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Abstract: Polyamines are ubiquitous in almost all biological entities and involved in various crucial
physiological processes. They are also closely associated with the onset and progression of many
diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function
of proteins within the polyamine metabolism network. Although the identified polyaminopathies are
all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers
but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered
with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive
overview of the structural variations of mutated proteins in current polyaminopathies, in addition to
their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus
on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating
the onset of diseases. We hope this review will offer valuable insights and references for the future
clinical diagnosis and precision treatment of polyaminopathies.

Keywords: polyamine; Snyder–Robinson syndrome; Bachmann–Bupp syndrome; deoxyhypusine
synthase disorder; Faundes–Banka syndrome; deoxyhypusine hydroxylase disorder

1. Introduction

Polyamines are a class of organic polycations that exist in nearly all living organisms.
In mammalian cells, the major polyamines are putrescine, spermidine, and spermine [1].
Polyamines contain positive charges under the physiological pH value (7.4), so they can
bind to negatively charged components, such as DNA, RNA, proteins, and membranes.
Through these interactions, polyamines are involved in various biological processes, includ-
ing DNA replication, RNA transcription, and protein translation, affecting cell fates ranging
from growth to proliferation, differentiation, and apoptosis [1]. Echoing the important
biological functions of polyamines, their intracellular level is stringently maintained by
polyamine synthesis, catabolism, and transport (Figure 1). The major proteins in the biosyn-
thesis pathway of polyamines are ornithine decarboxylase (ODC or ODC1), spermidine
synthase (SRM), spermine synthase (SMS), and S-adenosylmethionine decarboxylase 1
(AdoMetDC or AMD1). The catabolism pathway is mainly regulated by spermine oxi-
dase (SMOX), spermidine/spermine N1-acetyltransferase (SSAT1), and polyamine oxidase
(PAOX). The membrane transport of polyamines is mediated by a range of membrane
transporters, with SLC3A2 [2] and ATP13A3 [3] being the best-known ones.

Whereas cellular polyamine homeostasis is sophistically maintained by the polyamine
metabolism network, the utilization of polyamines remains to be thoroughly investigated.
Currently, one of the well-elucidated roles of polyamines is the involvement of spermidine
in the hypusine modification (hypusination) of the eukaryotic translation initiation factor
5A (EIF5A), which converts the inactive EIF5A precursor into the active form (Figure 1).
In the first step of EIF5A hypusination, deoxyhypusine synthase (DHPS) cleaves out the
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4-aminobutyl group from spermidine and transfers it to the ε-amino group of the lysine
residue K50 in EIF5A, generating a deoxyhypusine intermediate. In the second step, the
deoxyhypusine is hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine,
leading to the activation of EIF5A. The hypusinated EIF5A then binds to the ribosome
to help with the translation of proteins containing polyproline sequences [4,5]. Since the
expression of over 400 proteins might be regulated by EIF5A [6], it is not surprising that
the hypusination of EIF5A is highly conserved.

For a long time, whether and how polyamine homeostasis directly causes diseases
has been controversial. Excessive depletion or accumulation of polyamines can negatively
affect cells in aging [7], renal failure [8], neurodegenerative disease [9], and cancer [10].
Elevated levels of polyamines can promote the proliferation of cancer cells and tumor
growth, while decreased levels of polyamines may lead to cell growth arrest. For example,
polyamine levels are significantly elevated in colon cancer, so polyamines could serve
as potential biomarkers for colon cancer [11]. Altered EIF5A function and hypusination
have also been associated with various human diseases, including diabetes [12], viral
infection [13], neurodegenerative disease [14], and cancer [15]. For example, EIF5A can
promote the proliferation and survival of cancer cells by regulating protein synthesis and
modulating autophagy and apoptosis, thereby driving cancer initiation and progression [5].
More distinctly, the homozygous whole-body deletion of any of the genes of ODC [16],
AMD1 [17], EIF5A [18], DHPS [18], or DOHH [19] in mice results in embryonic lethality.
However, these studies have not established the causative role of polyamine metabolism
in specific diseases. The direct connection between polyamines and diseases becomes
even more elusive after failures pile up in the clinical trials of ODC inhibitors, AdoMetDC
inhibitors, and polyamine mimics.

In recent years, studies supported by molecular details have accumulated to estab-
lish the causative role of polyamine metabolism in specific diseases (Figure 1). In 2003,
Cason et al. reported the first case of Snyder–Robinson syndrome (SRS), a rare genetic
disease caused by mutations in SMS [20]. In 2018, Bachmann et al. identified mutations in
ODC leading to the rare genetic disorder known as Bachmann–Bupp syndrome (BABS) [21].
More diseases have been linked to polyamine utilization. In 2019, Ganapathi et al. revealed
that DHPS mutants with reduced enzyme activity might be associated with a neurode-
velopmental disorder [22]. In 2021, Faundes et al. established that dysfunctional EIF5A
variants cause Faundes–Banka syndrome (FABAS) [23]. In 2022, Ziegler et al. found that
missense and truncating DOHH variants were associated with a neurodevelopmental
phenotype [24]. Enlightened by these important discoveries in the polyamine research
field, the term polyaminopathies was coined to refer to these conditions [25]. In this paper,
we provide a comprehensive review of structural insights into the mutated proteins in the
reported polyaminopathies (Tables 1 and 2).
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Table 1. Genetic modes, patient cases, and clinical symptoms of known polyaminopathies.

Polyaminopathies Name Mutant Gene Genetic Mode Mutant Form First Case Cases Deaths Clinical Symptoms

Polyamine
biosynthesis-related

diseases

SRS SMS X-linked recessive Monogenic mutations 2003 24 males 2 males
Developmental delay, intellectual disability,
hypotonia, seizures, osteoporosis, kyphosis, genital
abnormalities, facial dysmorphism

BABS ODC autosomal dominant Monogenic mutations 2018 6 males
5 females 1 male (labor induction)

Developmental delay, intellectual disability,
hypotonia, non-congenital alopecia, abnormal brain
MRI, non-specific dysmorphic features,
macrocephaly

Polyamine
utilization-related

diseases

DHPS disorder DHPS autosomal recessive Biallelic mutations 2019 1 male
4 females none Developmental delay, intellectual disability, seizures,

dystonia, pregnancy problems

FABAS EIF5A autosomal dominant Monogenic mutations 2021 3 males
4 females none Developmental delay, intellectual disability, facial

deformity, microcephaly

DOHH disorder DOHH autosomal recessive Biallelic mutations 2022 3 males
2 females

1 male
1 female

Developmental delay, intellectual disability, brain
MRI abnormalities, microcephaly, congenital cardiac
malformations

Table 2. Gene mutations of known polyaminopathies. The asterisk (*) indicates a translation termination codon, and the question marker (?) indicates an unknown
mutation.

Polyaminopathies Name Mutant Gene Variants (Gene) Variants (Protein)

Polyamine
biosynthesis-related

diseases

SRS SMS

c.104T>G
c.166G>A
c.174T>A
c.200G>A
c.329+5G>A

c.335C>T
c.388C>T
c.395T>G
c.443A>G
c.449T>C

c.831G>T
c.908_911del
c.983A>G

p.M35R
p.G56S
p.F58L
p.G67E
p.?

p.P112L
p.R130C
p.V132G
p.Q148R
p.I150T

p.L277F
p.M303Kfs*3
p.Y328C

BABS ODC
c.1240_1241dupTG
c.1241+1G>T
c.1242_1263del22

c.1242-2A>G
c.1252C>T
c.1255C>T

c.1307_1311delinsT
c.1342A>T
c.1313_1316delCTGT

p.W414Cfs*7
p.?
p.W414*

p.?
p.Q418*
p.Q419*

p.T436Ifs*11
p.K448K
p.438Rfs*9

Polyamine
utilization-related

diseases

DHPS disorder DHPS c.1A>G
c.518A>G c.912_917delTTACAT c.1014+1G>A p.Met1?

p.N173S p.Y305_I306del p.?

FABAS EIF5A
c.143C>A
c.316G>A
c.324dupA

c.325C>G
c.325C>T
c.343C>T

c.364G>A
p.T48N
p.G106R
p.R109Tfs*8

p.R109G
p.R109*
p.P115S

p.E122K

DOHH disorder DOHH
c.304delG
c.455C>T
c.552C>A

c.654_655insAACC
c.668C>T
c.746T>C

c.840T>A
p.G102Kfs*6
p.P152L
p.N184K

p.G219Nfs*54
p.P223L
p.I249T

p.Y280*
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Figure 1. The cellular polyamine homeostasis is maintained by the biosynthesis, catabolism, and 
transport of polyamines. The hypusination of EIF5A is the best-known utilization of polyamines in 
cells. The abbreviations in the figure are the following: MAT1 (S-adenosylmethionine synthase 1); 
AMD1 (S-adenosylmethionine decarboxylase 1); ARG1 (arginase 1); ODC (ornithine decarboxylase); 
OAZ1 (ODC antizyme 1); AZIN1 (antizyme inhibitor 1); SRM (spermidine synthase); SMS (sperm-
ine synthase); MTA (5′-methylthioadenosine); EIF5A (eukaryotic translation initiation factor 5A); 
DHPS (deoxyhypusine synthase); DOHH (deoxyhypusine hydroxylase); SMOX (spermine oxidase); 
SSAT1 (spermidine/spermine N1-acetyltransferase); PAOX (polyamine oxidase); BABS (Bachmann–
Bupp syndrome); SRS (Snyder–Robinson syndrome); DHPS disorder (deoxyhypusine synthase dis-
order); DOHH disorder (deoxyhypusine hydroxylase disorder); FABAS (Faundes–Banka syn-
drome). 

2. Snyder–Robinson Syndrome 
Snyder–Robinson syndrome (SRS) is the first X-linked syndrome linked to the 

dysregulation of polyamine homeostasis and was first reported by Snyder and Robinson 
in 1969 [26]. The genetic cause of this syndrome was not established until 2003, when Ca-
son et al. demonstrated that this syndrome was caused by mutations in SMS [20]. Clini-
cally, female carriers are normal, whereas male carriers show varying degrees of develop-
mental disabilities, such as intellectual disability, developmental delay, hypotonia, weak-
ness, seizures, osteoporosis, and kyphosis, as well as walking anomalies, facial deformi-
ties, genital abnormalities, and renal complications. Thus far, 24 patients have been re-
ported, among which 1 died of hypoxic–ischemic encephalopathy at the age of 4 and an-
other died of secondary sepsis at 4 months old. 

SRS is caused by the partial or complete loss of SMS’s enzyme activity, which leads 
to decreased putrescine/spermine levels and elevated spermidine levels. Spermidine ac-
cumulation might increase the production of toxic aldehydes and reactive oxygen species, 
disrupting lysosomal and mitochondrial functions. SMS is a homodimeric enzyme, and 
the monomer consists of three structural domains: the N-terminal domain associated with 
dimerization, the C-terminal domain containing the active site, and the central domain 
[27] (Figure 2). Among the 13 reported clinical SMS mutants, 5 contain mutations located 
in the N-terminal domain. Among them, p.M35R [28] significantly destabilizes the mono-
mer structure, but p.G56S [29], p.F58L [30], p.G67E [31], and p.P112L [28] reduce both the 
monomer stability and the dimerization affinity. Two mutations, p.R130C and p.V132G, 
are located in the loop between the N-terminal domain and the central domain. p.R130C 
[32] may destabilize the dimer as well as affect the structure of the neighboring substrate-
binding site. p.V132G [33] significantly reduces the activity of SMS. This mutation might 
also affect the conformation of the loop region and the active site. p.Q148R and p.I150T 
are located in the central domain. p.Q148R [34] alters the 5′-methylthioadenosine (MTA)-
binding site, whereas p.I150T [35] induces structural changes in the vicinity of the MTA-

Figure 1. The cellular polyamine homeostasis is maintained by the biosynthesis, catabolism, and
transport of polyamines. The hypusination of EIF5A is the best-known utilization of polyamines in
cells. The abbreviations in the figure are the following: MAT1 (S-adenosylmethionine synthase 1);
AMD1 (S-adenosylmethionine decarboxylase 1); ARG1 (arginase 1); ODC (ornithine decarboxylase);
OAZ1 (ODC antizyme 1); AZIN1 (antizyme inhibitor 1); SRM (spermidine synthase); SMS (spermine
synthase); MTA (5′-methylthioadenosine); EIF5A (eukaryotic translation initiation factor 5A); DHPS
(deoxyhypusine synthase); DOHH (deoxyhypusine hydroxylase); SMOX (spermine oxidase); SSAT1
(spermidine/spermine N1-acetyltransferase); PAOX (polyamine oxidase); BABS (Bachmann–Bupp
syndrome); SRS (Snyder–Robinson syndrome); DHPS disorder (deoxyhypusine synthase disorder);
DOHH disorder (deoxyhypusine hydroxylase disorder); FABAS (Faundes–Banka syndrome).

2. Snyder–Robinson Syndrome

Snyder–Robinson syndrome (SRS) is the first X-linked syndrome linked to the dys-
regulation of polyamine homeostasis and was first reported by Snyder and Robinson in
1969 [26]. The genetic cause of this syndrome was not established until 2003, when Cason
et al. demonstrated that this syndrome was caused by mutations in SMS [20]. Clinically,
female carriers are normal, whereas male carriers show varying degrees of developmen-
tal disabilities, such as intellectual disability, developmental delay, hypotonia, weakness,
seizures, osteoporosis, and kyphosis, as well as walking anomalies, facial deformities,
genital abnormalities, and renal complications. Thus far, 24 patients have been reported,
among which 1 died of hypoxic–ischemic encephalopathy at the age of 4 and another died
of secondary sepsis at 4 months old.

SRS is caused by the partial or complete loss of SMS’s enzyme activity, which leads
to decreased putrescine/spermine levels and elevated spermidine levels. Spermidine
accumulation might increase the production of toxic aldehydes and reactive oxygen species,
disrupting lysosomal and mitochondrial functions. SMS is a homodimeric enzyme, and
the monomer consists of three structural domains: the N-terminal domain associated with
dimerization, the C-terminal domain containing the active site, and the central domain [27]
(Figure 2). Among the 13 reported clinical SMS mutants, 5 contain mutations located in
the N-terminal domain. Among them, p.M35R [28] significantly destabilizes the monomer
structure, but p.G56S [29], p.F58L [30], p.G67E [31], and p.P112L [28] reduce both the
monomer stability and the dimerization affinity. Two mutations, p.R130C and p.V132G, are
located in the loop between the N-terminal domain and the central domain. p.R130C [32]
may destabilize the dimer as well as affect the structure of the neighboring substrate-
binding site. p.V132G [33] significantly reduces the activity of SMS. This mutation might
also affect the conformation of the loop region and the active site. p.Q148R and p.I150T
are located in the central domain. p.Q148R [34] alters the 5′-methylthioadenosine (MTA)-
binding site, whereas p.I150T [35] induces structural changes in the vicinity of the MTA-
binding site and reduces the stability of the C-terminal domain. p.L277F, p.M303Kfs*3,
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and p.Y328C are located in the C-terminal domain. p.L277F [36] alters the MTA- and
substrate-binding sites. p.M303Kfs*3 [37] introduces a termination codon prematurely,
which may trigger nonsense-mediated mRNA degradation. Accordingly, the protein is
completely undetectable by Western Blotting [37]. p.Y328C [38] elicits a strong effect on
the conformational dynamics and hydrogen-bonding network around the active site. The
c.329+5G>A [20] splicing abnormality results in the deletion of twenty-two amino acids
from the fourth exon of the gene. However, experiments proved that this mutant was still
able to be correctly spliced on a small scale to synthesize some normal SMS proteins.
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Figure 2. The structure of the SMS protein (PDB: 3C6K). Only a monomer is shown for clarity.
The N-terminal, central, and C-terminal domains are colored yellow-green, pink, and light blue,
respectively. The loop connecting the N-terminal and central domains is colored white. Spermidine
(Spd) and 5′-methylthioadenosine (MTA) bound to SMS are presented as sticks. The mutation sites in
SRS patients are shown as red sticks. The asterisk (*) indicates a translation termination codon.

Considering that the SMS variants in SRS patients lose partial or all enzyme activity,
the major therapeutic strategy is rebalancing the spermidine/spermine ratio [39]. Tantak
et al. designed a prodrug containing a redox-sensitive quinone “trigger”, a “trimethyl lock”
aryl “release mechanism”, and spermine [40]. This prodrug selectively delivered spermine
into fibroblast cells and showed significant beneficial effects in the cells of patients with
inactive SMS variants. Tao et al. suggested that SSAT1 may be a potential treatment target
for SRS [41]. SSAT1 is the rate-limiting enzyme in the polyamine catabolism pathway, using
acetyl-CoA as an acetyl donor to acetylate polyamines. Sodium phenylbutyrate (PBA)
can be efficiently catabolized in vivo to phenylacetylcoenzyme A, and then the latter can
competitively inhibit SSAT1 activity, restoring the acetyl coenzyme A level and reducing
the spermidine level in fibroblast cells from SRS patients [41]. Stewart et al. noticed that
(R,R)-1,12-dimethylspermine (Me2SPM) caused a significant decrease in spermidine content
in SRS patients, but the mechanism of action is not clear [42]. They also found that DFMO
reduced spermidine biosynthesis and increased spermine content by stimulating spermine
synthesis and uptake. They further discovered that the combination of DFMO and Me2SPM
reduced spermidine and total polyamines in the cells of SRS patients [43].

3. Bachmann–Bupp Syndrome

Bachmann-Bupp syndrome (BABS) is the second disease proven to be associated with
the dysregulation of polyamine metabolism. BABS is a rare neurodevelopmental disorder
caused by mutations in the C-terminal sequence of ODC and was first reported by Bupp et al.
in 2018 [21]. The clinical features of BABS patients are intellectual disability, developmental
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delay, hypotonia, non-congenital alopecia, non-specific brain MRI abnormalities, and non-
specific malformations, along with macrocephaly, minor facial deformity, prenatal amniotic
fluid excess, and hyperopia. Thus far, 11 patients have been reported [21,44–46]. One case
was a male stillborn with an abnormal fetal MRI at 34 weeks of gestation [44].

ODC is a 5’-pyridoxal phosphate (PLP)-dependent homodimeric enzyme that catalyzes
the decarboxylation of ornithine to produce putrescine. The ODC’s enzyme activity can
be inhibited by the binding of ODC antizyme 1 (OAZ1), which induces the exposure of
the 37 C-terminal residues (PEST degron) of ODC, leading to the ubiquitin-independent
degradation of ODC by the 26S proteasome [47]. In BABS patients, mutations in the PEST
degron cause partial or total loss of the 37 residues (Figure 3), resulting in its inability to be
recognized and degraded by the 26S proteasome. At the same time, the truncated ODC
remains catalytically active and more stable, leading to elevated cellular levels of putrescine
and acetylputrescine [25].
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DFMO is a specific, irreversible ODC inhibitor. BABS patients treated with DFMO
gained normal hair growth, improved muscle tone, and recovered physical development
without significant side effects [48].

4. Deoxyhypusine Synthase Disorder

Deoxyhypusine synthase disorder (DHPS disorder) is a neurodevelopmental disorder
caused by biallelic mutations in DHPS and was first reported by Ganapathi et al. in
2019 [22]. The clinical features of patients include mental retardation, developmental delay,
seizures, dystonic abnormalities, and pregnancy problems (gestational hypertension, pre-
eclampsia, HELLP syndrome, oligohydramnios), along with walking difficulty and mild
facial deformities. Thus far, five patients from four families have been reported.

DHPS is a tetrameric enzyme consisting of four identical subunits [49]. DHPS uses
nicotinamide adenine dinucleotide (NAD) as a cofactor and catalyzes the first step of
EIF5A hypusination [50] (Figure 4). Both NAD and the substrate, spermidine, bind in the
catalytic pocket located at the interface of the two DHPS subunits. The DHPS disorder is
caused by DHPS mutants with decreased enzyme activity. These mutants lead to a decrease
in hypusinated EIF5A (EIF5AHyp) in the cytoplasm and an increase in acetylated EIF5A
(EIF5AAck47) in the nucleus. This change, in turn, leads to impaired mRNA translation and
alters the synthesis of proteins involved in neurodevelopment [22]. Among the reported
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mutations, p.N173S is shared by all known DHPS disorder patients. p.N173S fails to form
hydrogen bonds with neighboring amino acids (V17, K19), which reduces the binding
affinity of spermidine. It also affects the correct docking and interaction of EIF5A in
the active site of DHPS [51]. p.Y305_I306del leads to the failure of spermidine binding
and may also attenuate the binding of NAD. Moreover, this mutation destabilizes the
structure of DHPS, and the mutated DHPS dimer cannot form tetramers. p.Y305A alone
showed reduced binding affinity to spermidine and NAD, but its enzyme activity was
normal [52]. In in vitro experiments, the p.N173S mutant had around 20% of the enzyme
activity compared to the wild-type DHPS, while the p.Y305_I306del mutant completely
lost its enzyme activity. p.Met1? alters the start codon of translation, leading to the failure
of DHPS synthesis. The c.1014+1G>A splicing abnormality leads to the deletion of two
exons at the C-terminal region of DHPS, within which K329, a key residue in the active
site, is located. Therefore, this variant leads to a reduction or loss of enzyme activity.
Ganapathi et al. suggested that a complete DHPS deficiency could be incompatible with
normal human embryonic development [22].
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5. Faundes–Banka Syndrome

Faundes-Banka syndrome (FABAS) is a neurodevelopmental disorder caused by het-
erozygous EIF5A variants and was first reported by Faundes et al. in 2021 [23]. The clinical
features of patients are mental retardation, developmental delay, facial dysmorphisms, and
microcephaly, along with hypotonia and cardiac abnormalities. Thus far, seven patients
have been reported.

EIF5A is a small protein consisting of two β-sheet domains (Figure 5). The alkaline
N-terminal domain contains the hypusination site [53,54]. The acidic C-terminal domain
resembles an oligonucleotide-binding fold. The sequence homology between human EIF5A
and yeast EIF5A is as high as 64% [55], and human EIF5A can be a substitute for yeast
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EIF5A in protein function [56]. In the yeast model, deleting either the N-terminal domain or
the C-terminal domain of human EIF5A was lethal [54]. In FABAS, mutations in EIF5A lead
to reduced interaction of EIF5A with the ribosome and decreased synthesis of polyproline-
containing proteins [23]. p.T48N is close to the K50 hypusination site and hinders EIF5A
hypusination. The arginine residue R109 has various mutations, including the missense mu-
tation p.R109G, the nonsense mutation p.R109*, and the frameshift mutation p.R109Tfs*8.
This amino acid is encoded by the CGA codon, and the CG dinucleotide is a mutation
hotspot in human diseases because it is prone to methylation and deamination. In the
computer-simulated complex structure of yeast EIF5A and the 60S ribosome, G106 and
R109 are close to the uL1 ribosomal protein, and E122 is close to the P-site tRNA [23].
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Spermidine supplements partially restored EIF5A function and its resultant pheno-
types in the yeast model and the zebrafish EIF5A transient knockdown model [23]. In yeast,
spermidine partially or entirely restored the interaction of EIF5A with the 80S ribosome,
although the content of EIF5A and the level of hypusination were not enhanced. The
mechanism by which spermidine enhances the interaction of EIF5A with the 80S ribosome
remains unclear.

6. Deoxyhypusine Hydroxylase Disorder

Deoxyhypusine hydroxylase disorder (DOHH disorder) is a neurodevelopmental
disorder caused by a biallelic mutation in DOHH and was first reported by Ziegler et al. in
2022 [24]. The clinical features of patients are intellectual disability, developmental delay,
microcephaly, congenital heart malformations, and brain MRI abnormalities, along with
visual impairment and facial deformities. Thus far, five patients from four families have
been reported. One female patient died of heart failure at the age of 15. One male patient
died of multi-organ failure due to a severe lung infection at 25 months old.

DOHH is a unique non-heme di-iron monooxygenase. The DOHH structure has a
symmetrical dyad composed of eight HEAT-repeat domains in tandem (Figure 6). DOHH
contains metal coordination sites (HE sites) consisting of four highly conserved histidine–
glutamate motifs, namely H56-E57, H89-E90, H207-E208, and H240-E241. These HE sites are
essential for enzyme activity and are involved in the binding of Fe2+ and substrates [57,58].
The DOHH disorder is caused by DOHH mutants with decreased enzyme activity. These
mutants result in the accumulation of deoxyhypusine-containing EIF5A (EIF5ADhp), the
decrease in EIF5AHyp, and impaired mRNA translation [24]. p.G102Kfs*6 loses the last
two HE sites and has a very low expression level, possibly triggering nonsense-mediated
mRNA decay. p.G219Nfs*54 loses the last HE site. These two mutants are inactive in
in vitro activity assays. p.Y280* loses the C-terminal 22 amino acids and has low enzyme
activity. In vitro experiments showed that p.P152L, p.N184K, and p.I249T had enzyme
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activities similar to the activity of the wild-type DOHH, but the enzyme activities of these
mutants in patients were significantly lower compared to the wild-type protein in healthy
individuals. This discrepancy will need further investigation.
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7. Conclusions and Perspectives

Polyamines play vital roles in a wide range of cellular processes. Spermine was first
discovered by Antonie van Leeuwenhoek in 1678 [59], and most studies in the polyamine
research field have been focused on inhibiting the upregulated polyamine level in cancers.
In recent years, polyamines have been linked to healthy aging, and their intake has been
found to positively impact health maintenance and the control of various diseases by induc-
ing autophagy and inhibiting necrosis in mice [60], yeast [61], and human cells [62]. These
studies undoubtedly indicate that maintaining cellular polyamine homeostasis is crucial for
health. The polyaminopathies reviewed in this paper strongly support the causative effect
of the dysregulation of polyamine homeostasis and the polyamine metabolism network
in diseases. More encouragingly, the ODC inhibitor DFMO was approved in December
2023 by the FDA to reduce the risk of relapse in adult and pediatric patients with high-risk
neuroblastoma.

Although the five polyaminopathies discovered thus far are different in their mutated
genes, they have many aspects in common. Firstly, they are all rare diseases. This might be
due to the low clinical detection rate, limited by the availability and cost of gene sequencing.
Alternatively, this might indicate that the polyamine metabolism network is too crucial to
be perturbed for viability. Secondly, clinical features are very similar in polyaminopathies.
All clinical patients had neurodevelopmental disorders and bone abnormalities, proving
that their pathogenic mechanisms have a common origin. Both BABS and SRS cause
polyamine catabolic abnormalities, such as an increase in the SSAT1 level. SSAT1 acetylates
spermidine and spermine, thereby increasing their extracellular transport and oxidative
decomposition by PAOX. SSAT1 is also able to inactivate EIF5A by acetylating hypusinated
EIF5A [63].

Very recently, Alayoubi et al. reported spermidine/spermine N1-acetyltransferase-like
1 (SATL1) gene mutations in two male patients with autism spectrum disorder (ASD) for
the first time [64]. They speculated that SATL1 mutations may be a potential factor in the
development of late-onset ASD symptoms. The patients showed delayed speech, repetitive
movements, a lack of communication, and frequent feelings of anxiety. However, the
patients showed no abnormalities in their mental development until they were seven to
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eight years old. One of the patients, whose parents were consanguineously married, was
diagnosed with tonic–clonic epilepsy at the age of one. Interestingly, quite similar to SSAT1,
SATL1 has N1 acetyltransferase activity and can bind with spermidine. The discovered
SATL1 mutation (Y601*) introduces a termination codon prematurely, which may alter
its enzyme activity and consequently cause dysregulation of polyamine metabolism. The
detailed mechanism will need further investigation.

Due to the low number of cases, the treatment of polyaminopathy patients has been
faced with significant challenges. To date, only BABS patients have a specific drug, DFMO,
mostly because DFMO was previously approved to treat African sleeping sickness and has
been extensively tested in clinical trials for cancer treatment. The treatment for the remain-
ing four polyaminopathies is mainly symptomatic treatment to alleviate the exacerbation of
the diseases. The potential therapeutic agents of SRS and FABAS have achieved significant
results in patient cells or yeast models but have not been reported to be tested in humans.
Spermine pre-drugs [40], PBA [41], DFMO [43], and Me2SPM [42] showed beneficial effects
in the cells of SRS patients by rebalancing polyamine homeostasis through an increase
in the spermine level or a decrease in the spermidine level. In the FABAS yeast model,
spermidine partially restored EIF5A function and the resultant phenotype [23]. Studies
have shown spermidine is safe and well tolerated in mice and humans [65], which might
make spermidine supplements a therapeutic option for FABAS.

The study of polyaminopathies established the causative connection between polyamine
metabolism and diseases. With advances in technologies such as whole-genome and whole-
exome sequencing, the detection rate of polyaminopathies might keep increasing. In 2020,
the International Center for Polyamine Disorders (ICPD) was established at Michigan
State University and Spectrum Health West Michigan to study and treat polyaminopathies.
Along with the previous international collaboration organizations in polyamine research,
such as the International Polyamines Foundation ONLUS, the study and treatment of
polyaminopathies could gain new momentum soon.
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