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Abstract: Worldwide, osteoarthritis (OA) is the most common cause of joint pain in older people.
Many factors contribute to osteoarthritis’ development and progression, including secondary os-
teoarthritis’ underlying causes. It is important to note that osteoarthritis affects all four tissues:
cartilage, bone, joint capsule, and articular apparatus. An increasingly prominent area of research
in osteoarthritis regulation is microRNAs (miRNAs), a small, single-stranded RNA molecule that
controls gene expression in eukaryotes. We aimed to assess and summarize current knowledge
about the mechanisms of the action of miRNAs and their clinical significance. Osteoarthritis (OA)
is affected by the interaction between miRNAs and inflammatory processes, as well as cartilage
metabolism. MiRNAs also influence cartilage cell apoptosis, contributing to the degradation of the
cartilage in OA. Studies have shown that miRNAs may have both an inhibitory and promoting effect
on osteoporosis progression through their influence on molecular mechanisms. By identifying these
regulators, targeted treatments for osteoarthritis may be developed. In addition, microRNA may
also serve as a biomarker for osteoarthritis. By using these biomarkers, the disease could be detected
faster, and early intervention can be instituted to prevent mobility loss and slow deterioration.
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1. Introduction
1.1. Osteoarthritis

Osteoarthritis (OA), also called osteoarthrosis, is the most common progressive chronic
joint disease among older people. It leads to significant, chronic pain, the loss of mobility,
and disability [1]. Osteoarthritis affects most people over the age of 65 [2]. An increasing
trend in the number of people suffering from osteoarthritis has been observed around the
world. An estimated 7% of the global population is affected by OA [3]. In 2019, there were
over 500 million people with the disease [4]. The prevalence of OA is one in five among
the general population and one in three among those over the age of 50 [3,5,6]. There are a
variety of synovial joints that can develop OA, but the hands, knees, and hips are the most
commonly affected [7]. There is an estimated 16% of the world’s population diagnosed
with knee OA, with women suffering from the condition at a higher rate [6]. In the past,
osteoarthritis was thought to be solely the result of cartilage “wear and tear”. Currently, it
is understood as a complex, joint-wide condition involving matrix proteases and affecting
the entire joint [8]. There are very limited non-surgical treatment options, which include
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physical activity plans, maintaining a healthy weight, and wearing appropriate footwear
and supportive equipment [9]. In the advanced stages of the disease, patients who have
not received long-term clinical treatment in the early stages of the disease may have to
undergo joint replacement surgery. Globally, the number of these surgeries is on the rise
by 10% each year, with 95% of them involving patients with osteoarthritis [10,11]. In the
face of OA’s increasing incidence of hip and knee replacements, it is imperative to develop
non-surgical treatments [12].

1.2. Risk Factors

A combination of cartilage and subchondral damage and other factors contribute to
osteoarthritis pathophysiology. One of the key factors that contribute to the development
of osteoarthritis is overweight and obesity [13–19]. Other factors include age >60 years
and female gender [13,15–23]. Furthermore, mechanical factors contribute to osteoarthritis,
such as professional works that place strain on the knee joints, injuries and previous
joint surgeries, excessive exercise, running, and sedentary lifestyles [16–18,21,22,24–29].
Moreover, genetic mutations are also involved, as well as factors such as high bone mineral
density (BMD) and diseases that impair deep sensation [17,21,24,29–33]—Table 1.

Table 1. Factors increasing osteoarthritis risk.

Group of Risk Factors Risk Factors References

demographic female;
older age [13,15–23]

body weight overweight and obesity [13–19]

genetic mutations e.g., mutation of the COL2A1, COL11A,
COL11A2, COL1A1, and COL9A1 gene [17,21,29,30]

mechanical factors

professional work requiring frequent
knee bending and significant use of

manual dexterity;
practicing competitive sports in the past;

weakness of periarticular
skeletal muscles;

sedentary lifestyle;
intense recreational running;

past injuries;
previous knee surgery

[16–18,21,22,24–29]

individual factors high bone mineral density [27,31–33]

diseases disturbances of deep sensation [24]

The main symptoms of osteoarthritis are joint pain, limited mobility, crepitations, and
inflammatory changes of varying severity without systemic symptoms [34]. As a result of
OA, the entire articular joint is affected by disorders [35]—Figure 1. A number of structural
defects can be seen in articular cartilage, as well as bone loss in the sublymphatic region, as
well as an increase in synovium and tissue hypertrophy. Ties and ligaments may also be
unstable [10].

Two types of osteoarthritis exist: primary, which is more common and has an unknown
cause; and secondary, which results from local damage to joints and abnormalities of the
joint structure or systemic illnesses [24]—Table 2.
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Figure 1. The pathophysiology of osteoarthritis. As a result of risk factors, alterations in homeostasis
in the formation and destruction of cartilage and bones, as well as disorders of the joint cavity and
joint surfaces can take place. Created with BioRender.com (accessed on 4 June 2024).

Table 2. Classification of secondary osteoarthritis according to the American College of Rheumatology
(ACR) [24,36,37].

Categories Factors

developmental and congenital defects

local diseases
aseptic necrosis of the femoral head in children;

congenital hip dysplasia;
exfoliation of the bone epiphysis

mechanical factors
difference in the length of the lower limbs;

valgus or varus;
joint hypermobility syndrome

dieseases

metabolic

ochronosis;
hereditary hemochromatosis;

Wilson’s disease;
Gaucher’s disease

endocrine

acromegaly;
hyperparathyroidism;

diabetes;
obesity;

hypothyroidism

from the deposition of calcium salts chondrocalcinosis;
apatite arthropathy

endemic diseases Kashin/Beck disease;
Mseleni disease
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Table 2. Cont.

Categories Factors

other bone and joint diseases

local: fractures;
aseptic necrosis;

infections;
gout

disseminated: rheumatoid arthritis;
Paget’s disease;
osteopeyrosis;

osteochondritis;
other inflammations

neurodystrophy of bones and joint

other diseases hemoglobinopathies;
caisson disease

other factors

injuries acute;
chronic

external factors frostbite

1.3. Clinical Relevance

MicroRNAs, also called miRNAs, are small single-stranded RNA molecules consisting
of 19 to 25 nucleotides [38]. Human genes are estimated to be regulated by them to the
extent of two-thirds [39]. By repressing translation or degrading target messenger RNAs,
they are the key regulators of post-transcriptional gene expression [40–43]. By controlling
cell differentiation, proliferation, apoptosis, and immune response, miRNAs can play an
important role in many biological processes [44]. The dysregulation of miRNA expression,
for example, resulting from mutations in the miRNA genes, may lead to serious disorders
and contribute to the pathogenesis of many diseases, including osteoarthritis [45].

There is growing evidence that miRNA may play an important role in osteoarthritis
pathogenesis [2,10,46–48].

In the context of osteoarthritis, miRNAs may affect various aspects of disease patho-
genesis. As an example, some miRNAs play a role in modulating inflammatory processes
that contribute to the development of OA and its progression. There is also the possibility
that some miRNAs can influence cartilage metabolism by influencing the balance between
anabolism and catabolism within cartilage cells. Moreover, some miRNAs can influence
cartilage cell apoptosis, which contributes to OA cartilage degradation. Besides its effects
on chondrocytes, miRNA also modulates osteoarthritis synovial fibroblasts (OASF) [49,50].

We aimed to summarize and evaluate the current understanding of the mechanism
of action of miRNAs and their clinical significance. Understanding miRNAs’ role in OA
pathophysiology may lead to new therapeutic targets and biomarkers. For example, if
a specific miRNA is overexpressed in OA and contributes to cartilage degradation, it
would be possible to develop a therapy that inhibits that miRNA to halt the progression of
the disease.

2. Pathophysiology of Osteoarthritis

In recent years, the pathophysiology of osteoarthritis has been intensively studied.
Given the complexity of the process, the initiation, development, and severity of osteoarthri-
tis are determined by numerous factors. Although risk factors for the development of
osteoarthritis have been identified, the molecular mechanisms that cause the development
of this disease are not fully established [10].

The pathogenesis of osteoarthritis is a multi-aspect process that includes metabolic
changes occurring in articular cartilage, subchondral bone, and synovial membrane. In the
initial phase of osteoarthritis, increased porosity and reconstruction of the subchondral
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bone are observed [10]. Generally speaking, the development of osteoarthritis is initi-
ated by disruption of the homeostasis of anti-inflammatory and pro-inflammatory factors.
This condition is influenced by, among others, risk factors for osteoarthritis. As a result
of many processes, cartilage degradation, bone remodeling and synovium proliferation
occur [51]—Figure 2.
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Figure 2. Diagram depicting a healthy joint in comparison to a joint that has been affected by
degenerative disease. Inflammatory processes are outlined, considering the promoting and inhibiting
effects of molecular factors. Created with BioRender.com (accessed on 4 June 2024).

In osteoarthritis (OA), initial pathological changes manifest themselves first, mainly
on the surface of the articular cartilage, especially in regions subjected to maximum load,
where it is damaged [52,53]. Chondrocytes, which are the only cells in cartilage, exhibit
increased proliferation in response to matrix degradation [54–56]. Some of these cells
undergo a phenotypic transformation into hypertrophic chondrocytes, which resemble cells
in the hypertrophic zones of the growth plate [57]. As the disease progresses, there is an in-
tense degradation of the matrix caused by proteases that are induced by pro-inflammatory
cytokines [54,58–61]. The pro-inflammatory cytokines involved in the pathogenesis of
osteoarthritis include the following: IL-1β, TNF-α, IL-6, IL-15, IL-17, IL-18, IL-21, IL-
22 [62–71]. These cytokines activate chondrocytes for the autocrine and paracrine produc-
tion of further cytokines and proteases [1]. As a result, chondrocyte apoptosis and regions
completely devoid of cells are observed in areas with significant matrix damage [59,72].
Osteoarthritis is also influenced by chemokines: CCL2, CCL3, CCl4, and CCL5, which
contribute to pro-inflammatory cytokine production, and anti-inflammatory cytokines such
as IL-4 and IL-10 [73–78]. The role of IL-4 and IL-10 is to suppress the progression of os-
teoarthritis [79]. Various cytokines, by activating numerous signaling pathways, lead to an
increase in the expression of COX-2, which in turn results in an increase in the production
of PGE-2. This phenomenon affects the breakdown of cartilage tissue and the formation of
osteophytes. Although COX-2 inhibitors, such as nonsteroidal anti-inflammatory agents,
are widely recommended as first-line treatment, they do not stop disease progression [80].
The focus on key cytokines influencing the development of osteoarthritis, such as IL-1β
and TNF-α, and their suppression did not meet the expectations placed on them in the
results of clinical trials [79,81–84]. In the case of OA, the action of individual cytokines may

BioRender.com
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be independent, therefore blocking one of them is not always sufficient to effectively inhibit
inflammation and the production of matrix-destroying enzymes [79].

As a result of many scientific studies, it has been found that subchondral bone scle-
rosis may be one of the main causes of osteoarthritis associated with aging [85]. In the
place where the cartilage connects with the bone, a phenomenon has been observed where
changes in the subchondral bone are inversely proportional to the degree of degeneration
of the articular cartilage. It is noticed that the more the subchondral bone thickens, the more
advanced the cartilage degeneration process is [1,86]. Moreover, abnormal bone remod-
eling processes resulting from disorders in the functioning of osteoblasts and osteoclasts
play a key role in the initiation and progression of this disease [87–90]. A change in the
subchondral bone plate occurs during both the early and advanced stages of osteoarthritis.
In the early stages of the disease, the trabecular structure degrades, and bones become
more porous, resulting in a larger distance between trabeculae and a decrease in bone
mass [91]. As a result, the subchondral nuclear bone is more likely to deform under load.
Bone loss is intensified as a result of microcracks that accumulate. In the advanced stage of
the disease, the subchondral bone plate and trabeculae become thicker, but the bone loses
mineralization and elasticity [91–93]. Moreover, bone cysts and osteophytes also form at
the edges of joints, resulting in a flattened and deformed joint contour, which is known as
bone abrasion [91–94].

Osteoarthritis is also accompanied by decreased bone density and mineralization, as
well as irregularity in the structure of the bone matrix. These changes are believed to be
induced by the transmission of signals from the costal cartilage through subchondral pores
and by the process of vascular invasion. These changes occurring in bone and cartilage
are considered crucial in the development of osteoarthritis [90]. Unfortunately, the exact
mechanisms influencing the initiation and development of osteoarthritis through structural
changes in bones and cartilage have not yet been fully explored. This is therefore the basis
for conducting further, in-depth research in this area.

Research emerging in recent years indicates an important role of metabolism in main-
taining the energy balance of articular chondrocytes. Metabolic dysfunctions of these cells
are increasingly recognized as potential factors initiating and accelerating the development
of osteoarthritis [95–97]. These metabolic changes affect metabolic pathways in chondro-
cytes, synoviocytes, and bone cells. The abnormally accelerated catabolism of articular
chondrocytes, which promotes ECM degradation and preempts ECM synthesis, is a major
feature of OA cartilage [10,98,99]. As a result of these processes, there is an interaction
between these cells and the immune system, and the mediated regulation of inflammation
can be considered a key element in understanding the pathogenesis of osteoarthritis [96].

Molecular pathways contributing to the development of osteoarthritis include the
increased activity of extracellular matrix (ECM)-degrading enzymes, such as matrix metal-
loproteinase 13 (MMP-13) and ADAMTS-5, as well as the increased production of inflam-
matory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor (TNF).
Additionally, apoptotic pathways are activated, including caspase 3 and poly (ADP-ribose)
polymerase (PARP), with a simultaneous reduction in the expression of genes responsi-
ble for the synthesis of ECM components, such as COL2A1 and ACAN, and changes in
processes maintaining cellular balance, including autophagy [100–103].

3. The Role of miRNAs in the Pathogenesis of Osteoarthritis

The currently published results indicate the high importance of miRNAs in the patho-
genesis of osteoarthritis. Data indicate increased concentrations of most miRNAs in patients
with osteoarthritis, and therefore, in most cases, the increased promotion of osteoarthritis
by various potential targets—Table 3. The reports are mostly innovative and indicate more
and more miRs, the increased concentrations of which are observed in osteoarthritis.

There are many potential mechanisms by which microRNAs promote or prevent
osteoarthritis.
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By far the best-studied microRNA in cartilage is miR-140 [104]. Studies have shown
that miR-140-5p is crucial in directly regulating the levels of genes including, but not
limited to: IGFBP-5, MMP13, Hdac4, Cxcl12, Bmp2, and SMAD3. These genes play an
important role in the development of chondrocytes and in maintaining the balance of joint
cartilage [105–107]. However, it appears that miR-140-3p is most abundantly expressed in
cartilage, and perhaps miR-140-5p is most important in the development of osteoarthritis,
while miR-140-3p potentially plays a greater role in the homeostasis of joint tissues [108,109].
It was found that the level of miR-140 in the knee cartilage of people suffering from
osteoarthritis is lower compared to healthy cartilage. The complete elimination of miR-140
in mice resulted in a mild form of dwarfism and impaired chondrocyte differentiation
and proliferation [110,111]. Additionally, the complete removal of miR-140 increased
the tendency of mice to spontaneous age-related cartilage degeneration and to intensify
cartilage damage in the case of surgically induced osteoarthritis [111]. The deletion of
miR-140 combined with the inhibition of the let-7 microRNA in mice in turn leads to more
severe changes in skeletal structure than were observed with any single mutation [112].

MiR-146a is another microRNA that has been extensively studied and is known to
be stimulated by a variety of inflammatory factors. It plays an important role in the
functioning of the immune system and inflammatory processes [113]. miR-146a is highly
expressed in the cartilage tissue of people suffering from early-stage osteoarthritis and
has the potential to regulate and modulate pain associated with this disease [114,115]. It
has been reported that it may affect inflammatory processes, autophagy, and apoptosis
mechanisms in cartilage cells, as well as the activity of genes responsible for the composition
of the extracellular matrix [116–118]. In their study, Zhang et al. analyzed miR-146a-5p
and found that it was highly active in the knee cartilage of individuals with osteoarthritis
(OA) [119]. Conversely, the NUMB protein exhibited low activity and was suppressed by
miR-146a-5p. The rise in miR-146a-5p levels may lead to enhanced cellular apoptosis and
reduced autophagy in human and mouse chondrocytes by affecting factors such as active
caspase-3, PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Elevating the level of weakly
expressed NUMB could neutralize the effects of miR-146a-5p on chondrocyte apoptosis
and autophagy. Furthermore, the injection of miR-146a-5p antagomir directly into the joint
could reverse the effects of miR-146a-5p on apoptosis and autophagy in chondrocytes in
OA mice. As a result of these studies, it was shown that reducing miR-146a-5p activity
inhibited apoptosis and supported autophagy in chondrocytes, targeting NUMB in both
in vivo and in vitro studies [119]. These findings are also supported by another study using
miR-146a-5p. Qin et al. demonstrated that knockdown of miR-146a-5p in chondrocytes
antagonizes IL-1β-mediated inflammatory responses and increases catabolism in vitro and
attenuates cartilage degeneration in injury-induced OA in mice [120].

However, different results were obtained by Guan et al., where they found reduced
miR-146a expression in areas affected by osteoarthritis (OA) compared to healthy carti-
lage. These researchers also described mice genetically lacking miR-146a that showed
spontaneous OA symptoms early in the disease development, while mice overexpressing
miR-146a in chondrocytes were resistant to OA. Additionally, mice lacking miR-146a were
more sensitive to joint instability-induced OA, whereas mice with controlled overexpres-
sion of miR-146a were protected from the disease. It appears that miR-146a can protect
against OA by affecting the Notch1 protein, and the delivery of Notch1 inhibitors to the
joints of mice lacking miR-146a prevented joint destruction [121]. However, genes targeting
miR-146a-3p currently have less evidence to correlate with osteoarthritis [122]. Although
studies on the single nucleotide polymorphism (sNP) of miR-146a did not confirm an
increased risk of osteoarthritis (OA) as a result of the mutation, they did indicate a decrease
in the expression level of miR-146a caused by the mutation, which in turn led to an increase
in the activity of the IRAK1 and TRAF6 genes [123]. These findings, while promising,
require further research to clarify the contradictions.

In a study that detected the presence of miR-9-5p in patients with osteoarthritis, it was
shown that this miR promoted cell proliferation and suppressed chondrocyte apoptosis by
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affecting, among other things, matrix metalloproteinase-13 (MMP-13), which is the primary
MMP involved in in the degradation of cartilage through its special ability to cleave type II
collagen [124,125]. The second target turned out to be protogenin (PRTG), the overexpres-
sion of which induces the activation of caspase-3 signaling and increases apoptosis. Since
in OA patients, the expression of PRTG negatively correlated with high miR-9 expression
and therefore turned out to be reduced, it did not show an apoptotic effect [124,126]. It
turns out that this selected microRNA can reduce the progression of osteoarthritis.

Another microRNA present in patients with osteoarthritis turned out to be miR-10a-5p.
Its specific target is HOXA3, the silencing of which significantly inhibited chondrocyte
proliferation, and promoted chondrocyte apoptosis and cartilage matrix degradation [127].

Another one, miR-22, activates metalloproteinases and aggrecanases and downregu-
lates the structural proteins of cartilage, which leads to its degradation. PPARα and BMP-7
are potential targets [128]. PPARs are ligand-activated receptors in the nuclear hormone
receptor family. The human gene for PPARα is located on chromosome 22. The activation
of PPARγ and PPARα has been shown to effectively modulate the NF-κB, AP-1, and other
stress-responsive oxidative signaling channels, leading to the inhibition of inflammatory
responses. Furthermore, the activation of PPARγ and PPARα may provide protection
to chondrocytes by exerting control over their autophagic behavior [129]. The overex-
pression of miR-22 inhibited BMP-7 and PPARα protein expression, helping to promote
osteoarthritis. Moreover, miR-22 expression was positively correlated with BMI [128].

As numerous studies have shown, miR-27b is also involved in promoting osteoarthritis
by targeting, among others, MMP-13, COL1A1, and ADAMTS8. Metalloproteinase with
thrombospondin motifs (ADAMTS) causes the degradation of extracellular matrix (ECM)
collagen and aggrecan II [130]. ADAMTS is also one of the targets of miR-34a-5p, miR-140,
and miR-140-5p [114,131,132].

The findings also indicate that OA synovial fibroblasts (OASFs) are characterized
by increased levels of proinflammatory cytokines relative to normal synovial fibroblasts
(NSF). Moreover, it was noticed that miR-149-5p, which was decreased in patients with
osteoarthritis compared to the control group, plays a role in reducing the expression
level of IL-1β, IL-6, and TNF-α [133]. Thus, significantly reduced levels of miR-149-5p
interfere with the synthesis of connective protein and proteoglycan [133,134]. Furthermore,
Jiang et al. showed that increased miR-149 or suppressed vascular cell adhesion molecule
1 (VCAM-1) reduced inflammation and apoptosis in the cartilage tissues of OA mice,
which was associated with the inactivation of the PI3K/AKT pathway [135]. In addition,
miR-149 suppressed the chondrocyte inflammatory response that was induced by IL-1β
by downregulating the activation of TAKI/NF-κB signaling pathway also counteracted
osteoarthritis [136]. The therapeutic effect of the anti-inflammatory drugs used in the
study was related to their ability to suppress the expression of miR-149-5p, suggesting
that the regulation of these miRNAs may constitute an innovative method of reducing
inflammation in OA.

Studies have shown that miR-128 is also involved in the pathogenesis of osteoarthri-
tis [137]. According to Lian et al., miR-128a inhibits the autophagy process in cartilage
cells and worsens the symptoms of osteoarthritis in the knee joint by affecting Atg12 [137].
Mice with the miR-128a gene deleted presented less abnormalities in microcomputer to-
mographic and kinematic measurements after DMM surgery and showed less advanced
changes in cartilage loss at the histological level [138].

MiR-210 acts as a positive regulator of osteoblastic differentiation by inhibiting the
TGF-β/activin signaling pathway through the inhibition of AcvR1b [139]. Additionally,
studies have shown that miR-210 acts as an inhibitor of the production of pro-inflammatory
cytokines [140]. Recent reports indicate that miR-210 is associated with the NF-κB signaling
pathway, which plays an important role in regulating the immune response, inflammatory
processes, and cell survival, and therefore has a protective effect against the development
of osteoarthritis [140,141].
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Data also report a role for miR-335-5p in inhibiting osteogenic and adipogenic differen-
tiation and promoting extracellular matrix (ECM) degradation. The Wnt and IFNγ signaling
pathways and the HBP1 gene have been indicated as targets of miR-335-5p [124,142]. The
obtained data also indicate the activation of the NF-κB pathway and a significant increase
in the levels of IL-1α and IL-6 in cells after transfection with miR-335-5p mimics, compared
to control cells [142].

Finally, miR-485-5p, which is overexpressed in osteoarthritis, can downregulate SOX9.
By doing so, it can inhibit the differentiation of BMSCs into chondroblasts and promote the
expression of inflammatory factors to accelerate the development of osteoarthritis [143].

Table 3. The role of selected microRNAs in the osteoarthritis process—potential effect, impact on
potential target genes/pathways, and attitude towards osteoarthritis.

MicroRNA Level in
OA Potentially Action Potential Target Role in OA

Pathogenesis References

miR-9-5p ↓ 1 intensifying proliferation and
suppressing chondrocyte apoptosis MMP-13, PRTG − 3 [124]

miR-10a-5p ↑ 2

inhibiting chondrocyte proliferation,
promoting chondrocyte apoptosis,

and promoting cartilage
matrix degradation

HOXA3 + 4 [127]

miR-22 ↑

the activation of metalloproteinases
and aggrecanases and

downregulation of cartilage
structural proteins, cartilage

degradation

PPARα, BMP-7 + [128]

miR-27b ↑

the fibrosis of the synovial
membrane, influence on

inflammatory processes, cartilage
metabolism, and apoptosis of

cartilage cells

MMP-13, COL1A1, α-SMA2,
ADAMTS8, and CBFB + [144–146]

miR-34a-5p ↑
cell cycle arrest, promoting

apoptosis, senescence,
and proliferation

COL2A1, ACAN, ATG5, MMP13,
ADAMTS5, IL-1β, and COL10A1 + [131]

miR-127-5p ↓ increasing the synthesis of cartilage
extracellular matrix (ECM) Osteoponin and MMP-13 − [147,148]

miR-128a ↑
impaired chondrocyte autophagy,
the suppression of extracellular

matrix deposition

Atg12, Bax, Bcl2, and
cleaved caspase-3 + [137,138]

miR-138-5p ↑ the degradation of cartilage
extracellular matrix (ECM) FOXC1 and increase in IL-1β + [124]

miR-140 ↓ promoting chondrocyte
differentiation ADAMTS5 and AGGRECAN − [132]

miR-140-3p ↓ increase in the viability and
migration capacity of chondrocytes

increase: SOX-9, COL2, ACAN,
RUNX2, and SCX, decrease:
COL1, COL6, COMP, TNC,

and FMOD

− [149]

miR-140-5p ↓

inhibits inflammation in the joint
cavity, inhibits the progression of

OA, promotes chondrogenesis,
inhibits chondrocyte apoptosis,

inhibits chondrocyte hypertrophy

IGFBP-5, IL-1β, IL-6, Syndecan-4,
ADAMTS5, MMP-13, SMAD3,

HMGB1, RALA, FUT1, HDAC4,
and SMAD1

− [105,109,111,150–156]

mi-146 ↑ promoting the inflammatory
response in the joint TRAF6 and IRAQ1, + [157,158]

miR-146a-5p ↑
cartilage degradation, synovitis,

neoangiogenesis, and
osteoclastogenesis

TNF α, IL-1β, TRAF6 and IRAK1
genes, and MMP-13 + [114,124,159]
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Table 3. Cont.

MicroRNA Level in
OA Potentially Action Potential Target Role in OA

Pathogenesis References

miR-149 ↓

promoting the synthesis of
connective protein and

proteoglycan, suppressing the
inflammatory process

TNFα, IL1β, IL6, VCAM-1,
and TAK1 − [134,135]

miR-210 ↓
promoting osteoblastic

differentiation, anti-apoptotic effect,
anti-inflammatory effect

AcvR1b and DR6 − [139–141,160]

miR-335-5p ↑
osteogenic and adipogenic
differentiation, promoting

ECM degradation

Wnt signaling pathway, IFNγ,
HBP1, ACAN, MMP13, collagen X,

and collagen II
+ [124,142]

miR-485-5p ↑

inhibiting the differentiation of
BMSCs into chondroblasts and

promoting the expression of
inflammatory factors

SOX9 + [143]

1 ↓—downregulation. 2 ↑—upregulation. 3 −—impairment. 4 +—intensification.

These results indicate a complex role of miRNAs in the regulation of pathological
processes in OA, including cartilage degradation, inflammatory processes, cell differen-
tiation, and tissue homeostasis. The most-studied miRNAs in cartilage are miR-140 and
miR-146-5p.

Most miRNAs show increased levels in OA patients, which may contribute to its
progression through various biological targets. However, changes in miRNA expression are
also observed in osteoarthritis, some of which are downregulated, such as miR-127-5p and
miR-140-5p. The reduced expression of the mentioned miRs correlates with the formation
of changes in the joints and thus promotes osteoarthritis. However, miR-127-5p and miR-
140-5p themselves have a protective effect on cartilage, promoting the differentiation of
chondrocytes, preventing the formation of a planar state, and increasing the synthesis of the
extracellular matrix. Changes in the expression of these miRNAs may therefore constitute
potential targets for new therapies in the treatment of OA.

According to the analysis, some miRNAs are upregulated in OA, such as miR-
146a-5p and miR-34a-5p, while others are downregulated, such as miR-140-5p. The
osteoarthritis-related miRNA-22, for instance, induces inflammation and catabolism in joint
cells. Other miRNAs, such as miRNA-9 and miRNA-98, can inhibit the secretion of matrix
metalloproteinase-13 (MMP-13) and the inflammatory factors TNF and IL1β, suggesting their
potential role in inhibiting cartilage degradation.

4. Potential Therapeutic Targets

Studies have shown that miRNAs may play a key role in the pathogenesis of os-
teoarthritis by regulating the expression of genes related to articular cartilage homeostasis
and inflammatory processes. For example, miR-146a-5p and miR-34a-5p are upregulated
in OA and may serve as diagnostic biomarkers and potential therapeutic targets. On the
other hand, miR-127-5p, and miR-140-5p are downregulated and may have a protective
function in maintaining cartilage integrity [161].

The use of miRNAs in OA therapy may include strategies to modulate their expression
to restore articular cartilage homeostasis. For example, the delivery of synthetic miRNA
mimetics or inhibitors may help restore the normal miRNA expression profile in diseased
joints. Additionally, miRNA therapy can be combined with other approaches, such as cell
therapy using mesenchymal stem cells, which are also regulated by miRNAs [161].

However, there are challenges associated with miRNA therapy, including the speci-
ficity of delivery, stability of miRNA molecules in the body, and potential adverse effects
resulting from the modulation of multiple gene expression [162]. MiRNAs are characterized
by a short lifespan, limited stability in the body, problems with distribution in tissues, inter-
ference with natural RNA processes, and the possibility of causing undesirable effects [163].
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Further research is necessary to understand the complex interactions of miRNAs with their
target genes and to develop effective and safe methods for miRNA delivery to joint tissues.

According to some studies, osteoarthritis patients have a much lower expression of
certain miRNAs, such as miRNA-27b, than the patients without the disease [29]. It has
also been found that miRNA-27b regulates MMP-13 expression in human chondrocytes,
indicating that miRNAs may be used therapeutically for the treatment of osteoarthritis.
Understanding the interactions between miRNAs and their multiple target genes may be
crucial for regulating homeostasis and control pathways in osteoarthritis. As such, these
miRNAs may serve as biomarkers for osteoarthritis early diagnosis.

In summary, miRNAs present promising potential as therapeutic targets in OA, of-
fering new opportunities for the treatment of this disease. The development of miRNA
therapy may contribute to improving the quality of life of OA patients, but this requires
further research and development of miRNA delivery technologies. Understanding the role
of miRNAs in the pathophysiology of osteoarthritis may lead to the identification of new
therapeutic targets and biomarkers of the disease. For example, if a specific miRNA is over-
expressed in OA and contributes to cartilage degradation, it would be possible to develop
a therapy that inhibits that miRNA to halt the progression of the disease. Alternatively,
if a specific miRNA is deficient in OA and its absence contributes to disease progression,
it could be possible to develop a therapy that increases the expression of that miRNA to
inhibit disease progression.

5. Discussion

MiRNAs play a critical role in osteoarthritis (OA), influencing cartilage degradation,
inflammation, cell differentiation, and tissue homeostasis. Patients with OA generally have
increased miRNA concentrations, which generally promote the disease through various
biological mechanisms.

One of the most extensively studied miRNAs in cartilage is miR-140. As a direct
regulator of chondrocyte development and cartilage balance, MiR-140-5p is known to
regulate genes such as IGFBP-5, MMP13, HDAC4, CXCL12, BMP2, and Smad3 [105–107].
MiR-140-3p is abundant in cartilage, maintaining joint tissue homeostasis, while miR-
140-5p is implicated in OA development [111]. It has been shown that miR-140 levels
are diminished in OA cartilage, resulting in impaired chondrocyte differentiation and
proliferation, and increased cartilage degeneration [105,111].

OA cartilage expresses high levels of MiR-146a, which targets the NUMB protein to
modulate inflammation, autophagy, and apoptosis in chondrocytes [119]. By suppressing
MiR-146a-5p, chondrocytes are able to mitigate apoptosis and enhance autophagy [119,164].
OA symptoms are linked to miR-146a downregulation, while overexpression provides
resistance to OA by affecting the Notch1 protein [121]. In light of miR-146a’s complex role
in OA, further research is needed to resolve contradictory findings.

OA pathogenesis is also influenced by other miRNAs. Through its targeting of MMP-
13 and PRTG, MiR-9-5p promotes chondrocyte proliferation and inhibits apoptosis [124].
Through targeting HOXA3, MiR-10a-5p inhibits chondrocyte proliferation and promotes
apoptosis and cartilage degradation [127]. By activating metalloproteinases and aggre-
canases, MiR-22 downregulates structural proteins in cartilage and targets PPARα and
BMP-7 [128]. The miR-27b promotes osteoarthritis by targeting MMP-13, COL1A1, and
ADAMTS8, which results in the degradation of the ECM [130]. It is reported that miR-34a-
5p induces apoptosis and senescence by interacting with several genes, including MMP13
and IL-1β [131].

MiR-149-5p, reduced in OA, plays a role in decreasing IL-1β, IL-6, and TNF-α ex-
pression, with potential anti-inflammatory effects [133]. MiR-128a inhibits autophagy
in cartilage cells, aggravating OA symptoms [137]. MiR-210 inhibits pro-inflammatory
cytokine production and regulates osteoblastic differentiation [140,141]. There has been ev-
idence that MiR-335-5p promotes the degradation of ECM and may be associated with the
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NF-B pathway activation, increasing IL-1α and IL-6 levels [142]. MiR-485-5p, overexpressed
in OA, inhibits chondroblast differentiation by downregulating SOX9 [143].

There is a complex regulatory network in the body in which one miRNA can influence
multiple molecular targets at the same time, while multiple miRNAs can affect the same
target at the same time. The same miRNAs may be responsible for regulating different
molecular pathways and pathogenic mechanisms in osteoarthritis. For example, there
are several miRNAs that influence IL-1β levels, including miR-140-5p, miR-149-5p, and
miR-146a-5p. A similar situation is in the case of IL-6, which is acted upon by miR-140-5p
and miR-149-5p. MMP13 is also a target of several miRNAs. It is a target of, among
others, miR-335-5p, miR-9, miR-98, miR-27b, miR-34a-5p, miR-140, and miR-140-5p. In
some cases, miRNAs can regulate the same molecular target together. This is known
as cooperative miRNA interaction, which may lead to a synergistic effect in regulating
osteoarthritis-related gene expression [165]. There may be diversity in gene regulation by
miRNAs in individuals with osteoarthritis, resulting in differential gene expression and
genetic variants [166]. Because of this, individual genetic and epigenetic characteristics
may determine which miRNAs regulate the same molecular targets.

There is potential for the therapeutic targeting of miRNAs in OA. MiRNA expression
can be modulated to restore cartilage homeostasis. A synthetic miRNA mimetic or inhibitor,
for example, could normalize miRNA profiles in diseased joints. Combining miRNA ther-
apy with other treatments, like mesenchymal stem cell therapy, could enhance therapeutic
outcomes. However, challenges such as delivery specificity, miRNA stability, and potential
adverse effects must be addressed. Further research is essential to develop effective miRNA
delivery methods and understand miRNA/gene interactions in OA.

6. Conclusions

In articular cartilage degeneration, enzymes from the metalloproteinase family play
a critical role, whose activity is regulated by pro-inflammatory cytokines, transcription
factors, and miRNAs. MiRNAs are small, non-structural RNA molecules that regulate gene
expression post-transcriptionally. The miRNAs affect protein synthesis by binding to com-
plementary sequences in mRNAs, thereby causing degradation or blocking translation. In
the context of osteoarthritis (OA), miRNAs are considered important regulators of anabolic
and catabolic processes in articular cartilage, as well as mediators in the inflammatory
response and degenerative processes.

Furthermore, miRNAs may prove useful as diagnostic biomarkers in osteoarthritis.
Despite many studies suggesting that miRNAs play an important role in OA pathogenesis,
some results remain controversial. Different test results can be influenced primarily by the
type of sample used: cartilage, synovial fluid, and blood may affect miRNA expression
profiles [161]. As well, the complexity of OA resulting from the interaction of many
factors such as genetics, age, gender, lifestyle, and overall health may lead to differences in
miRNA expression. Studies may also use different research techniques to measure miRNA
expression, which may result in different results. Last but not least, statistical analysis
methods used in different studies may influence the interpretation of the results.

It is important to remember that treating OA will likely require a multipronged
approach that addresses the genetic, biological, and environmental factors contributing to
the disease. We may be able to use miRNAs as part of our treatment arsenal against OA in
this context.

Thus, miRNAs are critical in the pathophysiology of OA, influencing the processes
of degradation and repair of the cartilage. It may be possible to develop new therapeutic
and diagnostic strategies by understanding their function. To improve patient outcomes,
miRNA therapies may be able to synergize with existing osteoporosis treatments, such
as bisphosphonates and monoclonal antibodies. There is, however, still much work to
be done to better understand the complex interactions between miRNAs and their target
genes. Specifically, further research is needed to determine how miRNA therapies can be
delivered to joints, how to ensure target specificity, and how to avoid potential side effects.
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To mitigate the possibility of adverse effects of miRNA-based therapies, comprehensive
studies are needed on their long-term effects and safety.
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Abbreviations

ACAN Aggrecan
ACR American College of Rheumatology
ADAMTS5 A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5
ADAMTS8 A Disintegrin and Metalloproteinase with Thrombospondin Motifs 8
Atg12 Autophagy Related 12
ATG5 Autophagy Related 5
Bax BCL2 Associated X, Apoptosis Regulator
Bcl2 B-Cell Lymphoma 2
BMP-7 Bone Morphogenetic Protein 7
CBFB Core-Binding Factor Subunit Beta
COL10A1 Collagen Type X Alpha 1 Chain
COL1A1 Collagen Type I Alpha 1 Chain
COL2 Collagen Type II
COL2A1 Collagen Type II Alpha 1 Chain
COL6 Collagen Type VI
COMP Cartilage Oligomeric Matrix Protein
DR6 Death Receptor 6
ECM Extracellular matrix
FMOD Fibromodulin
FOXC1 Forkhead Box C1
FUT1 Fucosyltransferase 1
HDAC4 Histone Deacetylase 4
HMGB1 High Mobility Group Box 1
HOXA3 Homeobox A3
HBP1 HMG-Box Transcription Factor 1
IFNγ Interferon Gamma
IGFBP-5 Insulin-Like Growth Factor Binding Protein 5
IL interleukins
IRAK1 Interleukin-1 Receptor-Associated Kinase 1
MiRNA, MiR microRNA
MMP-13 Matrix Metallopeptidase 13
NF-κB Nuclear factor kappa B
OA osteoarthritis
PARP Poly (ADP-Ribose) Polymerase
PPARα/γ Peroxisome Proliferator-Activated Receptor α/γ
PRTG Protogenin
RALA Ras-Like Proto-Oncogene A
RUNX2 Runt-Related Transcription Factor 2
SCX Scleraxis
SMAD1 SMAD Family Member 1
SMAD3 SMAD Family Member 3
SOX9 SRY-Box Transcription Factor 9
TAK1 TGF-Beta Activated Kinase 1
TNC Tenascin C
TNFα Tumor Necrosis Factor Alpha
TRAF6 TNF Receptor Associated Factor 6
VCAM-1 Vascular Cell Adhesion Molecule 1
α-SMA2 α Smooth Muscle Actin 2
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17. Krakowski, P.; Karpiński, R.; Maciejewski, R.; Jonak, J.; Jurkiewicz, A. Short-Term Effects of Arthroscopic Microfracturation of

Knee Chondral Defects in Osteoarthritis. Appl. Sci. 2020, 10, 8312. [CrossRef]
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21. Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M. Comparison of Selected Classification Methods Based

on Machine Learning as a Diagnostic Tool for Knee Joint Cartilage Damage Based on Generated Vibroacoustic Processes. Appl.
Comput. Sci. 2023, 19, 136–150. [CrossRef]

22. Felson, D.T. Clinical Practice. Osteoarthritis of the Knee. N. Engl. J. Med. 2006, 354, 841–848. [CrossRef] [PubMed]
23. Abramoff, B.; Caldera, F.E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med. Clin. N. Am. 2020, 104, 293–311.

[CrossRef] [PubMed]
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