Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals
Abstract
:1. Introduction
2. Characterisation of EPCs
3. CEPCs Assessment Methods
4. EPCs in Chronic PA
5. EPCs in Acute PA
6. Future Perspectives
7. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Risau, W. Mechanisms of angiogenesis. Nature 1997, 386, 671–674. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Kiss, T.; Wren, J.D.; Giles, C.B.; Griffin, C.T.; Murfee, W.L.; Pacher, P.; Csiszar, A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 2018, 15, 555–565. [Google Scholar] [CrossRef]
- Pompilio, G.; Capogrossi, M.C.; Pesce, M.; Alamanni, F.; DiCampli, C.; Achilli, F.; Germani, A.; Biglioli, P. Endothelial progenitor cells and cardiovascular homeostasis: Clinical implications. Int. J. Cardiol. 2009, 131, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Aird, W.C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2012, 2, a006429. [Google Scholar] [CrossRef]
- Heinisch, P.P.; Bello, C.; Emmert, M.Y.; Carrel, T.; Dreßen, M.; Hörer, J.; Winkler, B.; Luedi, M.M. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells 2022, 11, 1678. [Google Scholar] [CrossRef]
- Kiewisz, J.; Kaczmarek, M.M.; Pawlowska, A.; Kmiec, Z.; Stompor, T. Endothelial progenitor cells participation in cardiovascular and kidney diseases: A systematic review. Acta Biochim. Pol. 2016, 63, 475–482. [Google Scholar] [CrossRef]
- Forgione, M.A.; Leopold, J.A.; Loscalzo, J. Roles of endothelial dysfunction in coronary artery disease. Curr. Opin. Cardiol. 2000, 15, 409–415. [Google Scholar] [CrossRef]
- Pelliccia, F.; Zimarino, M.; De Luca, G.; Viceconte, N.; Tanzilli, G.; De Caterina, R. Endothelial Progenitor Cells in Coronary Artery Disease: From Bench to Bedside. Stem Cells Transl. Med. 2022, 11, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Balistreri, C.R.; Buffa, S.; Pisano, C.; Lio, D.; Ruvolo, G.; Mazzesi, G. Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives. Biomed. Res. Int. 2015, 2015, 835934. [Google Scholar] [CrossRef]
- Dzau, V.J.; Gnecchi, M.; Pachori, A.S.; Morello, F.; Melo, L.G. Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005, 46, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275, 964–967. [Google Scholar] [CrossRef]
- Kong, D.; Melo, L.G.; Gnecchi, M.; Zhang, L.; Mostoslavski, G.; Liew, C.C.; Pratt, R.E.; Dzau, V.J. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 2004, 110, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Fuujiyama, S.; Amano, K.; Uehira, K.; Yoshida, N.; Nishiwaki, Y.; Nozawa, Y.; Jin, D.; Takai, S.; Miyazaki, M.; Egashira, K.; et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ. Res. 2003, 93, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Werner, N.; Junk, S.; Laufs, L.; Link, A.; Walenta, K.; Bohm, M.; Nickenig, G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res. 2003, 93, e17–e24. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, F.; Pasceri, V.; Meoni, G.; Pristipino, C.; Cianfrocca, C.; Li, X.; La Rocca, S.; Rosano, G.; Mercuro, G.; Richichi, G. Numbers of endothelial progenitor cells in peripheral blood are similar in younger and older patients with coronary artery disease. Int. J. Cardiol. 2009, 133, 277–279. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.; Lazare, S.S. Aging of hematopoietic stem cells. Blood 2018, 131, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Van Craenenbroeck, A.H.; Van Craenenbroeck, E.M. Endothelial progenitor cells and cardiovascular risk: Does ageing trump all other factors? Ann. Transl. Med. 2016, 4, 553. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M.; Adams, V.; Gielen, S.; Linke, A.; Lenk, K.; Krankel, N.; Lenz, D.; Erbs, S.; Scheinert, D.; Mohr, F.W.; et al. Effects of exercise and ischemia on mobilization and functional activation of blood derived progenitor cells in patients with ischemic syndromes: Results of 3 randomized studies. Circulation 2005, 111, 3391–3399. [Google Scholar] [CrossRef]
- Lenk, K.; Uhlemann, M.; Schuler, G.; Adams, V. Role of endothelial progenitor cells in the beneficial effects of physical exercise on atherosclerosis and coronary artery disease. J. Appl. Physiol. 2011, 111, 321–328. [Google Scholar] [CrossRef]
- Gollie, J.M.; Sen, S. Circulating Endothelial Progenitor and Mesenchymal Stromal Cells as Biomarkers for Monitoring Disease Status and Responses to Exercise. Rev. Cardiovasc. Med. 2022, 23, 396. [Google Scholar] [CrossRef] [PubMed]
- Boppart, M.D.; De Lisio, M.; Witkowski, S. Exercise and Stem Cells. Prog. Progress. Mol. Biol. Transl. Sci. 2015, 7, 423–456. [Google Scholar]
- Piotrowska, K.; Zgutka, K.; Tkacz, M.; Tarnowski, M. Physical Activity as a Modern Intervention in the Fight against Obesity-Related Inflammation in Type 2 Diabetes Mellitus and Gestational Diabetes. Antioxidants 2023, 12, 1488. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, S.; Lockard, M.M.; Jenkins, N.T.; Obisesan, T.O.; Spangenburg, E.E.; Hagberg, J.M. Relationship between circulating progenitor cells, vascular function and oxidative stress with longterm training and short-term detraining in older men. Clin. Sci. 2010, 118, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Ferentinos, P.; Tsakirides, C.; Swainson, M.; Davison, A.; Martyn-St James, M.; Ispoglou, T. The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur. J. Appl. Physiol. 2022, 122, 1589–1625. [Google Scholar] [CrossRef]
- Silva, J.F.; Rocha, N.G.; Nobrega, A.C. Mobilization of endothelial progenitor cells with exercise in healthy individuals: A systematic review. Arq. Bras. Cardiol. 2012, 98, 182–191. [Google Scholar] [PubMed]
- Schmid, M.; Kropfl, J.M.; Spengler, C.M. Changes in circulating stem and progenitor cell numbers following acute exercise in healthy human subjects: A systematic review and meta-analysis. Stem. Cell Rev. Rep. 2021, 17, 1091–1120. [Google Scholar] [CrossRef] [PubMed]
- Sarto, P.; Balducci, E.; Balconi, G.; Fiordaliso, F.; Merlo, L.; Tuzzato, G.; Pappagallo, G.L.; Frigato, N.; Zanocco, A.; Forestieri, C.; et al. Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J. Card. Fail. 2007, 13, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.H.; Li, J.; Su, C.; Yang, Z.; Chen, L.; Wu, F.; Zhang, Y.Y.; Yu, B.B.; Qiu, Y.X.; Wang, S.M.; et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/ JAK-2 signaling in healthy men. Aging Cell 2012, 11, 111–119. [Google Scholar] [CrossRef]
- Valenti, M.T.; Dalle Carbonare, L.; Dorelli, G.; Mottes, M. Effects of physical exercise on the prevention of stem cells senescence. Stem Cell Rev. Rep. 2020, 16, 33–40. [Google Scholar] [CrossRef]
- Leone, A.M.; Valgimigli, M.; Giannico, M.B.; Zaccone, V.; Perfetti, M.; D’Amario, D.; Rebuzzi, A.G.; Crea, F. From bone marrow to the arterial wall: The ongoing tale of endothelial progenitor cells. Eur. Heart J. 2009, 30, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Urbich, C.; Dimmeler, S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ. Res. 2004, 95, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Arrojo, E.; Drigo, R.; Lev-Ram, V.; Tyagi, S.; Ramachandra, R.; Deerinck, T.; Bushong, E.; Phan, S.; Orphan, V.; Lechene, C.; et al. Age Mosaicism across Multiple Scales in Adult Tissues. Cell Metab. 2019, 30, 343–351.e3. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.E.J.; Pathak, V.; Pedrini, E.; Soret, L.; Gendron, N.; Guerin, C.L.; Stitt, A.W.; Smadja, D.M.; Medina, R.J. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med. 2021, 10, S54–S61. [Google Scholar] [CrossRef] [PubMed]
- Geeroms, M.; Hamdi, M.; Hirano, R.; Hagiwara, H.; Fujimura, S.; Mizuno, H.; Tanaka, R. Quality and quantity-cultured murine endothelial progenitor cells increase vascularization and decrease fibrosis in the fat graft. Plast. Reconstr. Surg. 2019, 143, 744e–755e. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, G.D.; Sielski, M.S.; Vieira, C.P.; Costa, F.T.M.; Werneck, C.C.; Vicente, C.P. Administration of endothelial progenitor cells accelerates the resolution of arterial thrombus in mice. Cytotherapy 2019, 21, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Paterno, J.; Duscher, D.; Maan, Z.N.; Chen, J.S.; Januszyk, M.; Rodrigues, M.; Rennert, R.C.; Bishop, S.; Whitmore, A.J.; et al. Exercise induces stromal cell-derived factor-1alpha-mediated release of endothelial progenitor cells with increased vasculogenic function. Plast. Reconstr. Surg. 2015, 135, 340e–350e. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Liu, X.; Ding, H.; Zhang, W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022, 124, 151833. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Yoon, C.H.; Kim, H.S.; Choi, J.H.; Kang, H.J.; Hwang, K.K.; Oh, B.H.; Lee, M.M.; Park, Y.B. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arter. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 288–293. [Google Scholar] [CrossRef]
- Fujisawa, T.; Tura-Ceide, O.; Hunter, A.; Mitchell, A.; Vesey, A.; Medine, C.; Gallogly, S.; Hadoke, P.W.F.; Keith, C.; Sproul, A.; et al. Endothelial progenitor cells do not originate from the bone marrow. Circulation 2019, 140, 1524–1526. [Google Scholar] [CrossRef]
- Bostrom, K.I. The shifting nature of endothelial progenitor cells in aortic stenosis. Mayo Clin. Proc. 2019, 94, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Goligorsky, M.S. Endothelial progenitor cells: From senescence to rejuvenation. Semin. Nephrol. 2014, 34, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.C.; Chang, S.J.; Chueh, Y.N.; Huang, T.S.; Huang, P.H.; Cheng, S.M.; Tsai, T.N.; Chen, J.W.; Wang, H.W. Distinct angiogenesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genom. 2013, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.J.; O’Neill, C.L.; Sweeney, M.; Guduric-Fuchs, J.; Gardiner, T.A.; Simpson, D.A.; Stitt, A.W. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med. Genom. 2010, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Santo, S.D.; Seiler, S.; Guzman, R.; Widmer, H.R. Endothelial progenitor cell-derived factors exert neuroprotection in cultured cortical neuronal progenitor cells. Cell Transpl. 2020, 29, 963689720912689. [Google Scholar] [CrossRef] [PubMed]
- Tamari, T.; Kawar-Jaraisy, R.; Doppelt, O.; Giladi, B.; Sabbah, N.; Zigdon-Giladi, H. The paracrine role of endothelial cells in bone formation via CXCR4/SDF-1 pathway. Cells 2020, 9, 1325. [Google Scholar] [CrossRef] [PubMed]
- Eslava-Alcon, S.; Extremera-Garcia, M.J.; Sanchez-Gomar, I.; Beltran-Camacho, L.; Rosal- Vela, A.; Munoz, J.; Ibarz, N.; Alonso-Pinero, J.A.; Rojas-Torres, M.; Jimenez- Palomares, M.; et al. Atherosclerotic pre-conditioning affects the paracrine role of circulating angiogenic cells ex-vivo. Int. J. Mol. Sci. 2020, 21, 5256. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, S.; Bihl, J. Exosome-mediated transfer of ACE2 (Angiotensin- Converting Enzyme 2) from endothelial progenitor cells promotes survival and function of endothelial cell. Oxid. Med. Cell Longev. 2020, 2020, 4213541. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Zhao, C.; Liu, H.; Fan, Y. Endothelial progenitor cell-derived extracellular vesicles: A novel candidate for regenerative medicine and disease treatment. Adv. Healthc. Mater. 2020, 9, e2000255. [Google Scholar] [CrossRef]
- Chong, M.S.; Ng, W.K.; Chan, J.K. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl. Med. 2016, 5, 530–538. [Google Scholar] [CrossRef]
- Banno, K.; Yoder, M.C. Tissue regeneration using endothelial colonyforming cells: Promising cells for vascular repair. Pediatr. Res. 2018, 83, 283–290. [Google Scholar] [CrossRef]
- Yoder, M.C.; Mead, L.E.; Prater, D.; Krier, T.R.; Mroueh, K.N.; Li, F.; Krasich, R.; Temm, C.J.; Prchal, J.T.; Ingram, D.A. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007, 109, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.L.; McLoughlin, K.J.; Chambers, S.E.J.; Guduric-Fuchs, J.; Stitt, A.W.; Medina, R.J. The vasoreparative potential of endothelial colony forming cells: A journey through preclinical studies. Front. Med. 2018, 5, 273. [Google Scholar] [CrossRef] [PubMed]
- Hristov, M.; Erl, W.; Weber, P.C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arter. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Van Craenenbroeck, E.M.; Conraads, V.M.; Van Bockstaele, D.R.; Haine, S.E.; Vermeulen, K.; Van Tendeloo, V.F.; Vrints, C.J.; Hoymans, V.Y. Quantification of circulating endothelial progenitor cells: A methodological comparison of six flow cytometric approaches. J. Immunol. Methods 2008, 20, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.Y.; Hsu, C.Y.; Chiu, C.C.; Chou, R.H.; Huang, H.L.; Huang, C.C.; Leu, H.B.; Huang, P.H.; Chen, J.W.; Lin, S.J. Association between echocardiographic epicardial fat thickness and circulating endothelial progenitor cell level in patients with stable angina pectoris. Clin. Cardiol. 2017, 40, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Cappellari, R.; D’Anna, M.; Avogaro, A.; Fadini, G.P. Plerixafor improves the endothelial health balance. The effect of diabetes analysed by polychromatic flow cytometry. Atherosclerosis 2016, 251, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Case, J.; Mead, L.E.; Bessler, W.K.; Prater, D.; White, H.A.; Saadatzadeh, M.R.; Bhavsar, J.R.; Yoder, M.C.; Haneline, L.S.; Ingram, D.A. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol. 2007, 35, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Rigato, M.; Avogaro, A.; Fadini, G.P. Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death: A Meta-Analysis of Prospective Observational Studies. Circ. Res. 2016, 10, 1930–1939. [Google Scholar] [CrossRef]
- Niemiro, G.M.; Parel, J.; Beals, J.; van Vliet, S.; Paluska, S.A.; Moore, D.R.; Burd, N.A.; De Lisio, M. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J. Appl. Physiol. 2017, 1, 675–682. [Google Scholar] [CrossRef]
- Kourek, C.; Karatzanos, E.; Psarra, K.; Georgiopoulos, G.; Delis, D.; Linardatou, V.; Gavrielatos, G.; Papadopoulos, C.; Nanas, S.; Dimopoulos, S. Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity. World J. Cardiol. 2020, 26, 526–539. [Google Scholar] [CrossRef]
- Ricottini, E.; Madonna, R.; Grieco, D.; Zoccoli, A.; Stampachiacchiere, B.; Patti, G.; Tonini, G.; De Caterina, R.; Di Sciascio, G. Effect of High-Dose Atorvastatin Reload on the Release of Endothelial Progenitor Cells in Patients on Long-Term Statin Treatment Who Underwent Percutaneous Coronary Intervention (from the ARMYDA-EPC Study). Am. J. Cardiol. 2016, 15, 165–171. [Google Scholar] [CrossRef]
- Bogoslovsky, T.; Wang, D.; Maric, D.; Scattergood-Keepper, L.; Spatz, M.; Auh, S.; Hallenbeck, J. Cryopreservation and Enumeration of Human Endothelial Progenitor and Endothelial Cells for Clinical Trials. J. Blood Disord. Transfus. 2013, 20, 151–158. [Google Scholar]
- Redondo, S.; Hristov, M.; Gordillo-Moscoso, A.A.; Ruiz, E.; Weber, C.; Tejerina, T. High-reproducible flow cytometric endothelial progenitor cell determination in human peripheral blood as CD34+/CD144+/CD3-lymphocyte sub-population. J. Immunol. Methods 2008, 1, 21–27. [Google Scholar] [CrossRef]
- Řádek, M.; Babuňková, E.; Špaček, M.; Kvasnička, T.; Kvasnička, J. Determination of Circulating Endothelial Cells and Endothelial Progenitor Cells Using Multicolor Flow Cytometry in Patients with Thrombophilia. Acta Haematol. 2019, 142, 113–119. [Google Scholar] [CrossRef]
- Reale, A.; Melaccio, A.; Lamanuzzi, A.; Saltarella, I.; Dammacco, F.; Vacca, A.; Ria, R. Functional and Biological Role of Endothelial Precursor Cells in Tumour Progression: A New Potential Therapeutic Target in Haematological Malignancies. Stem Cells Int. 2016, 2016, 7954580. [Google Scholar] [CrossRef] [PubMed]
- Salybekov, A.A.; Kobayashi, S.; Asahara, T. Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int. J. Mol. Sci. 2022, 23, 7697. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.B.; Walenta, K.; Scharlau, J.; Nickenig, G.; Werner, N. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ. Res. 2006, 98, 20–25. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Shmilovich, H.; Deutsch, V.; Miller, H.; Keren, G.; Roth, A. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng. 2006, 12, 331–335. [Google Scholar] [CrossRef]
- Shantsila, E.; Watson, T.; Tse, H.F.; Lip, G.Y. Endothelial colony forming units: Are they a reliable marker of endothelial progenitor cell numbers? Ann. Med. 2007, 39, 474–479. [Google Scholar] [CrossRef]
- Yong-Seok, J. Influences of acute and/or chronic exercise on human immunity: Third series of scientific evidence. J. Exerc. Rehabil. 2020, 16, 205–206. [Google Scholar]
- World Health Organization. Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Laufs, U.; Werner, N.; Link, A.; Endres, M.; Wassmann, S.; Jürgens, K.; Miche, E.; Böhm, M.; Nickenig, G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004, 109, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xia, W.H.; Su, C.; Wu, F.; Zhang, Y.Y.; Xu, S.Y.; Liu, X.; Zhang, X.Y.; Ou, Z.J.; Lai, G.H.; et al. Regular exercise-induced increased number and activity of circulating endothelial progenitor cells attenuates age-related decline in arterial elasticity in healthy men. Int. J. Cardiol. 2013, 10, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Walther, C.; Adams, V.; Bothur, I.; Drechsler, K.; Fikenzer, S.; Sonnabend, M.; Bublitz, B.; Körner, A.; Erbs, S.; Busse, M.; et al. Increasing physical education in high school students: Effects on concentration of circulating endothelial progenitor cells. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.V.; De Meneck, F.; Oliveira, V.; Higa, E.M.; Akamine, E.H.; Franco, M.D.C. Beneficial Impact of Moderate to Vigorous Physical Activity Program on Circulating Number and Functional Capacity of Endothelial Progenitor Cells in Children: The Crucial Role of Nitric Oxide and VEGF-A. Pediatr. Exerc. Sci. 2019, 31, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.V.; De Meneck, F.; Fernandes, T.; Oliveira, E.M.; Franco, M.D.C. Physical activity intervention improved the number and functionality of endothelial progenitor cells in low birth weight children. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, C.R.O.; Izar, M.C.O.; França, C.N.; Schwerz, V.L.; Póvoa, R.M.D.S.; Fonseca, F.A.H. Effects of Chronic Exercise on Endothelial Progenitor Cells and Microparticles in Professional Runners. Arq. Bras. Cardiol. 2017, 108, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Cesari, F.; Sofi, F.; Gori, A.M.; Corsani, I.; Capalbo, A.; Caporale, R.; Abbate, R.; Gensini, G.F.; Casini, A. Physical activity and circulating endothelial progenitor cells: An intervention study. Eur. J. Clin. Investig. 2012, 42, 927–932. [Google Scholar] [CrossRef]
- Rakobowchuk, M.; Harris, E.; Taylor, A.; Baliga, V.; Cubbon, R.M.; Rossiter, H.B.; Birch, K.M. Heavy and moderate interval exercise training alters low-flow-mediated constriction but does not increase circulating progenitor cells in healthy humans. Exp. Physiol. 2012, 97, 375–385. [Google Scholar] [CrossRef]
- Landers-Ramos, R.Q.; Corrigan, K.J.; Guth, L.M.; Altom, C.N.; Spangenburg, E.E.; Prior, S.J.; Hagberg, J.M. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults. Appl. Physiol. Nutr. Metab. 2016, 41, 832–841. [Google Scholar] [CrossRef]
- Thijssen, D.H.; Vos, J.B.; Verseyden, C.; van Zonneveld, A.J.; Smits, P.; Sweep, F.C.; Hopman, M.T.; de Boer, H.C. Haematopoietic stem cells and endothelial progenitor cells in healthy men: Effect of aging and training. Aging Cell 2006, 5, 495–503. [Google Scholar] [CrossRef] [PubMed]
- DiMenna, F.J.; Arad, A.D. The acute vs. chronic effect of exercise on insulin sensitivity: Nothing lasts forever. Cardiovasc. Endocrinol. Metab. 2020, 19, 149–161. [Google Scholar] [CrossRef] [PubMed]
- De Biase, C.; De Rosa, R.; Luciano, R.; De Luca, S.; Capuano, E.; Trimarco, B.; Galasso, G. Effects of physical activity on endothelial progenitor cells (EPCs). Front. Physiol. 2014, 3, 414. [Google Scholar] [CrossRef] [PubMed]
- Obeid, J.; Nguyen, T.; Cellucci, T.; Larché, M.J.; Timmons, B.W. Effects of acute exercise on circulating endothelial and progenitor cells in children and adolescents with juvenile idiopathic arthritis and healthy controls: A pilot study. Pediatr. Rheumatol. Online J. 2015, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Hoetzer, G.L.; MacEneaney, O.J.; Irmiger, H.M.; Keith, R.; Van Guilder, G.P.; Stauffer, B.L.; DeSouza, C.A. Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. Am. J. Cardiol. 2007, 99, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Möbius-Winkler, S.; Hilberg, T.; Menzel, K.; Golla, E.; Burman, A.; Schuler, G.; Adams, V. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J. Appl. Physiol. 2009, 107, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.D.; Wekesa, A.L.; Phelan, J.P.; Harrison, M. Resistance exercise increases endothelial progenitor cells and angiogenic factors. Med. Sci. Sports Exerc. 2014, 46, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Strömberg, A.; Rullman, E.; Jansson, E.; Gustafsson, T. Exercise-induced upregulation of endothelial adhesion molecules in human skeletal muscle and number of circulating cells with remodeling properties. J. Appl. Physiol. 2017, 1, 1145–1154. [Google Scholar] [CrossRef]
- Krüger, K.; Pilat, C.; Schild, M.; Lindner, N.; Frech, T.; Muders, K.; Mooren, F.C. Progenitor cell mobilization after exercise is related to systemic levels of G-CSF and muscle damage. Scand. J. Med. Sci. Sports 2015, 25, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Van Craenenbroeck, E.M.; Vrints, C.J.; Haine, S.E.; Vermeulen, K.; Goovaerts, I.; Van Tendeloo, V.F.; Hoymans, V.Y.; Conraads, V.M. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. J. Appl. Physiol. 2008, 104, 1006–1013. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.M.; Chen, L.; Luo, C.F.; Tang, A.L.; Tao, J. Acute exercise-induced nitric oxide production contributes to upregulation of circulating endothelial progenitor cells in healthy subjects. J. Hum. Hypertens. 2007, 21, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Bonsignore, M.R.; Morici, G.; Riccioni, R.; Huertas, A.; Petrucci, E.; Veca, M.; Mariani, G.; Bonanno, A.; Chimenti, L.; Gioia, M.; et al. Hemopoietic and angiogenetic progenitors in healthy athletes: Different responses to endurance and maximal exercise. J. Appl. Physiol. 2010, 109, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Krüger, K.; Alack, K.; Ringseis, R.; Mink, L.; Pfeifer, E.; Schinle, M.; Gindler, K.; Kimmelmann, L.; Walscheid, R.; Muders, K.; et al. Apoptosis of T-Cell Subsets after Acute High-Intensity Interval Exercise. Med. Sci. Sports Exerc. 2016, 48, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, L.; Wardrop, B.; Murphy, R.P.; Ross, M.D.; Harrison, M. Circulating angiogenic cell response to sprint interval and continuous exercise. Eur. J. Appl. Physiol. 2019, 119, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Laufs, U.; Urhausen, A.; Werner, N.; Scharhag, J.; Heitz, A.; Kissner, G.; Böhm, M.; Kindermann, W.; Nickenig, G. Running exercise of different duration and intensity: Effect on endothelial progenitor cells in healthy subjects. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Adams, V.; Linke, A.; Breuckmann, F.; Leineweber, K.; Erbs, S.; Kränkel, N.; Bröcker-Preuss, M.; Woitek, F.; Erbel, R.; Heusch, G.; et al. Circulating progenitor cells decrease immediately after marathon race in advanced-age marathon runners. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Shill, D.D.; Marshburn, M.P.; Hempel, H.K.; Lansford, K.A.; Jenkins, N.T. Heterogeneous Circulating Angiogenic Cell Responses to Acute Maximal Exercise. Med. Sci. Sports Exerc. 2016, 48, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.; Paterson, A.; Williamson, C.; Florida-James, G.; Ross, M.D. Blood Flow Restriction Exercise Attenuates the Exercise-Induced Endothelial Progenitor Cell Response in Healthy, Young Men. Front. Physiol. 2019, 10, 447. [Google Scholar] [CrossRef]
- Ross, M.D.; Malone, E.M.; Simpson, R.; Cranston, I.; Ingram, L.; Wright, G.P.; Chambers, G.; Florida-James, G. Lower resting and exercise-induced circulating angiogenic progenitors and angiogenic T cells in older men. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H392–H402. [Google Scholar] [CrossRef]
- Ribeiro, F.; Ribeiro, I.P.; Gonçalves, A.C.; Alves, A.J.; Melo, E.; Fernandes, R.; Costa, R.; Sarmento-Ribeiro, A.B.; Duarte, J.A.; Carreira, I.M.; et al. Effects of resistance exercise on endothelial progenitor cell mobilization in women. Sci. Rep. 2017, 7, 17880. [Google Scholar] [CrossRef]
- Harris, E.; Rakobowchuk, M.; Birch, K.M. Interval exercise increases angiogenic cell function in postmenopausal women. BMJ Open Sport. Exerc. Med. 2017, 3, e000248. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Campbell, M.D.; Gonzalez, J.T.; Walker, M.; Stevenson, E.J.; Ahmed, F.W.; Wijaya, S.; Shaw, J.A.; Weaver, J.U. The inflammation, vascular repair and injury responses to exercise in fit males with and without Type 1 diabetes: An observational study. Cardiovasc. Diabetol. 2015, 14, 71. [Google Scholar] [CrossRef]
- Ross, M.D. Endothelial regenerative capacity and aging: Influence of diet, exercise and obesity. Curr. Cardiol. Rev. 2018, 14, 233–244. [Google Scholar] [CrossRef]
- Denes, A.; Hansen, C.E.; Oezorhan, U.; Figuerola, S.; de Vries, H.E.; Sorokin, L.; Planas, A.M.; Engelhardt, B.; Schwaninger, M. Endothelial cells and macrophages as allies in the healthy and diseased brain. Acta Neuropathol. 2024, 147, 38. [Google Scholar] [CrossRef] [PubMed]
- Shudo, Y.; Goldstone, A.B.; Cohen, J.E.; Patel, J.B.; Hopkins, M.S.; Steele, A.N.; Edwards, B.B.; Kawamura, M.; Miyagawa, S.; Sawa, Y.; et al. Layered smooth muscle cell-endothelial progenitor cell sheets derived from the bone marrow augment postinfarction ventricular function. J. Thorac. Cardiovasc. Surg. 2017, 154, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Mause, S.F.; Ritzel, E.; Deck, A.; Vogt, F.; Liehn, E.A. Engagement of the CXCL12-CXCR4 Axis in the Interaction of Endothelial Progenitor Cell and Smooth Muscle Cell to Promote Phenotype Control and Guard Vascular Homeostasis. Int. J. Mol. Sci. 2022, 23, 867. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhao, Z.; Jiang, W.; Zhu, P.; Zhou, N.; Huang, X. A Review into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front. Cell Dev. Biol. 2022, 10, 878697. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Yang, R.; Wu, F.; Wang, X.; Liang, J.; Hu, X.; Hu, C. Exosomal miR-218-5p/miR-363-3p from Endothelial Progenitor Cells Ameliorate Myocardial Infarction by Targeting the p53/JMY Signaling Pathway. Oxid. Med. Cell Longev. 2021, 16, 5529430. [Google Scholar] [CrossRef]
- Chen, S.; Sigdel, S.; Sawant, H.; Bihl, J.; Wang, J. Exercise-Intervened Endothelial Progenitor Cell Exosomes Protect N2a Cells by Improving Mitochondrial Function. Int. J. Mol. Sci. 2024, 25, 1148. [Google Scholar] [CrossRef]
Cell Phenotype | Origin of Cells | Reference |
---|---|---|
CD34+ | EPCs | [56,57] |
CD34+/CD45dim/neg/KDR+ | EPCs | |
CD34+/CD45neg/CD146+ CD45neg/CD34+/CD31+/CD36+ | CECs CECs (microvascular origin) | [57] |
CD34+/CD45− | EPCs | [58] |
CD34+/CD133+ | CPCs | [59] |
CD45−/CD34+/CD31+ | EPCs | [60] |
CD34+/CD45−/CD133+ CD34+/CD45−/CD133+/VEGFR-2+ CD34+/CD133+/VEGFR-2+ | EPCs | [61] |
CD34+/CD45−/CD133− CD34+/CD45−/CD133−/VEGFR-2+ | CECs | [61] |
CD45dim/CD34+/CD133+/VEGFR-2+ | EPCs | [62] |
CD34+/VEGFR-2+ CD34+/VEGFR-2/CD3− | EPCs | [55] |
CD45−/CD146+/CD34+/VEGFR-2+ | Late EPCs | [63] |
CD34+/CD144+/CD3− | CEPCs | [64] |
CD45dim/neg/CD34+/CD146+/CD133+ CD45dim/neg/CD34+/CD146+/CD133− | EPCs CECs | [65] |
Number of Participants/Gender | Age | Parameters of PA | Results | References |
---|---|---|---|---|
108 children | 12.0 ± 0.1 years old | intervention group physical exercise (45 min) per school day; | ↑ amount and function of EPCs in the intervention class; | [75] |
(54 boys and 54 girls) | control group 2 h of physical education per week | ↑ amount and function of EPCs in the intervention class | ||
40 children (22 boys and 18 girls) | 7–11 years old | 10-week (MVPA) programme (duration: 45 min; intensity: 75–85% of heart rate reserve; frequency: 4 sessions/wk) | ↑ circulating functional capacity of CD34+/CD133+/KDR+ cells | [76] |
35 children | 6–11 years old | 10-week (MVPA) programme (duration: 45 min; intensity: 75–85% of heart rate reserve; frequency: 4 sessions/wk) | 2-fold increase in the number of EPCs | [77] |
49 women and men | - | intervention group 2 long-distance running sessions every day: 15 km in the morning and 10 km in the afternoon, and intensive training (100–1000 m shots, repeated many times) twice a week | ↑ CD34+/KDR+ EPCs, CD133+/KDR+ EPCs, and CD34+/CD133+ EPCs were not different in athletes | [78] |
80 subjects (40 men, 40 women) | 24–69 years old | 45-min session of aerobic exercise (walking briskly or moderate running) 3 times per week for 3 months | ↑ CPC: CD34+, CD133+, and CD34+/CD133+; ↑ EPC: CD34+KDR+, CD133+KDR+, and CD34+CD133+KDR+ in compliant group | [79] |
20 volunteers (7 men, 13 women) | 23.7 ± 3.4 years old | 6 weeks, training involved either moderate (MSIT; n = 9) or heavy metabolic stress (HSIT; n = 11) interval exercise | CD34+, CD133+, and CD309/KDR+ did not alter | [80] |
11 adults (4 men, 7 women) | 61 ± 2 years of age | 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days | CD34+/KDR+ number increased 104% and KDR+ number increased 151% | [81] |
20 men | young group 21–33 years old and old group 59–72 years old | regular aerobic exercise ≥4 times/wk, ≥30 min/ session for 3 months | ↑ CD34+, KDR+ in young and old men | [74] |
22 men | 67.8 ± 3.38 years old | 30 min daily for 3 days per week for a period of 12 weeks | ↑ CD34+/KDR+ and KDR+/CD133+ number of cells | [29] |
16 men | young group 18–28 years old and old group 67–76 years old | 8 weeks, endurance training | CD34+/VEGFR-2+ did not alter | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkacz, M.; Zgutka, K.; Tomasiak, P.; Tarnowski, M. Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. Int. J. Mol. Sci. 2024, 25, 6085. https://doi.org/10.3390/ijms25116085
Tkacz M, Zgutka K, Tomasiak P, Tarnowski M. Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. International Journal of Molecular Sciences. 2024; 25(11):6085. https://doi.org/10.3390/ijms25116085
Chicago/Turabian StyleTkacz, Marta, Katarzyna Zgutka, Patrycja Tomasiak, and Maciej Tarnowski. 2024. "Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals" International Journal of Molecular Sciences 25, no. 11: 6085. https://doi.org/10.3390/ijms25116085
APA StyleTkacz, M., Zgutka, K., Tomasiak, P., & Tarnowski, M. (2024). Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. International Journal of Molecular Sciences, 25(11), 6085. https://doi.org/10.3390/ijms25116085