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Ionizing radiation is widely used in medicine, not only as a diagnostic tool but also as
a therapeutic agent, since about half of cancer patients are treated with ionizing radiation,
while most of them are irradiated with X-rays. Cancer ion therapy is now more prevalent
(e.g., [1,2]). At the same time, several exposure scenarios, including environmental and
occupational exposure, as well as astronauts’ exposure to space radiation (e.g., [3–5]), raise
radiation protection issues. The scientific community is therefore continuously improving
its knowledge of the various biophysical mechanisms underlying the induction of radiation
effects in biological molecules and cells, and the acquired information can be applied to
optimize both the use of ionizing radiation in medicine and the strategies that can be
adopted in radiation protection. DNA is widely recognized as the main radiation target,
although phenomena such as the bystander effect [6] play a non-negligible role at very low
doses. Incorrect repair of the initial DNA damage can lead to various types of chromosome
aberrations (e.g., [7,8]), some of which may lead to cell death, while others may cause the
cell to become malignant [9]. All these processes depend not only on radiation dose but
also on several other factors, including dose rate, radiation type and energy, target-cell
radiosensitivity, cell cycle phase, etc.

In this framework, this Special Issue reports experimental and theoretical works on
the effects of ionizing radiation at the DNA level, as well as possible applications in cancer
therapy and space radiation protection. More specifically, Kundrat et al. [10] applied the
PARTRAC simulation code to perform track-structure-based simulations analyzing DNA
damage induction by different isotopes occurring in nuclear reactions involved in ion-beam
radiotherapy, cosmic-ray shielding, and dating techniques. A database of simulations
was presented for H, He, Li, Be, B, and C isotopes at energies from 0.5 GeV/u down to
stopping; the doses deposited in a cell nucleus, as well as the yields of DNA single- and
double-strand breaks and their clusters, were predicted to vary among diverse isotopes of
the same element at energies < 1 MeV/u, especially for isotopes of H and He. The results
may affect the risk estimates for astronauts involved in deep space missions and/or the
models of ion-beam biological effectiveness and indicate that radiation protection in 14C or
10Be dating techniques may be based on knowledge gathered with 12C or 9Be.

Moreover, by means of a theoretical approach, Karwowski [11] analyzed the influence of
spirodi(iminohydantoin) on charge transfer through ds-DNA containing 8-OXO-dG, a DNA
damage event that can undergo further transformations towards spirodi(iminohydantoin) (Sp),
which can be highly mutagenic in comparison to its precursor if not repaired. The results
indicated that DNA damage such as spirodi(iminohydantoin), especially when becoming
part of clustered DNA damage, can affect the effectiveness of other lesion recognition
and repair processes, which in turn can lead to the acceleration of processes such as
carcinogenesis or aging. At the same time, the slowing down of the repair machinery can
result in increased effectiveness in terms of oncological radiotherapy, chemotherapy, or
combined therapy. More generally, the influence of DNA clustered damage on charge
transfer, as well as its subsequent effects on single-damage recognition by glycosylases,
require future investigation. At the cellular level, Guerra and McMahon [12] characterized
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the intrinsic radiosensitivity in a wide panel of normal, cancerous, and CRISPR-modified
cell lines. The cell characterization was performed by measuring a range of biological
features, including the induction and repair of DNA double-strand breaks (DSBs), cell cycle
distribution, ploidy, and clonogenic survival following X-ray irradiation. These results were
used to investigate correlations between potential radiosensitivity determinants, finding
a wide variation in the intrinsic radiosensitivity of cell lines. While the data provided
a valuable dataset for the modeling of radiobiological responses, the differences in the
predictive power of residual DSBs between CRISPR-modified and other subgroups suggest
that genetic alterations in other pathways, such as proliferation and metabolism, may have
a greater impact on cellular radiation response.

In the framework of cancer radiotherapy research, Nowak et al. [13] investigated how
to improve the radiosensitivity of lung cancer cells based on Chinese medicine and/or
conventional medicine pharmacy drugs by reviewing potential candidates that may show a
radio-sensitizing effect on lung cancer cells. Finally, concerning radiation-induced damage
at the tissue, organ, and organism level, Ramos et al. [14] predicted astronauts’ doses in the
event of exposure to cosmic rays during a long-term mission in deep space, such as a future
journey to Mars. The authors exploited an interface between the FLUKA Monte Carlo
radiation transport code and the BIANCA biophysical model, which allowed calculating
both the RBE (Relative Biological Effectiveness) for cell survival, which is related to non-
cancer effects, and that for chromosome aberrations, related to the induction of stochastic
effects including cancer. Comparisons with the astronauts’ dose limits suggested that a
650-day Mars mission at solar minimum would respect the 1 Sv career limit recommended
by the International Commission on Radiological Protection (ICRP), but would not respect
the 600 mSv limit recently adopted by NASA.
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