and
cardiotoxin-induced skeletal muscle injury caused a severe impairment in muscle per-
formance, as demonstrated by the reduced TA muscle strength, and decreased running
time/distance. Since the stimulating effect of AAs—particularly EAAs—on skeletal muscle
mass could improve functional outcomes and physical performance [40], we tested the
impact of our AA mixture on models of skeletal muscle atrophy, detecting preservation
of muscle strength and endurance. The positive effect of this AA mixture can be further
sustained by glutamine, which improves muscle power with anti-fatigue properties [41].

The serum enzymatic activity of lactate dehydrogenase (LDH) and creatin phosphoki-
nase (CPK) is used as an indicator of skeletal muscle tissue injury, particularly after physical
exercise [42,43]. Our data show that both LDH and CPK activities were increased in the
sera of both models of skeletal muscle atrophy, demonstrating the occurrence of severe
muscle damage. Indeed, an increase in serum LDH and CPK activity—especially in the
immobilization model—can be interpreted as myonecrosis or a membrane defect conse-
quent to skeletal muscle atrophy [44]. These results confirm the protective effect of AAs
(especially branched-chain AAs and glutamine) in attenuating the increase in circulating
levels of muscle injury biomarkers [45,46].

Skeletal muscle injury caused by immobilization or various toxins may trigger path-
ways of regeneration that activate a population of resident stem cells, named satellite cells,
which are located in special niches and are identified by the marker PAX7 [47]. Myocellular
damage perturbates the stem cell niche in skeletal muscle tissue, leading to PAX7 downreg-
ulation and promoting differentiation with consequent formation and fusion of new fibers.
Of note, the data from our experiments show reduced expression of PAX7-positive cells in
both models of skeletal muscle atrophy, suggesting that the available pool of satellite cells
decreased after 10 days since receiving the regenerating stimulus. The AA mixture had no



Int. J. Mol. Sci. 2024, 25, 6056 10 of 16

impact on the number of PAX7-positive cells, indicating that the effects of this treatment on
skeletal muscle were not attributable to modifications of its regenerative potential.

Mitochondrial dysfunction plays a determinant role in the pathogenesis of skele-
tal muscle atrophy, since these organelles account for ATP production and regulation of
metabolism, redox homeostasis, and apoptosis [48]. To elucidate a possible mechanism
underlying the beneficial effects of AA mixture supplementation on TA architecture and
performance in our models of skeletal muscle atrophy, several parameters related to mito-
chondria homeostasis were measured. First, our results confirm that models of TA atrophy
are characterized by a reduction in mitochondrial density [49]. Furthermore, such models
are characterized by impairment in oxidative phosphorylation, with a consequent reduc-
tion in ATP synthesis. Alterations in mitochondrial quantity are a direct factor that alters
organelle function and bioenergetics in the induction of skeletal muscle atrophy [20]. It
is also worth mentioning that mitochondrial dysfunction exerts a deep impact on the AA
metabolism of atrophic skeletal muscle [50]. Of note, the AA mixture is able to restore
mitochondrial quantity and bioenergetics, preventing ATP depletion in models of TA mus-
cle atrophy. Nevertheless, the reduction in ATP in our models of skeletal muscle atrophy
might also reflect an increase in pannexin-1, which forms ATP-permeable channels in
the sarcolemma [51]. These results confirm that dietary supplementation with EAAs or
branched-chain AAs is beneficial for mitochondrial homeostasis in skeletal muscle [52]. It
is conceivable that such an AA mixture could stimulate mitochondrial bioenergetics via
the mammalian site of the rapamycin (mTOR) pathway, increasing nicotinamide adenine
dinucleotide levels and stimulating fatty acid oxidation [53]. Further studies are needed to
expand our observations to other aspects of mitochondrial quality, including biogenesis,
dynamics, mitophagy and apoptosis.

The present study has the following limitations, which must be considered for proper
interpretation of our results. First of all, it was not designed to compare the effects of differ-
ent AA mixture compositions but to provide a reliable mechanism sustaining the positive
effects of a specific supplementation on skeletal muscle mass and function. Furthermore,
in our investigation, we could not address different skeletal muscle types (i.e., fast-twitch
and slow-twitch muscles), choosing to focus our analyses on tibialis anterior muscle, which
is mostly a fast-contracting muscle [54]. It is worth mentioning that we analyzed mito-
chondrial bioenergetics by polarographic assessment, which allows the measurement of
oxygen consumption rate with preserved organelle integrity. We did not assess the spec-
trophotometric activity of Complex I and II (which provides information on the maximal
activities of the complexes), choosing to focus on Complex V enzymatic activity, since FoF1
ATPase function may control mitochondrial respiration [55]. Finally, our experiments were
not planned to differentiate between subsarcolemmal and intermyofibrillar mitochondria.
Future specific studies will clarify the particular effects of AA mixture supplementation on
different skeletal muscle types and mitochondria subtypes.

In conclusion, this study demonstrates that an AA mixture containing EAAs and
glutamine is able to prevent the loss of mass and function in rodent models of skeletal
muscle atrophy, limiting tissue injury and architecture impairment. Such beneficial effects
are not sustained through the stimulation of skeletal muscle regeneration from satellite cells
but are the consequence of improved mitochondrial bioenergetics and ATP homeostasis.
Hence, this study encourages further preclinical investigations and clinical trials to test the
efficacy of this AA mixture in skeletal muscle atrophy.

4. Materials and Methods
4.1. Study Protocol

C57/Bl6 18-week-old male mice were used for this study. All animals were housed in
conditions with a temperature of 22 ◦C ± 2 ◦C, humidity of 55% ± 10% and 12 h day/dark
cycles. Mice were fed ad libitum with a standard diet (52% carbohydrates, 21% proteins, 4%
lipids) and were randomized into six different groups (N = 5 animals per group), according
to the following models and treatment with AA supplementation (Figure 7):
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1. Control + placebo.
2. Control + AA.
3. Immobilization + placebo.
4. Immobilization + AA.
5. Cardiotoxin + placebo.
6. Cardiotoxin + AA.
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Figure 7. Experimental animal design.

A control set of mice was chosen—rather than contralateral hindlimb immobilization
and cardiotoxin models—since the contralateral hindlimb may suffer from changes induced
by the models [56]. After 10 days, muscle function was studied by both endurance running
and grip strength tests. At the end of the experiment, mice were euthanized by anesthesia
overdosing, and samples of blood and muscle (tibialis anterior, TA) tissue were taken. TA
muscle was chosen due to its peculiar properties (single-belly skeletal muscle composed
of type I, type IIa and type IIb myofibers, which are particularly rich in mitochondria,
enabling its contractile function), which allow the study of both imaging and mitochondrial
function [57,58]. TA samples were weighed and used for fresh mitochondria isolation.

AA supplementation was administered via oral supplementation by dissolving in
a volume of water equal to 52 ± 0.3 mL (according to the estimated amount of daily
consumption) at a dose of 0.1 g/kg/day for 10 days. The composition and nutritional value
of AA supplementation was previously reported [16].

All animal experimental protocols were approved by the University of Foggia ethics
committee and conducted in accordance with the guidelines of the Italian Ministry of
Health (D.L. 26/2014) and the European Parliamentary directive 2010/63/EU.

4.2. Immobilization Procedure

A group of 10 C57/Bl6 mice underwent one hindlimb immobilization according to
a well-established, previously published protocol [30]. Briefly, mice were anesthetized
through an intraperitoneal injection of Ketamine (80 mg/kg) and Xylazine (10 mg/kg).
The right hindlimb was immobilized by stapling the foot after reaching normal dorsotibial
flexion through a skin stapler. One tine was inserted into the distal portion of the gastroc-
nemius, and the other was inserted close to the toe at the plantar portion of the foot. The
hindlimb was immobilized for 10 days before removing fixing points.

4.3. Cardiotoxin Injection

To induce acute skeletal muscle injury-induced atrophy, a group of 10 C57/Bl6 mice
underwent cardiotoxin injection in the tibialis anterior muscle following a well-defined
protocol, as reported previously [59]. Briefly, mice were anesthetized through an intraperi-
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toneal injection of Ketamine (80 mg/kg) and Xylazine (10 mg/kg). The right hindlimb
was restrained, shaved with a clipper, and disinfected with 70% ethanol. Then, 10 µM
cardiotoxin (217503, Merck KGaA, Darmstadt, Germany) diluted in 100 µL of phosphate
buffer solution was injected into the belly of the tibialis anterior muscle.

4.4. Running Test

A homemade rodent treadmill was used, as previously reported [60]. The running test
consisted of a running session at a speed of 9 cm/sec with an inclination of 5◦. The speed
was increased by 3 cm/sec every 12 min. A rigid brush, positioned in the cool-down area
at the end of the treadmill track, was used to motivate the animals to perform the exercise.
The test was recorded, and the video was analyzed to calculate the mice’s permanence
in the cool-down zone. Mice that needed at least 5 stimuli in the cool-down zone were
considered “exhausted” (with the conclusion of the exercise).

4.5. Muscle Strength

Skeletal muscle strength was assessed according to a previously described proce-
dure [61]. Animals were held by their tail and allowed to grasp weights with the right
hindlimb for at least 3 s (Figure S5). If the test was successful, mice were tested for the next
heaviest weight. If mice dropped the weight in less than 3 s, the test was repeated after 10 s
of rest. If the test failed three times, the trial was stopped, and the animal was assigned the
maximum weight achieved. A final score was calculated as the sum of the weight held for
3 s plus the heaviest weight dropped before 3 s multiplied by the time it was held.

4.6. Serum Creatin Phosphokinase (CPK) and Lactate Dehydrogenase (LDH) Measurement

The serum was derived from the centrifugation of whole blood collected just after
sacrifice. CPK activity was measured by using a diagnostic ELISA kit (MBS755902, My-
BioSource, San Diego, CA, USA), according to the manufacturer procedure. LDH activity
was measured by using a colorimetric kit (ab102526, Abcam, Cambridge, UK), according to
the manufacturer’s instructions.

4.7. Histology and Immunohistochemistry

After excision, portions of TA muscle from each mouse were placed in 4% formalin for
48 h, and subsequently, paraffin was embedded, cut, deparaffinized and used for histology
or immunohistochemistry staining.

Histological analysis of TA specimens was performed following hematoxylin and
eosin (H&E) staining. Five randomly selected sections from the mid-belly of each TA
muscle were selected for analysis. The cross-sectional area (CSA), the mean diameter of
at least 70 muscle fibers (regardless of fiber types) and the fiber size distribution were
determined in over 40 myofibers/field from at least 5 different fields (×20 magnification)
by using dedicated software (ImageJ, version 1.48).

Immunohistochemical analysis was performed on 4 µm serial sections by using Ven-
tana Benchmark® XT autostainer (Roche Diagnostics International AD, Rotkreuz, Switzer-
land) and standard linked streptavidin–biotin horseradish peroxidase technique (LSAB-
HRP), following the best protocol for primary rabbit polyclonal antibody anti-mouse PAX7,
diluted 1:100 in PBS (MBS9202728, MyBioSource, San Diego, CA, USA) and incubated
overnight. Negative control slides without primary antibodies were included for each
staining. The results of the staining were independently evaluated by two operators. A
total of 10 representative high-power fields for each section were analyzed with an optical
microscope (Zeiss Axioscope, Carl Zeiss Microscopy, White Plains, NY, USA). Sections
were digitally scanned with NanoZoomer S60 C13210 series Hamamatsu Photonics K-K
(Hamamatsu Photonics, Hamamatsu City, Japan), and immunostained sections were eval-
uated with Visiopharm software version 2021.02 (APP tune, APP author, Deep Learning
with Author AI).
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4.8. Mitochondria Isolation and Bioenergetic Analysis

Mitochondria were isolated from TA muscle by differential centrifugation, as previ-
ously described [62]. Protein concentration was determined using the Lowry micromethod
kit (TP0300, Merck KGaA, Darmstadt, Germany), and mitochondrial density was calculated
and expressed as mg of protein per g of skeletal muscle tissue.

Mitochondrial membrane potential was assessed at 37 ◦C after incubating approxi-
mately 0.5 mg of protein/mL of mitochondria in a thermostatically equipped oxygraph+
chamber (Hansatec Instruments Ltd., Norfolk, UK) provided with a Clark’s electrode and
a tetraphenylphosphonium (TPP+) electrode (WPI, Berlin, Germany) in the presence of
succinate, rotenone and oligomycin. Membrane potential was calculated using a modified
Nernst equation, as previously reported [62].

Oxygen uptake in state 3 and state 4 was determined using 10 mM glutamate +
5 mM malate or 2 mM succinate as Complex I-linked or Complex II-linked oxidative sub-
strates, respectively; the respiratory control ratio (RCR) was then calculated, as previously
reported [62]. The purity of the mitochondrial fraction was validated by an RCR ≥ 4
measured in the control samples [63].

ATPase activity was evaluated spectrophotometrically, measuring ATP hydrolysis with
an ATP-regenerating system coupled to NADPH oxidation [62]. ATP concentration was
measured in samples of TA muscle by using a bioluminescence kit (A22066, Thermofisher
Scientific Inc, Waltham, MA, USA) according to the manufacturer’s instructions.

4.9. Statistical Analysis

Data were expressed as the mean ± standard deviation of the mean (SD). To compare
all groups, we used a two-way analysis of variance (ANOVA) to test the main effect of
the model (immobilization or cardiotoxin injection) and the treatment as between-subject
factors; the interaction model × treatment was studied, and a Tukey test was applied as a
post hoc multiple comparison test. All tests were two-sided, and p < 0.05 was considered
statistically significant. Statistical analysis was performed with the package Graph-Pad
Prism 6 for Windows (GraphPad Software Inc., San Diego, CA, USA).

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms25116056/s1.
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