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Abstract: Acute liver failure is an infrequent yet fatal condition marked by rapid liver function decline,
leading to abnormalities in blood clotting and cognitive impairment among individuals without prior
liver ailments. The primary reasons for liver failure are infection with hepatitis virus or overdose
of certain medicines, such as acetaminophen. Phaeodactylum tricornutum (PT), a type of microalgae
known as a diatom species, has been reported to contain an active ingredient with anti-inflammatory
and anti-obesity effects. In this study, we evaluated the preventive and therapeutic activities of PT
extract in acute liver failure. To achieve our purpose, we used two different acute liver failure models:
acetaminophen- and D-GalN/LPS-induced acute liver failure. PT extract showed protective activity
against acetaminophen-induced acute liver failure through attenuation of the inflammatory response.
However, we failed to demonstrate the protective effects of PT against acute liver injury in the
D-GalN/LPS model. Although the PT extract did not show protective activity against two different
acute liver failure animal models, this study clearly demonstrates the importance of considering the
differences among animal models when selecting an acute liver failure model for evaluation.

Keywords: acute liver failure; hepatotoxicity; Phaeodactylum tricornutum; acetaminophen; D-galactosamine

1. Introduction

Microalgae offer a promising alternative source of valuable nutrients, including fatty
acids and proteins [1]. Cultured microalgae have yielded a diverse range of over 15,000 iso-
lated compounds, encompassing fatty acids, sterols, phenolic compounds, terpenes, en-
zymes, polysaccharides, alkaloids, toxins, and pigments such as lutein and β-carotene [2].
Phaeodactylum tricornutum (PT), a type of microalgae known as a diatom species, has been
reported to contain a significant amount of eicosapentaenoic acid, reaching up to 35% of
its total fatty acid content [3]. On a dry-weight basis, it consists of approximately 36.4%
protein, 26.1% carbohydrates, 18.0% lipids, 15.9% ash, and 0.25% neutral detergent fiber [4].
PT has gained attention as a promising producer of fucoxanthin, as its fucoxanthin content
can be enriched up to one hundred-fold more than that for brown seaweeds [5,6]. Due to
its unique structure as a carotenoid compound, fucoxanthin serves two primary biolog-
ical functions: quenching singlet oxygen and scavenging free radicals [7]. Additionally,
scientific research has indicated that fucoxanthin exhibits promising effects in mitigating
hepatic injury in a mouse model of non-alcoholic steatohepatitis (NASH), induced by a
choline-deficient diet. Its administration led to a reduction in hepatic fat accumulation,
liver weight gain, hepatic lipid oxidation, and inflammation associated with NASH by
effectively inhibiting the production of chemokines [8].
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Acute hepatic failure (AHF) is associated with an alarmingly high mortality rate of
80% [9]. Many studies have been conducted on animal models of acute hepatic failure, but
implementing any model in practice is not an easy task [10,11]. Each model typically focuses
on a specific aspect of AHF, lacking a comprehensive representation of the syndrome
as a whole. Therefore, it is challenging to clearly establish the hepatoprotective and
therapeutic effects of test substances in a single type of AHF animal model. In this study,
we experimented with two types of AHF models—the acetaminophen model and the
D-galactosamine/lipopolysaccharide (D-GalN/LPS) model—to investigate the preventive
and therapeutic effects of PT extract on AHF.

Over the last forty years, a significant amount of research has been conducted on
the mechanism of acetaminophen (APAP) hepatotoxicity using murine models. APAP
undergoes bioactivation in the liver, primarily by the enzyme cytochrome 2E1 (CYP2E1)
and, to a lesser extent, cytochrome 1A2 (CYP1A2). This bioactivation process results in the
formation of a highly reactive and toxic metabolite called N-acetyl-p-benzoquinone imine
(NAPQI). NAPQI leads to the depletion of glutathione (GSH) levels within the liver and
subsequently binds to proteins, triggering oxidative stress, mitochondrial dysfunction, and,
ultimately, necrotic cell death [12,13]. The acute co-injection of D-GalN/LPS has become a
commonly employed experimental model for studying acute liver failure. D-GalN/LPS-
induced hepatotoxicity is related to an increased inflammatory response and the generation
of reactive oxygen species [14,15]. The liver is particularly susceptible to the effects of LPS,
and the addition of D-GalN significantly exacerbates the detrimental outcome caused by
LPS [16].

The current study was designed to evaluate the preventive and therapeutic activity of
PT in acute liver failure. To achieve our purpose, we used two different acute liver failure
models: acetaminophen- and D-GalN/LPS-induced. This study clearly demonstrates the
importance of considering the differences among pharmacological models when selecting
an acute liver failure model to evaluate hepatoprotective and therapeutic active compounds.

2. Results
2.1. Liver Injury Protection Effect of PT Extract against Acetaminophen-Induced Acute
Liver Failure

To explore the preventive (Figure 1A,B) and therapeutic (Figure 1C,D) effects of PT
extract in acute liver failure, we first used an acute liver failure mouse model induced
by acetaminophen. The severity of acetaminophen-induced liver injury was evaluated
by measuring the serum liver enzyme level at 24 h after acetaminophen injection. The
prevention experiments were performed via pre-treatment with PT extract for 10 days
before acetaminophen injection. As shown in Figure 1A,B, serum glutamic oxaloacetic
transaminase (GOT) and serum glutamic pyruvic transaminase (GPT) levels significantly
increased after the acetaminophen injection. However, these scores decreased by almost
half by the PT extract, in a manner that was independent of injection concentration (100 or
200 mg/kg). In this experiment, Hovenia dulcis Thunb. extract (HD) and Silybum marianum
seed extract (SM) were used as positive controls, where the protective effect of SM against
acute liver failure was superior to that of HD. For acute liver failure, PT showed a better
effect when used for preventive application than therapeutic application.

2.2. Liver Injury Protection Effect of PT Extract against D-GalN/LPS-Induced Acute Liver Failure

Next, the preventive (Figure 2A,B) and therapeutic (Figure 2C,D) effects of PT extract
on acute liver failure were confirmed in another acute liver failure model induced by D-
GalN/LPS. The prevention experiments (Figure 2A,B) were performed voa pre-treatment
with PT extract for 3 days before D-GalN/LPS injection. D-GalN/LPS-induced liver toxicity
was evaluated by measuring GOT and GPT levels at 6 h after D-GalN/LPS injection. In
the therapeutic experiments (Figure 2C,D), D-GalN/LPS was injected 6 h before the oral
administration of the PT extract. After oral administration of the PT extract, an autopsy
was performed 6 h later. In D-GalN/LPS model animal experiments, the effect of PT
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on acute liver injury did not alleviate hepatotoxicity in both preventive and therapeutic
experiments. As shown in Figure 2, GOT and GPT levels increased following D-GalN/LPS
injection, but these levels were reduced through injection of the positive control drug,
Hovenia dulcis Thunb. extract (HD). However, the GOT and GPT levels which increased
following D-GalN/LPS injection were not decreased with the administration of PT extract.
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Figure 1. The preventive (A,B) and therapeutic (C,D) effects of PT extract on acute liver injury after 
acetaminophen overdose. (A,B) C57BL/6J mice were administered SM, HD, and PT orally for 10 
days, and then, the animals received 600 mg/kg of intraperitoneal acetaminophen after fasting over-
night. After 24 h, the mice were sacrificed, and blood was collected for serum separation. Sera were 
separated from blood for AST (A) and ALT (B), where these acronyms refer to aspartate transami-
nase and alanine transaminase, respectively. (C,D) Mice received acetaminophen via intraperitoneal 
injection after fasting overnight and then administered PT orally for 3 days. The data from three 
independent experiments, each of which was performed in triplicate, are indicated as the mean ±SD. 
The significance of the differences between the value of the AP group and that of the SM, HD, and 
PT treatment groups after AP injection were determined through one-way ANOVA with Tukey’s 
comparisons test: * p < 0.05 and ** p < 0.01. 
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Figure 1. The preventive (A,B) and therapeutic (C,D) effects of PT extract on acute liver injury after
acetaminophen overdose. (A,B) C57BL/6J mice were administered SM, HD, and PT orally for 10 days,
and then, the animals received 600 mg/kg of intraperitoneal acetaminophen after fasting overnight.
After 24 h, the mice were sacrificed, and blood was collected for serum separation. Sera were
separated from blood for AST (A) and ALT (B), where these acronyms refer to aspartate transaminase
and alanine transaminase, respectively. (C,D) Mice received acetaminophen via intraperitoneal
injection after fasting overnight and then administered PT orally for 3 days. The data from three
independent experiments, each of which was performed in triplicate, are indicated as the mean ± SD.
The significance of the differences between the value of the AP group and that of the SM, HD, and
PT treatment groups after AP injection were determined through one-way ANOVA with Tukey’s
comparisons test: * p < 0.05 and ** p < 0.01.

2.3. Preventive Effect of PT on Acetaminophen- or D-GalN/LPS-Induced Liver Injury Models

The preventive effect of PT on acute liver injury was then investigated through
histopathological examination. The histopathological examination of the liver was con-
ducted after H&E staining. As shown in Figure 3A, the livers of the control group (normal)
mice showed normal histology of the liver. Acetaminophen injection at the tested doses
induced apparent morphological changes, including a loss of normal hepatic architecture,
hepatic sinusoid hyperemia, congestion of the sinusoids, and focal damage around the
central vein. Pre-treatment with control extracts (Hovenia dulcis Thunb. extract, HD, and
Silybum marianum Seed extract, SM) decreased hepatic sinusoid hyperemia and congestion
of the sinusoids and recovered hepatic architecture to a normal shape. The PT extract also
showed similar preventive effects as the control extracts. Briefly, pre-treatment with PT
extract attenuated the hyperemia and congestion of the sinusoids. These results indicated
that the PT extract had preventive effects on APAP-induced acute liver failure.
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toneal injection after fasting overnight and were then administered HD and PT orally. After 6 h, the 
mice were sacrificed, and their blood was collected for serum separation. Sera were separated from 
blood for AST (C) and ALT (D). The data from three independent experiments, each of which was 
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Figure 2. The preventive (A,B) and therapeutic (C,D) effects of PT extract on acute liver injury after
D-GalN/LPS injection. (A,B) C57BL/6J mice were administered HD and PT orally for 3 days and
then received intraperitoneal D-GalN (450 mg/kg) and LPS (10 µg/kg) after fasting overnight. After
6 h, the mice were sacrificed, and their blood was collected for serum separation. Sera were separated
from blood for AST (A) and ALT (B). (C,D) The mice received D-GalN and LPS via intraperitoneal
injection after fasting overnight and were then administered HD and PT orally. After 6 h, the mice
were sacrificed, and their blood was collected for serum separation. Sera were separated from blood
for AST (C) and ALT (D). The data from three independent experiments, each of which was performed
in triplicate, are indicated as the mean ± SD. The significances of the differences between the value
of the D-GalN/LPS group and that of the HD and PT treatment groups after D-GalN/LPS injection
were determined through one-way ANOVA with Tukey’s comparisons test: ** p < 0.01.

To represent the numerical measurement of sinusoidal and central vein congestion,
we used an accurate and simple method in ImageJ analysis® software (V1.8.0). As shown
in Figure 3B,C, the extravasation of red blood cells (RBCs) between the sinusoid and
central vein increased with the injection of acetaminophen, and the extravasation of RBCs
associated with APAP decreased following the oral administration of the positive control
drugs and PT extract. These results indicate that endothelial damage to the central vein
and sinusoidal hemorrhage were reduced through treatment with PT extract. Figure 3C
represents the extravasation of RBCs between the sinusoid and the central vein in 200×
magnification view, as a number calculated using ImageJ. These results indicate that even
100 µg/mL of PT had a similar effect to the positive control.

D-GalN/LPS injection also induced a loss of normal hepatic architecture, hepatic
sinusoid hyperemia, congestion of the sinusoids, and focal damage around the central
vein (Figure 4A). Pre-treatment with Hovenia dulcis Thunb. extract (HD) decreased hepatic
sinusoid hyperemia and congestion of the sinusoids and recovered hepatic architecture to
a normal shape. However, pre-treatment with PT extract showed no or weak preventive
effects on hepatic morphological changes. Even when high concentrations of PT were
administered, a weak protective effect was observed against D-GalN/LPS-induced liver
tissue damage.
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was determined through one-way ANOVA with Tukey’s comparisons test: ** p < 0.01. 
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Figure 3. Histological analysis of liver tissues. Liver tissue sections of normal and acetaminophen-
injected mice stained with H&E are shown (magnification, 200× and 400×). (A) H&E staining images;
(B) grayscale images converted with ImageJ; (C) percentage of area of extravasated RBCs in the image.
The black circle in (A) indicates accumulated RBCs. The significance of the differences between the
value of the AP group and that of the SM, HD, and PT treatment groups after AP injection was
determined through one-way ANOVA with Tukey’s comparisons test: ** p < 0.01.

2.4. Expression Levels of Inflammatory Cytokines in Acute Liver Failure Mice

To investigate the anti-inflammatory effects of PT in acute liver failure mice, the
levels of the cytokines TNF-α and IL-1β in sera, which are representative of inflammation,
were determined using enzyme-linked immunosorbent assays (ELISA). Cytokine levels
were measured in sera obtained from the preventive experiments for acetaminophen
(Figure 5A,B) and D-GalN/LPS (Figure 5C,D) models. As shown in Figure 5A,B, TNF-
α and IL-1β levels significantly increased following acetaminophen injection; however,
these levels decreased in a statistically significant manner through pre-treatment with
the control drugs (SM extract) and PT extracts (100 or 200 mg/kg). D-GalN/LPS also
enhanced TNF-α and IL-1β production (Figure 5C,D); however, unlike the acetaminophen
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model, pre-treatment with PT did not inhibit the production of TNF-α and IL-1β in the
D-GalN/LPS model.
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Figure 4. Histological analysis of liver tissues. Liver tissue sections of normal and D-GalN/LPS-
injected mice stained with H&E are shown (magnification, 200× and 400×). (A) H&E staining images;
(B) grayscale images converted with ImageJ; (C) percentage of area of extravasated RBCs in the image.
The significance of the differences between the value of the D-GalN/LPS group and that of the HD
and PT treatment groups after D-GalN/LPS injection were determined through one-way ANOVA
with Tukey’s comparisons test: ** p < 0.01.
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safest and most effective medicines [20]; however, an overdose of acetaminophen can 
cause liver injury and failure, resulting in a significant number of emergency visits and 
hospitalizations [21,22]. The acetaminophen model is well established for analyzing the 
recovery effect of acute liver failure in animal models through the administration of can-
didate compounds [23]. The concentration of 600 mg/mL of acetaminophen used in this 
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Figure 5. Effect of PT on the production of inflammatory cytokines in acute liver failure mouse models.
Sera obtained from acetaminophen (A,B) and D-GalN/LPS (C,D) animal models were used in ELISA
assays for TNF-α and IL-1β. The data from three independent experiments, each of which was
performed in triplicate, are indicated as the mean ± SD. The significance of the differences between
the value of AP or D-GalN/LPS groups and that of the SM, HD, and PT treatment groups after AP or
D-GalN/LPS injection were determined through one-way ANOVA with Tukey’s comparisons test:
* p < 0.05 and ** p < 0.01.

3. Discussion

The aim of this study was to demonstrate the impact of PT extract on acute liver
failure and associated metabolic pathways in acute liver injury model animals. PT is a
potentially valuable dietary supplement, as PT-derived carotenoids are anti-inflammatory
and antioxidant compounds [17]. The most representative pigment derived from PT is
fucoxanthin, which has been proven to possess various pharmacological effects [6,17]. In
addition, PT extract also showed therapeutic effects in animal models of obesity-related
metabolic disorders [18]. Hovenia dulcis, traditionally utilized for its hangover relief and
liver health benefits, is under investigation for its potential therapeutic applications in
treating non-alcoholic steatohepatitis (NASH), a severe manifestation of non-alcoholic fatty
liver disease (NAFLD) characterized by excessive fat accumulation, inflammation, and liver
damage. Therefore, we used Hovenia dulcis Thunb. extract as a positive control [19]. In this
study, we considered two different acute liver injury models—induced with acetaminophen
and D-GalN/LPS, respectively—and most of the positive results were obtained with the
acetaminophen model.

Acute liver failure carries an extremely high mortality rate of 80% [9]. Viral hepatitis is
the most frequent cause of acute liver failure in the world, followed increasingly closely
by chemicals (e.g., drugs and toxins). At the therapeutic dose, acetaminophen is one of
the safest and most effective medicines [20]; however, an overdose of acetaminophen
can cause liver injury and failure, resulting in a significant number of emergency visits
and hospitalizations [21,22]. The acetaminophen model is well established for analyzing
the recovery effect of acute liver failure in animal models through the administration of
candidate compounds [23]. The concentration of 600 mg/mL of acetaminophen used in
this study was sufficient to induce acute liver failure and led to consistent results within
the experimental groups.
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Very complicated mechanisms are involved in the pathogenesis of acetaminophen-
induced acute liver disease. These mechanisms encompass the conversion of cytochrome
P450 metabolism into a reactive metabolite that depletes glutathione and forms covalent
bonds with proteins. Concurrently, a reduction in glutathione levels accompanied by
augmented generation of reactive oxygen and nitrogen species in hepatocytes occurs [24].
This leads to heightened oxidative stress, which is associated with disruptions in calcium
homeostasis and the initiation of signal transduction responses, ultimately resulting in
mitochondrial permeability transition. Moreover, this mitochondrial permeability transi-
tion takes place concomitantly with increased oxidative stress, decline in mitochondrial
membrane potential, and impairment of ATP synthesis within the mitochondria. Ultimately,
the depletion of ATP culminates in necrosis [12,13]. Although mitochondrial oxidative
stress is a major reason for hepatocyte necrosis, there is a discrepancy between early GSH
depletion and delayed necrosis [25]. As a result, it has been hypothesized that the initial
oxidative stress alone is not adequate to induce hepatocyte necrosis, and an additional
trigger is required to intensify this oxidant stress. The additional trigger that is necessary to
enhance this oxidant stress appears to be mediated by the activation (phosphorylation) of
the mitogen-activated protein kinase (MAPK) [26]. For these reasons, we plan to conduct
an experiment on the signaling pathways of MAPK.

TNF-α has been associated with elevated oxidative stress, including increased genera-
tion of reactive oxygen species and reactive nitrogen species, as well as the recruitment and
activation of other inflammatory cells [27]. Blazka et al. reported significant increases in
the serum levels of TNF-α and IL-1α in mice treated with acetaminophen [28]. Moreover,
anti-TNF-α or anti-IL-1α antibodies partially prevented hepatotoxicity in acetaminophen-
intoxicated mice [29]. In our experimental findings, we observed an elevation in the
production of inflammatory cytokines—specifically TNF-a and IL-1—in a mouse model of
acetaminophen-induced acute liver failure. However, the preventive treatment with PT
(especially the high dose) determined a decrease in the levels of these cytokines.

In this study, we also tested another acute liver failure model—using D-GalN/LPS—in
order to confirm the preventive and therapeutic effects of PT in acute liver failure. The
D-GalN/LPS model has also been used as an animal model for simulating the formation
of acute liver failure in humans [30]. D-GalN can consume uridine monophosphate in
hepatocytes, resulting in the depletion of nucleic acid and damage to hepatocyte structure
and function, finally causing the apoptosis of cells [31]. LPS is a cell wall component of
Gram-negative bacteria. High concentrations of LPS overcome the detoxification process
and cause obvious liver damage [32]. LPS combination models with D-GalN, alcohol, or
concanavalin A for acute liver failure are useful for demonstrating blood chemical profiles
and metabolic changes. These changes start generally within 2–4 h but return to normal
values after 12 h if the model animal survives. Moreover, a weak point of the D-GalN/LPS
model is that animals may die between 4–8 h before the autopsy if even a small amount of
D-GalN/LPS over the safe dose is injected. In our experiment, the D-GalN model showed
excessively high hepatotoxic levels (ALT and AST) or the animals died before the analysis
of serum profiles; therefore, this model made it difficult to verify the hepatoprotective effect
of PT compared to the acetaminophen model.

4. Materials and Methods
4.1. Materials and Reagents

Acetaminophen, D-Galactosamine, and Lipopolysaccharide were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Hovenia dulcis Thunb. extract (HD) was purchased
from Nutra Green Biotechnology Co., Ltd. (Shanghai, China) and Silybum marianum seed
extract (SM) was purchased from Naturex (Avignon, France). The fucoxanthin standard
was purchased from Sigma-Aldrich (St. Louis, MO, USA). Unless indicated, all other
chemicals were also purchased from Sigma-Aldrich.
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4.2. Culture of Phaeodactylum tricornutum (PT)

The PT (UTEX-646) used in this study was obtained from the University of Texas at
Austin (UTEX) algal culture collection. The PT was cultured using F/2+Si medium and
seawater. The composition of the F/2+Si medium was as follows: NaNO3 75 mg, NaH2PO4
5.65 mg, Na2SiO3 30 mg, Na2EDTA 4.16 mg, FeCl3 3.15 mg, CuSO4 0.01 mg, ZnSO4
0.022 mg, CoCl2 0.01 mg, MnCl2 0.18 mg, Na2MoO4 0.006 mg, vitamin B12 0.0005 mg,
vitamin B1 0.1 mg, and biotin 0.0005 mg. All media were sterilized at 121 ◦C for 15 min
before use. Seawater was sterilized with sodium hypochlorite (NaOCl) in a 50-ton photo-
bioreactor (PBR), and F/2+Si stock solution was added, inoculated with PT, and incubated
for approximately 7 days. At the end of incubation, PT biomass was harvested using a
continuous centrifuge.

4.3. Preparation of PT Extract

Wet PT biomass was extracted through stirring for 15 h with the addition of 95%
ethanol to achieve a final alcohol concentration of 70%. It was decompression filtered
through filter paper (Whatman, pore size 5 µm, Bucks, UK), mixed with excipients (β-
cyclodextrin; ES Food Ingredients, Gunpo, Republic of Korea) using a homogenizer
(13,000 rpm for 5 min), and concentrated (40 ◦C, 100 mbar, 100 rpm) using a vacuum
rotary evaporator (Rotavapor R-300, BUCHI, Flawil, Switzerland). The concentrated extract
was sterilized at 70 ◦C for 30 min and freeze dried.

4.4. Characterization of the PT Extract

To standardize the PT extract, lead, arsenic, cadmium, mercury, and Escherichia coli,
as well as the content of fucoxanthin, were analyzed in the PT extract. All analyses were
conducted by the Korea Health Supplement Institute (Seoul, Republic of Korea)—a certified
testing laboratory designated by the Ministry of Food and Drug Safety (MFDS, Osong,
Republic of Korea)—according to the general test methods for standards and specifications
of Korean food. Analysis results for three lots of PT extract were as follows: fucoxanthin
content at 18.14, 17.31, and 18.33 mg/g (Figure 6); lead (Pb) content at 0.0313, 0.0312,
and 0.0323 ppm; arsenic (As) content at 0.0124, 0.0152, and 0.0168 ppm; cadmium (Cd)
content at 0.0344, 0.0368, and 0.0375 ppm; and mercury (Hg) content at 0.0047, 0.0050, and
0.0047 ppm. The established standards and specifications for the PT extract are defined as
follows: the concentration of fucoxanthin should range from 14.33 to 21.50 mg/g. The lead
(Pb) concentrations must be below 1.0 ppm, arsenic (As) must be below 1.0 ppm, cadmium
(Cd) must be below 0.3 ppm, and mercury (Hg) must be below 0.5 ppm. Escherichia coli
must not be detectable in any of the samples. Additionally, the total pheophorbide content
should not exceed 1000 ppm.

4.5. Analysis of Fucoxanthin

Fucoxanthin was analyzed using HPLC with an Agilent 1260 system (Agilent Tech-
nologies, Santa Clara, CA, USA), according to previous methods [33]. The analysis utilized
a CAPCELL PAK C18 MG II column (particle size 5 µm, 250 × 4.6 mm I.D.; Phenomenex,
CA, USA). The mobile phase consisted of acetonitrile (A) and water (B), with a flow rate
of 1 mL/min. The gradient elution program started with a composition of 90:10 (A:B), in-
creased to 100:0 over 8 min, maintained at 100:0 for 3 min, and then decreased to 80:20 over
the following 5 min. Detection was performed at 450 nm. Quantification of fucoxanthin
was achieved by measuring peak areas and comparing them to a calibration curve (1, 5, 10,
50, 100, and 200 µg/mL) using a fucoxanthin standard.

4.6. Animals

Seven-week-old male C57BL/6J mice weighing 21.0 ± 3.0 g were purchased from
Dooyeol Biotech (Seoul, Republic of Korea). The mice were fed with a standard chow
diet and water freely. They were housed under normal laboratory conditions (23 ± 2 ◦C,
12 h light–dark cycle) with continuous access to food and water. All experiments were
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conducted under the standard procedure set by the Committee for the Purpose of Control
and Supervision of Experiments on Animals and the National Institutes of Health for the
specification use of the experimental animals. The experimental protocol was approved
by the Ethics Committee for Animal Experimentation of Chungbuk National University
(Permit Number: CBNUA-633-13-01, Republic of Korea).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. HPLC chromatogram of fucoxanthin standard (A) and PT extract (B) at 450 nm. The inset 
shows the absorption spectrum of the fucoxanthin peak. Red arrows indicate the fucoxanthin peak 
in each chromatogram. 

4.5. Analysis of Fucoxanthin 
Fucoxanthin was analyzed using HPLC with an Agilent 1260 system (Agilent Tech-

nologies, Santa Clara, CA, USA), according to previous methods [33]. The analysis utilized 
a CAPCELL PAK C18 MG II column (particle size 5 µm, 250 × 4.6 mm I.D.; Phenomenex, 
CA, USA). The mobile phase consisted of acetonitrile (A) and water (B), with a flow rate 
of 1 mL/min. The gradient elution program started with a composition of 90:10 (A:B), in-
creased to 100:0 over 8 min, maintained at 100:0 for 3 min, and then decreased to 80:20 
over the following 5 min. Detection was performed at 450 nm. Quantification of fucoxan-
thin was achieved by measuring peak areas and comparing them to a calibration curve (1, 
5, 10, 50, 100, and 200 µg/mL) using a fucoxanthin standard. 

4.6. Animals 
Seven-week-old male C57BL/6J mice weighing 21.0 ± 3.0 g were purchased from 

Dooyeol Biotech (Seoul, Republic of Korea). The mice were fed with a standard chow diet 
and water freely. They were housed under normal laboratory conditions (23 ± 2 °C, 12 h 
light–dark cycle) with continuous access to food and water. All experiments were con-
ducted under the standard procedure set by the Committee for the Purpose of Control 
and Supervision of Experiments on Animals and the National Institutes of Health for the 
specification use of the experimental animals. The experimental protocol was approved 
by the Ethics Committee for Animal Experimentation of Chungbuk National University 
(Permit Number: CBNUA-633-13-01, Republic of Korea). 

4.7. Acetaminophen-Induced Acute Liver Injury Model 
The C57BL/6J mice were divided into 6 groups (each n = 8), as shown in Table 1. 

  

Figure 6. HPLC chromatogram of fucoxanthin standard (A) and PT extract (B) at 450 nm. The inset
shows the absorption spectrum of the fucoxanthin peak. Red arrows indicate the fucoxanthin peak in
each chromatogram.

4.7. Acetaminophen-Induced Acute Liver Injury Model

The C57BL/6J mice were divided into 6 groups (each n = 8), as shown in Table 1.

Table 1. Experimental groups in acetaminophen-induced acute liver injury model.

Number Group Explanation

1 Normal Untreated control group, without AP injection

2 AP 600 mg/kg AP injection (IP)

3 AP + SM Oral administration of 150 mg/kg Silybum marianum Seed extract
after AP injection.

4 AP + HD Oral administration of 200 mg/kg Hovenia dulcis Thunb. extract
after AP injection.

5 AP + PT100 Oral administration of 100 mg/kg PT extract after AP injection.

6 AP + PT200 Oral administration of 200 mg/kg PT extract after AP injection.

Acute liver injury using acetaminophen was induced as described in detail previ-
ously [34,35]. Briefly, for the study of PT prevention activity (Figure 7A), C57BL/6J mice
were administered PT, SM, or HD orally for 10 days. Then, the animals received 600 mg/kg
of APAP (Sigma Aldrich) through intraperitoneal injection after fasting overnight for a
period of approximately 15–16 h. After 24 h, the mice were sacrificed, their blood was



Int. J. Mol. Sci. 2024, 25, 6247 11 of 14

collected for serum separation, and their livers were removed and stored at −80 ◦C. Sera
were separated from the blood for aspartate transaminase (AST) and alanine transaminase
(ALT), and the remainder of the sera was stored at −80 ◦C for further use. In case of PT
therapeutic activity (Figure 7B), the animals received 600 mg/kg of APAP (Sigma Aldrich)
through intraperitoneal injection after fasting overnight, and PT, SM, or HD was adminis-
trated orally for 3 days. After 24 h, the mice were sacrificed, their blood was collected, and
their livers were removed. Sera were separated from the blood for AST (GOT) and ALT
(GPT) level determination, and the remainder of the sera was stored at −80 ◦C for further
use. A portion of each liver was fixed in 10% neutral buffer formalin for hematoxylin and
eosin (H&E) staining which allows for the visualization of the structure and distribution
of cells and morphological changes within a tissue sample, and the remainder of the liver
tissue was snap-frozen and stored at −80 ◦C for protein analyses.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 15 
 

 

Table 1. Experimental groups in acetaminophen-induced acute liver injury model. 

Number Group Explanation 
1 Normal Untreated control group, without AP injection 
2 AP 600 mg/kg AP injection (IP) 

3 AP + SM Oral administration of 150 mg/kg Silybum marianum Seed ex-
tract after AP injection. 

4 AP + HD Oral administration of 200 mg/kg Hovenia dulcis Thunb. ex-
tract after AP injection. 

5 AP + PT100 Oral administration of 100 mg/kg PT extract after AP injec-
tion. 

6 AP + PT200 Oral administration of 200 mg/kg PT extract after AP injec-
tion. 

Acute liver injury using acetaminophen was induced as described in detail previ-
ously [34,35]. Briefly, for the study of PT prevention activity (Figure 7A), C57BL/6J mice 
were administered PT, SM, or HD orally for 10 days. Then, the animals received 600 mg/kg 
of APAP (Sigma Aldrich) through intraperitoneal injection after fasting overnight for a 
period of approximately 15–16 h. After 24 h, the mice were sacrificed, their blood was 
collected for serum separation, and their livers were removed and stored at −80 °C. Sera 
were separated from the blood for aspartate transaminase (AST) and alanine transaminase 
(ALT), and the remainder of the sera was stored at −80 °C for further use. In case of PT 
therapeutic activity (Figure 7B), the animals received 600 mg/kg of APAP (Sigma Aldrich) 
through intraperitoneal injection after fasting overnight, and PT, SM, or HD was admin-
istrated orally for 3 days. After 24 h, the mice were sacrificed, their blood was collected, 
and their livers were removed. Sera were separated from the blood for AST (GOT) and 
ALT (GPT) level determination, and the remainder of the sera was stored at −80 °C for 
further use. A portion of each liver was fixed in 10% neutral buffer formalin for hematox-
ylin and eosin (H&E) staining which allows for the visualization of the structure and dis-
tribution of cells and morphological changes within a tissue sample, and the remainder of 
the liver tissue was snap-frozen and stored at −80 °C for protein analyses. 

 
Figure 7. Outline of the experimental design for the in vivo study of the preventive (A) and therapeu-
tic (B) effects of PT extract on acetaminophen-induced acute liver injury and the preventive (C) and
therapeutic (D) effects of PT extract on D-GalN/LPS-induced acute liver injury.

4.8. D-GalN- and LPS-Induced Acute Liver Injury Model

D-GalN (450 mg/kg) and LPS (10 µg/kg) were dissolved in sterile 0.9% sodium
chloride, according to the product description. The mice were divided into 6 groups (each
n = 8) randomly, as shown in Table 2.

To test the acute liver toxicity prevention ability of PT (Figure 7C), C57BL/6J mice
were administered PT, SM, or HD orally for 3 days. Then, they received D-GalN/LPS
(Sigma Aldrich) via intraperitoneal injection after fasting overnight for approximately
15–16 h. After 6 h, the mice were sacrificed, their blood was collected for serum separation,
and their livers were removed and stored at −80 ◦C. In the case of PT therapeutic activity
(Figure 7D), the animals received D-GalN/LPS (Sigma Aldrich) via intraperitoneal injection
after fasting overnight for approximately 15 h. After 24 h, the mice were sacrificed, their
blood was collected, and their livers were removed. Sera were separated from the blood for
GOT and GPT level determination, and the remainder of the sera was stored at −80 ◦C for
further use.
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Table 2. Experimental groups in D-GalN/LPS—induced acute liver injury model.

Number Group Explanation

1 Normal Untreated control group, without D-GalN/LPS injection

2 D-GalN/LPS IP injection of D-GalN/LPS

3 D-GalN/LPS
+ SM

Oral administration of 150 mg/kg Silybum marianum Seed
extract after D-GalN/LPS injection.

4 D-GalN/LPS
+ HD

Oral administration of 200 mg/kg Hovenia dulcis Thunb.
extract after D-GalN/LPS injection.

5 D-GalN/LPS
+ PT100

Oral administration of 100 mg/kg PT extract after
D-GalN/LPS injection.

6 D-GalN/LPS
+ PT200

Oral administration of 200 mg/kg PT extract after
D-GalN/LPS injection.

4.9. Histological Analysis

Formalin-fixed livers were embedded in paraffin. The sections (4 µm thick) were
stained with hematoxylin and eosin (H&E) solution (American Histolabs, Gaithersburg,
MD, USA) for histological analysis. Stained liver tissues were examined under a light
microscope (Olympus, Tokyo, Japan). The numerical measurement of sinusoidal and
central vein congestion was analyzed using ImageJ analysis® software. To quantify the
extravasation of red blood cells (RBCs) in an image of a mouse liver tissue section stained
with H&E, the tissue image was analyzed through the following four steps: (1) change
the scale to micrometers; (2) convert the image to grayscale; (3) segment (isolate) the
dark-red-stained RBCs using thresholding; and (4) measure the thresholded area.

4.10. Enzyme Immunoassay

The concentrations of TNF-α and IL-1β (in sera were measured through enzyme-
linked immunosorbent assays (ELISA; R&D Systems, Minneapolis, MN, USA), according
to the manufacturer’s instructions.

5. Conclusions

This study provides reasonable evidence that PT effectively protects hepatocytes
against acetaminophen-induced acute liver failure by attenuating the inflammatory re-
sponse. These findings provide valuable insights into the potential of PT as a medicinal
intervention for preventing acute liver failure. Although this study failed to demonstrate
the protective effects of PT against acute liver injury in the D-GalN/LPS model, future
efforts are planned to establish an optimal model by varying the concentrations of D-GalN
and LPS.
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