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Abstract: Berberine (BBR) is used to treat cancer, inflammatory conditions, and so on. But the side
effects of BBR causing constipation should not be ignored. In clinical application, the combination
of Amomum villosum Lour. (AVL) and BBR can relieve it. However, the effective ingredients and
molecular mechanism of AVL in relieving constipation are not clear. A small intestine propulsion
experiment was conducted in constipated mice to screen active ingredients of AVL. We further
confirmed the molecular mechanism of action of the active ingredient on BBR-induced constipation.
Quercetin (QR) was found to be the effective ingredient of AVL in terms of relieving constipation.
QR can efficiently regulate the microbiota in mice suffering from constipation. Moreover, QR
significantly raised the levels of substance P and motilin while lowering those of 5-hydroxytryptamine
and vasoactive intestinal peptide; furthermore, it also increased the protein expression levels of
calmodulin, myosin light-chain kinase, and myosin light chain. The use of QR in combination with
BBR has an adverse effect-reducing efficacy. The study provides new ideas and possibilities for the
treatment of constipation induced by BBR.

Keywords: Amomum villosum Lour. (AVL); berberine (BBR); quercetin (QR); compatibility of
traditional Chinese medicine; constipation

1. Introduction

Constipation is a prevalent ailment that is typified by infrequent or challenging bowel
motions. It is broadly categorized into functional constipation, organic constipation, and
drug-induced constipation (DIC). The prevalence of DIC is high, and, according to surveys,
about 10% to 15% of people will experience DIC, which is especially common in patients
with chronic illnesses who have been taking medications for a long time. DIC will not only
affect the life quality of the patient [1], but also influence how well the patient absorbs
medication, which influences how effective the medication is [2], and even further leads to
anal fissure, hemorrhoids, intestinal obstruction, and other serious complications [3]. Early
intervention for DIC is essential. It is worth exploring effective treatment methods for DIC.

BBR is an effective monomer component of Chinese medicine in Coptis chinensis
Franch [4], which is mainly extracted from the rhizome of Coptis chinensis Franch. As
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a traditional Chinese medicine ingredient, BBR has anti-inflammatory, antibacterial, and
antiviral pharmacological activities, and is mainly used for the treatment of colds, enteritis,
hepatitis, and other diseases. Although BBR has many medicinal effects, there are some
possible side effects, among which digestive side effects are the most common, which
may cause nausea, vomiting, stomach upset and other digestive reactions. Clinical studies
have shown that long-term application of BBR will bring side effects of constipation [5,6].
It is also commonly used in animal experiments as a modeling drug for constipation
models. Some studies have shown the possible mechanism of constipation is to inhibit the
contraction of gastrointestinal smooth muscle by inhibiting the function of smooth muscle
myosin [7], which in turn prolongs the retention time of intestinal contents and reduces the
frequency of intestinal peristalsis [8]. In addition, BBR can inhibit gastric acid secretion,
affecting the digestion of food and increasing the risk of constipation [9]. Therefore, the
problem of constipation caused by BBR is gradually being emphasized and urgently needs
to be solved.

Amomum villosum Lour. (AVL) is acrid and warm [7] and belongs to the ginger family.
The main place of origin is the southern region of China [10]. Its fruit is widely used to
treat digestive disorders. AVL can lighten the spleen and gastric symptoms, eliminate
distension, and strengthen gastric activity [11]. The medicinal active ingredients of AVL are
composed of volatile and nonvolatile ingredients. Common volatile ingredients include
borneol (Bor), camphor (CAMP), bornyl acetate (BA), etc. Common nonvolatile ingredients
include catechins (Cat), QR, etc. Research has proved that AVL can increase the peristalsis
of the small intestine, which is beneficial to improve gastrointestinal function [12]. It is
an effective herbal medicine to relieve constipation.

AVL and BBR are often used in combination for the treatment of gastrointestinal
diseases, diabetes, and cardiovascular diseases. BBR has the effect of clearing heat, is
an anti-inflammatory [13], and acts in suppressing pain [14], and AVL has the effect of
promoting gastric peristalsis and gastric emptying [15]. BBR lowers blood sugar [16], and
AVL promotes insulin secretion, effectively controlling blood sugar [17]. BBR lowers blood
lipids [18], and AVL improves the function of the heart [19]. The use of them in combination
can not only synergize the effect, but also effectively alleviate the constipation side effect
caused by BBR, which has the effect of increasing the efficacy and reducing the adverse
effects. However, the effective constipation-relieving components of AVL have not yet been
clearly defined, and the molecular mechanism of relieving constipation induced by BBR
has to be explored. BBR alters the composition of the gut microbiota [20]. Not all effects
of BBR on the gut microbiota during treatment are beneficial. This includes a decrease in
some probiotic bacteria such as the butyric acid-producing bacterium Roseburia and an
increase in some conditionally pathogenic bacteria such as Aspergillus and Streptococcus [21].
Constipation is often a manifestation of gut microbiota imbalance. Some studies have
shown that gut microbiota can regulate intestinal cell maturation and function [22]. The
gastrointestinal metabolites short-chain fatty acids (SCFAs) are able to stimulate an increase
in calcium ions in colonic L-cells via G-protein-coupled receptors, such as FFAR2 and FFAR3,
which in turn promotes the secretion of the gastrointestinal hormone [23]. Gut microbiota
also influences water and electrolyte balance, and studies have shown that Lactobacillus
can influence the opening and closing of potassium and magnesium channels in the gut,
thereby regulating electrolyte balance [24]. Gut microbiota also influences gastrointestinal
motility function. It has been found that alterations in gut microbiota can regulate the
intestinal barrier function by affecting the activity of the CAM-MLCK pathway [25]. Not
only that, but the gut microbiota plays a crucial role in preserving the homeostasis of the
enteric nervous system, and microbiota dysbiosis can reduce neuronal densities, change
neuronal subtypes, and alter electrophysiological function. Both the volatile and nonvolatile
ingredients of AVL can regulate gut microbiota and restore gastrointestinal health. In
addition, research indicates that QR, a non-volatile component of AVL, has a significant
impact on the diversity and composition of the gut microbiota. A study on antibiotic-
treated mice showed that QR supplementation notably improved the diversity of the gut
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bacterial community. It also helped recover the intestinal barrier function, as evidenced
by a decrease in serum d-lactic acid and serum diamine oxidase activity. Additionally, QR
treatment led to an increase in the length of intestinal villi and mucosal thickness, along
with enhanced butyrate production in feces [20].

This study aims to screen out the small molecules of herbs in constipation alleviation,
and explore the efficacy and molecular mechanism of constipation alleviation by regulating
gut microbiota, which provides new ideas and a basis for reducing the toxic and side effects
of BBR and expanding its clinical application in combination. The mechanism of action of
quercetin on berberine-induced constipation is demonstrated in Scheme 1.
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Scheme 1. Mechanism of action of quercetin, an active ingredient of Amomum villosum Lour., on
berberine-induced constipation. Note: Blue arrows indicate the regulatory trend of berberine and red
arrows indicate the regulatory trend of quercetin. The mechanism of efficacy was assessed in terms
of indicators related to gastrointestinal hormones, the gut microenvironment, and gastrointestinal
smooth muscle peristaltic signaling pathways. Quercetin can relieve constipation by promoting
digestion and absorption of gastrointestinal tract contents, promoting gastrointestinal tract water and
electrolyte balance, and promoting gastrointestinal tract peristalsis.

2. Results
2.1. Screening of Active Ingredients in AVL for Constipation Relief

The variations in the intestinal propulsion rates are illustrated in Figure 1. Mice in
the Control group had a considerably higher intestinal propulsion rate than those in the
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Model group (p < 0.05). It proves that the mouse constipation model was built effectively.
Following the intervention, there was a statistically significant (p < 0.05) increase in the
nonvolatile group’s intestinal propulsion rate. The nonvolatile group’s intestinal propulsion
rate was 51.17 ± 4.64%, greater by 10.97 ± 7.97% than that of the Model group (Figure 1A,B).
These findings suggested that nonvolatile components in AVL might relieve constipation
by promoting peristalsis and accelerating the transit of activated carbon through the small
intestine. In the meantime, the outcomes of studies on small intestine propulsion not only
suggested that QR could relieve constipation by promoting peristalsis and accelerating the
passage of activated charcoal through the small intestine, but also indicated that BBR and
CAMP increased constipation in mice (Figure 1C,D). Finally, the results also showed that an
AVL dose of 70 mg·kg−1 can effectively relieve constipation caused by BBR (Figure 1E,F).
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Figure 1. Carbon powder propulsion diagram. (A) Carbon powder propulsion diagram of volatile
and nonvolatile ingredients of AVL. (B) Histogram of carbon powder propulsive rate of volatile
and nonvolatile ingredients of AVL (mean ± SD, n = 6). (C) Carbon powder propulsion diagram
of each component of AVL. (D) Histogram of carbon powder propulsion rate of each component
of AVL (mean ± SD, n = 6). (E) Carbon powder propulsive diagram of AVL with different doses.
(F) Histogram of carbon powder propulsion rate of different doses of AVL (mean ± SD, n = 6).
Significance was assessed by using t-test vs. Control group, # p < 0.05, ## p < 0.01, ### p < 0.001 vs.
Model, * p < 0.05, ** p < 0.01.

2.2. Efficacy of Different Doses of QR in Relieving Constipation
2.2.1. Effects of Different Doses of QR on the Body Weights of Mice

Throughout the course of the administration period, the body weights of the con-
stipated mice were measured every day in order to assess the impact of QR on changes
in body weight. Due to the pharmacological effect of BBR [26], the bodies of the mice in
the Control group had reduced fat (p < 0.05). After the treatment intervention, the body
weights in the Positive Control, Middle-QR, and High-QR groups were not significantly
different from those in the Control group. It can be seen that Middle-QR and High-QR
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doses can effectively alleviate the BBR-induced abnormal weight loss in mice and restore
the body weight of mice, as weights in the Model group decreased significantly compared
to those in the normal levels (Figure 2B).
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Figure 2. (A) Flow charts of different QR doses by gastric perfusion. (B) Effects of different doses
of QR on body weights of mice for 7 d (mean ± SD, n = 6). (C) Histogram of mice gastric emptying
rate in different QR dose groups (mean ± SD, n = 6). (D) Histogram of the number of black stool
occurrences in different QR dose groups (mean ± SD, n = 6). (E) Histogram of mice fecal water
contents in different QR dose groups (mean ± SD, n = 6). (F) Histogram of the first black stool time in
different QR dose groups (mean ± SD, n = 6). (G) Histogram of mice intestinal propulsive rate in
different QR dose groups (mean ± SD, n = 6). (H) Intestinal propulsion of carbon powder in different
QR dose groups. Significance was assessed by using t-test vs. Control group, # p < 0.05, ## p < 0.01,
### p < 0.001, #### p < 0.0001 vs. Model, * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.2.2. Fecal Water Content of Mice

Fecal water content is an important indicator of the success of constipation model
construction. Dry feces will increase the burden of defecation. The increase in water content
indicates relief of constipation. In addition, the shorter the time it takes for the first black
stool to be discharged, the faster the peristalsis throughout the intestines and the greater
the intestinal transportation capacity. The number of black stools in a certain period of time
can also determine the degree of constipation.

As shown in Figure 2, mice with constipation showed constipation symptoms such as
reduced fecal water content, prolonged appearance of black stools, and reduced black-stool
elimination (p < 0.05). After treatment, the mice showed varying degrees of constipation
relief (Figure 2D–F).

The results demonstrated that QR was effective in increasing fecal water content and
promoting fecal elimination. The time to expel black stools was fastest in the High-QR
group and was closer to the Control group than to the Positive Control, Low-QR, and
Middle-QR groups (p < 0.05). The results of the number of black stools expelled in six hours,
as shown, suggested that the High-QR dose had a better effect on relieving constipation,
and its efficacy was closer to that of the Positive Control group.

2.2.3. Effects of Different QR Doses on Gastric Emptying Rate and Intestinal
Propulsive Rate

Mice exposed to QR demonstrated a remarkable gastric-emptying rate increase com-
pared with mice exposed to BBR (p < 0.001), which was suggestive of a consolidated
potency of QR in promoting gastric motility (Figure 2C). The small intestinal propulsion
rates of mice in the Control group was 66.20 ± 4.17%, while that of the Model group was
41.23 ± 1.70% (Figure 2G,H), which was significantly reduced (p < 0.001). The different
QR doses significantly increased the small intestinal propulsion rate in mice. As compared
to the Low-dose QR group, the Middle- and High-dose QR groups could better relieve
constipation, showing a dose-dependent efficacy.

2.3. Mechanism of QR in Alleviating Constipation
2.3.1. Effect of QR on the Gut Microbial Diversity

The Venn diagram presents a breakdown of the common and unique operational
taxonomic unit (OTU) numbers among each group (Figure 3A). BBR significantly reduced
the number of OTUs in mice gut microbiota, which were effectively restored by QR. This
indicated that BBR reduced the diversity of gut microbiota and caused constipation, while
QR relieved constipation by increasing the diversity of gut microbiota in mice.

One significant metric that represents the quantity, uniformity, and variety of gut
microbiota is alpha (α) diversity. The findings presented (Figure 3B) indicate that feeding
mice with BBR significantly reduced the abundance and diversity of gut microbiota in
the mice. Specifically, the Observed-species, Chaol, PD-whole-tree, and Shannon indices
of the Model group were significantly lower (p < 0.05) compared with the Control group.
Conversely, the QR groups exhibited a statistically significant difference from the Model
group (p < 0.05), indicating that the application of QR improved and restored the diversity
and richness of the gut microbiota that had been compromised by the mice’s BBR diet.

The examination of beta diversity revealed that the Model group’s gut microbiota
had more homogeneity and aggregation than the Control group’s (Figure 3C,D), clearly
demonstrating the impact of BBR on the gut microbiota composition of mice. Given the
wide gap between the QR group and the Model group, it was possible that QR intervention
could partially restore the gut microbiota’s structural diversity and balance.
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Figure 3. Effects of QR on the diversity of gut microbiota. (A) Venn diagram of OTU quantity.
(B) Alpha diversity index box plots (n = 5). (C) Rank abundance diagram. (D) OTU-based Partial
Least Squares Discriminant Analysis. The dose of the QR group was 280 mg·kg−1. Significance was
assessed by using t-test.

2.3.2. Effects of QR on the Composition of Mice Gut Microbiota

At the phylum level, the relative abundances of gut microbiota in each group were
analyzed. Firmicutes and Bacteroidota were the dominant and main phyla of the mice gut
microbiota in each group [27], followed by Desulfobacteria, Proteobacteria, Verrucomicroblota,
etc. (Figure 4A). As compared to the Control group, BBR decreased the relative abun-
dance of Firmicutes and increased that of Proteobacteria, which were significantly restored
by QR (Figure 4B). Firmicutes relieve symptoms of low gastrointestinal capacity such as
constipation, gastrointestinal ulcers, and the postoperative period [28]. Proteobacteria are
pathogenic Gram-negative bacteria that cause inflammatory diseases [29]. Verrucomicrobia
can cause metabolic inflammation. Both are pathogenic and affect normal gastrointestinal
physiological functions [30]. The composition of mice gut microbiota in each group at
the genus level was analyzed based on the composition information of the annotated
species table, and the distribution of gut microbiota was drawn using the R package. As
compared to the Control group, the relative abundances of beneficial bacterial genera
Lachnospiraceae_NK4A136_group, Dubosiella, and Lachnoclostridium in the Model group de-
creased, while those of pathogenic bacterial genera Parabacteroides and Escherichia-Shigella
increased. The abundance of bacteria in the QR group was closer to that in the Control
group (Figure 4C).



Int. J. Mol. Sci. 2024, 25, 6228 8 of 19

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 19 
 

 

and Oscillospiraceae, respectively. Oscillospirales is the dominant bacterial group in the QR 
group, which is a probiotic that promotes the digestion and absorption of nutrients, 
promotes growth, and strengthens the immune system [31]. 

BBR is bitter in flavor and cold in nature. The abnormal elevation of the abundance 
of cold-related key flora such as Proteobacteria, Escherichia-Shigella, and Verrucomicroblota 
[32] after the administration of BBR proved that BBR led to the development of cold-type 
constipation in normal mice. QR, which is warm in nature, can effectively neutralize the 
cold nature of BBR. It not only reversed the abnormal elevation of relative abundance of 
cold-related flora, but also significantly elevated the relative abundance of heat-related 
key flora such as Bacteroidota and Lachnoclostridium [33]. The results demonstrated that 
QR can be used to improve stools and defecation caused by spleen and stomach weak-
ness (Figure 4B,D). 

 
Figure 4. Effects of QR on species composition of microbiota. (A) Composition of gut microbiota at 
the phylum level in different mice groups. (B) Histogram of relative abundance of gut microbiota at 
the phylum level (n = 5). (C) Composition of gut microbiota at the class level in different mice 
groups. (D) Heatmap analysis. The dose of the QR group was 280 mg·kg−1. Significance was as-
sessed by using t-test. Control group, # p < 0.05, ## p < 0.01,### p < 0.001. vs. Model, * p < 0.05, ** p < 
0.01. 

Figure 4. Effects of QR on species composition of microbiota. (A) Composition of gut microbiota at
the phylum level in different mice groups. (B) Histogram of relative abundance of gut microbiota at
the phylum level (n = 5). (C) Composition of gut microbiota at the class level in different mice groups.
(D) Heatmap analysis. The dose of the QR group was 280 mg·kg−1. Significance was assessed by
using t-test. Control group, # p < 0.05, ## p < 0.01,### p < 0.001. vs. Model, * p < 0.05, ** p < 0.01.

LEfSe analysis showed that there were 27 species from phylum to genus showing
significant differences (Figure 5C). QR promoted the enrichment of Oscillospirales. At the
family level, the dominant bacteria in the Control, Model, and QR groups were Desulfovib-
rionaceae and Microbacteriaceae, Enterobacteriaceae and Akkermansiaceae, and Bacillaceae and
Oscillospiraceae, respectively. Oscillospirales is the dominant bacterial group in the QR group,
which is a probiotic that promotes the digestion and absorption of nutrients, promotes
growth, and strengthens the immune system [31].

BBR is bitter in flavor and cold in nature. The abnormal elevation of the abundance of
cold-related key flora such as Proteobacteria, Escherichia-Shigella, and Verrucomicroblota [32]
after the administration of BBR proved that BBR led to the development of cold-type
constipation in normal mice. QR, which is warm in nature, can effectively neutralize the
cold nature of BBR. It not only reversed the abnormal elevation of relative abundance of
cold-related flora, but also significantly elevated the relative abundance of heat-related
key flora such as Bacteroidota and Lachnoclostridium [33]. The results demonstrated that QR
can be used to improve stools and defecation caused by spleen and stomach weakness
(Figure 4B,D).
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2.3.3. Effects of QR on Gastrointestinal Hormones in Mice

Gastrointestinal hormones are important substances that regulate intestinal motility,
the secretion of digestive juices, and absorption of nutrients, etc. They not only regulate the
level of peristalsis in the gastrointestinal tract, but also regulate gastrointestinal water and
electrolyte balance. For example, MTL can improve gastrointestinal water and electrolyte
transportation [34], and patients with long-term constipation have significantly reduced
levels of MTL [35,36]. VIP can regulate the intestinal metabolism of water and electrolytes
and increase the release of Cl−, HCO3−, and water [33]. SP is an excitatory neurotransmit-
ter [34], which can contract the smooth gastrointestinal muscles and promote intestinal
peristalsis and gastric discharge [37,38]. Studies have shown that the release of SP from
nerve endings can activate platelets to release 5-HT [28], which is a key neurotransmitter
in the brain–gut axis [39]. About 90% of 5-HT in the human body is synthesized by the
intestine and distributed in the intestinal chromaffin cells, which are involved in regulating
colon secretion, intestinal movement, and the gastrointestinal sensory function. As shown
in Figure 6, the levels of excitability neurotransmitters (MTL, VIP, SP, and 5-HT) of the
Model group were significantly decreased compared to the Control group (p < 0.05), which
was reversed by QR treatment (p < 0.005). The results showed that QR, especially at high
doses, enhanced serum and gastric excitatory factors and reversed the inhibitory effect of
BBR on gastrointestinal motility (Figure 6A–E).
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n = 6). (D) Histogram of MTL level in serum of mice (mean ± SD, n = 6). (E) Histogram of serum SP
level in mice (mean ± SD, n = 6). (F) Histogram of VIP level in mice (mean ± SD, n = 6). (G) Western
blot analysis of the expression levels of CaM-MLCK pathway-related proteins in different mice
groups. (H) Expression level of MLCK in the small intestine of mice. (I) CAM expression level in
the small intestine of mice. (J) MLC expression level in the small intestine of mice. Significance was
assessed by using t-test. Control group, # p < 0.05, ## p < 0.01, ### p < 0.001. vs. Model, * p < 0.05,
** p < 0.01, *** p < 0.001,**** p < 0.0001.

2.3.4. Effects of QR on CAM-MLCK Signaling Pathway in the Small Intestine of Mice

The CAM-MLC signaling pathway regulates smooth muscle contraction and plays
a key role in dynamic signaling in gastrointestinal smooth muscle cells. Western blot
analysis was used to determine the expression of CAM in the small intestine smooth muscle,
and the results showed that the expression of this protein in constipated mice increased
with stimulation with QR (Figure 6G). In addition, QR significantly reversed the decreased
expression of MLC protein in the small intestine of constipated mice (Figure 6H–J).

2.3.5. Biological Safety of QR of Different Doses

The immunohistochemistry of tissue sections showed that, as compared to the Control
group, there was no abnormal injury and inflammation in the mice exposed to QR with
different doses (Figures 7 and 8). Histopathological abnormalities were also not observed
in organs. Routine blood analysis was performed to further quantify the toxicology of QR.
The routine blood indices, including WBC, MVC, RBC, MPV, MCH, PLT, Lym, Neu, and
Mon, were measured. The continuous intragastric administration of different QR doses
for 7 days resulted in slight fluctuations in all the analytical test values as compared to
those of the Control group; however, all values were within the normal range, showing
no abnormalities.
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3. Discussion

BBR is frequently used to treat various diseases such as intestinal infections, high
cholesterol, and diabetes. However, its application is hampered by side effects, particularly
constipation. This directly impacts patient adherence to the medication, thereby affecting
its therapeutic effectiveness. In our study, the mouse constipation model was established by
the intragastric administration of BBR (130 mg·kg−1). The mice showed clinical symptoms
of constipation, such as poor mental state, reduced food intake, weight loss, small stool
size, and dryness [40]; however, they did not die [41]. We discovered that BBR slows
food digestion and results in gastrointestinal dysfunction by inhibiting the release of
pro-digestive hormones. While BBR has commendable antibacterial properties, it also
suppresses the normal gut flora, thereby affecting intestinal peristalsis and causing stool
retention. Furthermore, BBR destabilizes the normal levels of hormones both in serum and
the stomach, leading to disruptions in the gastrointestinal tract’s electrolyte balance. This
influences stool composition and motor nerve conduction, and exacerbates difficulties in
bowel movements.

QR, the small molecules of herbs, for relieving constipation and could effectively
ease DIC induced by BBR. QR can effectively promote the digestion and absorption of
gastrointestinal contents. Gastrointestinal hormones such as SP and 5-HT stimulate gastric
acid secretion. Not only does gastric acid activate digestive enzymes for further food
digestion, but it also stimulates the stomach muscles to contract and induce peristalsis.
The normal gut microbiota helps the digestion and absorption of food in the gut. The
abundance of Firmicutes is closely related to gastrointestinal peristalsis [42], especially Lac-
tobacillus, Ruminococcus, and faecium species, which can significantly improve the imbalance
of gastrointestinal motility caused by constipation, diarrhea infection, and surgery [43].
Most of the species in the phylum Proteobacteria are Gram-negative pathogenic bacteria.
An increase in their abundance is associated with inflammatory diseases [29]. In general,
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Proteobacteria are used as criteria to identify disorders and potential diseases related to gut
microbiota. Significant changes in the abundance of Verrucomicrobia species are associated
with diseases, such as nonalcoholic fatty liver disease and metabolic inflammation [44].
In this study, BBR decreased the relative abundance of Firmicutes and increased that of
Proteus and Verrucomicrobia, which led to constipation. QR effectively manages the balance
of beneficial and harmful microbiota in the gut to aid in food digestion and absorption.

QR can effectively balance the water and electrolyte balance, increase the fecal water
content, and relieve constipation. VIP can regulate the intestinal metabolism of water and
electrolytes and increase the release of Cl−, HCO3−, and water [33]. Some research suggests
that SP primarily regulates intestinal secretion in the gastrointestinal tract. It promotes the
release of Cl−, K+, and water from intestinal epithelial cells by stimulating the Neurokinin
1 (NK1) receptor, which subsequently alters the gut’s electrolyte balance [45]. Moreover, SP
can influence smooth muscle cells through Neurokinin 2 (NK2) receptors, reducing Na+

uptake and thus modifying electrolyte levels [46]. As the dominant bacterial species in the
mice gut microbiota of the QR group, Spirillum tremella can ferment sugar and starch into
short-chain fatty acids [30]. Short-chain fatty acids such as butyric, propionic, and acetic
acids can release Cl− and water by stimulating intestinal cells. Together, QR increased the
fecal water content by significantly increasing some gastrointestinal hormone content in
mice with constipation and regulating intestinal flora and its metabolic activities, repairing
BBR-induced gastrointestinal water and electrolyte disturbances.

Promoting gastrointestinal motility is an important way for QR to relieve BBR-induced
constipation. Ca2+ is an important electrolyte for promoting gastrointestinal motility. Both
gastrointestinal hormones 5-HT and VIP increase intracellular Ca2+ concentrations. In order
to explore the mechanism of action, the classical signaling pathway which regulates gas-
trointestinal smooth muscle, CAM-MLCK, was selected as the breakthrough point [47,48].
Western blot analysis was used to detect protein expression levels of MLCK, MLC, and
MLCK signaling factors in the mice’s gastrointestinal tract. The CAM-MLC signaling
pathway regulates the contraction of smooth muscles and plays a key role in the dynamic
signal transduction of smooth muscle cells in the gastrointestinal tract. The complex formed
by CAM and Ca2+ can further activate MLCK, which phosphorylates MLC to generate ATP,
thereby achieving smooth muscle contraction. BBR inhibited smooth muscle contraction
by inhibiting the expression of signaling proteins. QR significantly promoted the expres-
sion of the CAM-MLC signaling pathway and alleviated constipation. In addition to the
CAM-MLCK pathway, QR has the potential to promote gastrointestinal neurotransmission
by restoring gut microbiota abundance. The gut microbiota plays a crucial role in preserv-
ing the homeostasis of the enteric nervous system, and microbiota dysbiosis can reduce
neuronal densities, change neuronal subtypes, and alter electrophysiological function. It
has been shown that the microbiota in the mouse intestine can influence intestinal motility,
and that impaired function of the enteric nervous system and disturbances in intestinal
physiology are present in germ-free mice [49]. However, recolonizing for germ-free mice
can return the gut physiology and enteric nervous system to normal levels [50]. This shows
the extent to which the microbiota and its abundance affect the enteric nervous system.
The analysis of gut microbiota in the BBR group showed a significant decrease in their
diversity. QR could alleviate constipation by increasing the diversity of gut microbiota in
mice. QR administration improved the intestinal function by regulating the gut microbial
microenvironment.

4. Materials and Methods
4.1. Materials

Amomum villosum Lour. (AVL) was acquired from Tongrentang Co., Ltd. (Lot No.
22012301, Beijing, China). Quercetin (QR) was acquired from Ruifen Biotechnology Co.,
Ltd. (Lot No. RFS-H00911809026, Chengdu, China). Borneol (Bor) was acquired from Delta
biological technology Co., Ltd. (Lot No. RM02200906, Chengdu, China). Berberine (BBR)
was acquired from Ronghe Pharmaceutical Technology Development Co., Ltd. (Lot No.
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220326, Shanghai, China). Camphor (CAMP) was acquired from Delta biological technol-
ogy Co., Ltd. (Lot No. RM02200905, Chengdu, China). Catechins (Cat) were acquired
from Zelang Biotechnology Co., Ltd. (Lot No. GL20210325, Nanjing, China). Sodium
carboxymethyl cellulose (CMC-NA) was acquired from Wanjia Shouhua Biotechnology
Co., Ltd. (Beijing, China). Antibodies against CAM, MLCK and MLC were acquired from
Tianzhengyuan Biotechnology Co., Ltd. (Wuhan, China). ELISA kits for 5-HT, VIP, SP, MTL
were acquired from Jinenlai Biotechnology Co., Ltd. (Beijing, China).

4.2. Preparation of Drugs

The seeds of AVL were hulled and finely ground into a powder. We then boiled
a specific measure of their powder in water and filtered it to acquire a clear liquid. The
liquid underwent centrifugation, and the supernatant was subsequently collected for
further utilization. The indigestible mixture was prepared, consisting of water, milk powder,
sugar, and lard in equal proportions of 1 g each. The active ingredients were uniformly
dispersed in water at designated concentrations, ensuring their thorough blending through
the use of ultrasonication.

4.3. Animals and Treatment

Three hundred male C57BL/6J mice aged 6 weeks with body weight 18 g–20 g were
provided by Beijing Huafukang Biotechnology Co., Ltd. (Beijing, China), and the animal
experiment complied with the protocol of the Chinese Academy of Medical Sciences &
Peking Union Medical College (No. SLXD-20220509013). The feeding temperature was
20 ± 2 ◦C, the humidity was 60 ± 5%, and the animals were allowed to drink freely under
light and dark circulation for 12 h. Adaptive feeding for 3 days.

4.4. Effect of Volatile and Nonvolatile Ingredients of AVL on Constipation

Four different groups of mice were stochastically divided, including the Control
group, Model group, Volatile group (Bor, CAMP and BA 40 mg·kg−1 each) [51], and
Nonvolatile group (Cat and QR 60 mg·kg−1 each), each having ten mice. All groups, bar
the Control group, were administered indigestible gavage mixture [52], twice daily, at
a dosage of 10 µL·g−1 for three consecutive days. The mice in the drug treatment groups
were administered their respective substances over the following four days.

One week later, the mice were fasted for 12 h. Post 30 min of drug administration,
the mice were given a carbon powder suspension, dosed at 10 µL·g−1. Fifteen minutes
thereafter, the mice were humanely euthanized, in line with ethical principles governing
animal experimentation. The distance the carbon powder travelled in the small intestine
was measured and recorded.

Carbon powder propulsion rate (%) = carbon powder propulsion length/total length
of small intestine ×100% [53].

4.5. Effect of Different Components of AVL on Constipation

The mice were stochastically divided into eight groups, namely, the Control group,
Model group, Amomum villosum Lour group (120 mg·kg−1), BBR group (140 mg·kg−1),
Cat group (120 mg·kg−1), QR group (120 mg·kg−1), Bor group (120 mg·kg−1), and CAMP
group (120 mg·kg−1), with 10 mice per group. The drug administration modeling process
and the operation process for obtaining carbon powder propulsion rates were the same as
those under Section 4.4.

4.6. Effect of Different Doses of AVL on Constipation

Five groups of mice were stochastically divided, namely, the Control group, Model
group, Low-AVL group (120 mg·kg−1), Middle-AVL group (240 mg·kg−1) and High-AVL
group (480 mg·kg−1) with 10 mice per group. Except the mice in the Control group, all mice
were given BBR with a concentration of 130 mg·kg−1 for 6 days. The operation process
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for obtaining carbon powder propulsion rates was the same as those under Section 4.4.
Different tissues were taken and preserved in 4% tissue fixative.

4.7. Effect of Different Doses of QR on Constipation

We randomly divided the mice into six groups, including the Control group, Model
group, Positive Control group (bisacodyl, 100 mg·kg−1), Low-QR group (70 mg·kg−1),
Middle-QR group (140 mg·kg−1), and High group (280 mg·kg−1) [54]. The drug administra-
tion modeling process and the operation process for obtaining carbon powder propulsion
rates were the same as those under Section 4.4. The whole blood samples were taken to
collect serum obtained by centrifugation. The fecal samples were obtained from the cecum
to put into a freezing tube and stored at −80 ◦C [55]. The gastric and small intestinal
tissues were taken and stored in a refrigerator at −80 ◦C. Different tissues were taken and
preserved in 4% tissue fixative.

4.8. Determination of the Fecal Water Content

After administration, mice were kept separately in the feeding cage, underwent water
fasting for 20 min, and were kept away from urine-soaked feces. Fresh fecal samples
were collected in a centrifuge tube and weighed. The fecal samples were then kept in
a constant-temperature air-drying oven to weigh. We calculated the fecal water content
according to Equation.

Water content in feces (g) = (wet weight of feces − dry weight of feces)/wet weight of feces

4.9. Determination of the First Black Stool Time and the Number of Black Stool Occurrences in 6 h

After administration, the mice were gavage-administered carbon powder suspension,
and the first black stool time and the number of black stool occurrences in 6 h were recorded
from the time of carbon powder administration.

4.10. Determination of Gastric Emptying Rate and Intestinal Propulsive Rate

After 2 h of administration, the mice in each group were given the semi-solid paste
with a dose of 15 mg·kg−1. Waiting for 20 min, the mice were sacrificed by cervical
dislocation, followed by an opening of the abdomen and ligation of the gastric cardia and
pylorus. The stomach was taken out, wiped with filter paper to dry it, and weighed to
record its total weight. The stomach was then cut, and the contents were washed off. It was
then dried with filter paper and weighed to record its net weight. Gastric emptying rate
was recorded and calculated.

4.11. 16S rRNA Gene Sequencing and Analysis

Genomic DNA was extracted and its integrity was checked. The concentration
and purity of genomic DNA were detected after extraction. The hypervariable vari-
able regions of bacterial 16S rRNA gene were amplified with universal primers (338F
5′-ACTCCTACGGGAG-GCAGCAG-3′ and 806R 5′-GGACTACHVGGGTWTCTA-AT-3′)
and sequenced using Illumina MiSeq platform. The raw sequence reads were quality fil-
tered, followed by trimming, filtering, and removal of chimeras. Then, OTU clustering and
annotation were performed. The OTU clusters were used for the alpha and beta diversity
analyses, while the annotation results were used to obtain the classification information for
each level. Furthermore, correlation analysis was performed to identify the differences in
the composition and structure of gut microbiota among the groups.

4.12. ELISA

Using a homogenizer to crush and pulverize the stomach tissues, the supernatant was
separated using centrifugation. ELISA kits (Wanjia Shouhua Biotechnology, Beijing, China)
were used to measure the amounts of gastrointestinal hormones, including SP, 5-HT, MTL,
and VIP, in the serum and stomach tissue of mice.
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4.13. Western Blot

Protein expression levels in the gastrointestinal tract were analyzed by Western blot-
ting. The tissues were homogenized using a tissue homogenizer (G100, Coyote, Beijing,
China). The lysate was then centrifuged to obtain the supernatant. The protein concentra-
tion was adjusted using RIPA buffer. The same amount of sample protein was loaded onto
gel and separated by electrophoresis. The proteins were then transferred to the membrane.
The primary antibodies against CAM, MLCK, and MLC were diluted with 3% BSA-TBST
and incubated, followed by washing with TBST. The secondary antibodies were diluted and
incubated with the membrane. Enhanced chemiluminescence was added to the membrane.
After exposure, the membrane was photographed directly. The integral optical density
(IOD) value of the band was calculated.

4.14. H&E Analysis

The organs were immersed in the 4% formaldehyde fixative solution, paraffinized, and
sectioned, followed by staining with hematoxylin and eosin. The mice tissue sections of
each group were then observed and compared under a digital microscope (BX51, Olympus,
Tokyo, Japan). The organs included liver, spleen, kidneys, heart, and lungs.

4.15. Whole Blood Analysis

The whole blood samples were taken and kept for 20 min at room temperature.
The blood samples were shaken and mixed to avoid coagulation, hemolysis, and other
conditions. Whole blood analysis was then performed using automatic blood cell analyzer
(BC-5100, Mindray, Shenzhen, China), and the values were recorded.

4.16. Statistical Analysis

The data obtained from this experiment were summarized and classified, and the data
were analyzed by t-test analysis of double tail distribution through statistical software SPSS
25.0. The results were expressed as Mean ± SD deviation. Significance was assessed by
using t-test vs. Control group, # p < 0.05, ## p < 0.01. vs. Model, * p < 0.05, ** p < 0.01.

5. Conclusions

In this study, the small molecules of AVL were investigated. The results showed that
QR has the most prominent relieving effect on constipation. QR can relieve constipation by
promoting digestion and absorption of gastrointestinal tract contents, promoting gastroin-
testinal tract water and electrolyte balance, and promoting gastrointestinal tract peristalsis.
QR elevated gastrointestinal hormone levels and balanced the relative abundance of ben-
eficial and harmful bacteria and the gut microenvironment to promote digestion and
absorption of contents in the intestine. QR facilitated elimination of the contents by increas-
ing the water of the contents via regulating gastrointestinal hormones, which also facilitated
the inward flow of Ca2+ through the CAM-MLCK pathway, thus enhancing gastrointestinal
motility levels. Furthermore, QR enhances the abundance of gut microbiota, restores the
neuro-neurotransmission of the enteric nervous system, and promotes intestinal motility.
This study provided an experimental basis for the compatibility of QR and BBR and might
provide a new paradigm for the research and development of new drugs as well as dosage
forms for the clinical combination applications of QR.
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