Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis
Abstract
:1. Introduction
2. Results
2.1. Identification and Sequence Analysis of the CSP Genes of A. gifuensis
Relative Expression of CSPs in A. gifuensis
2.2. Purification and Expression of AgifCSP5
2.3. Fluorescent Competitive Binding Assays of AgifCSP5 with Ligands
2.4. Molecular Docking of AgifCSP5 with Ligands
2.5. Site-Directed Mutagenesis and Binding Characteristics
2.6. Behavior Response of A. gifuensis to Volatiles
3. Discussion
4. Materials and Methods
4.1. Insects and Tissue Collection
4.2. Total RNA Extraction and cDNA Preparation
4.3. Sequence Verification and Analysis of AgifCSPs
4.4. Spatial Expression Pattern of AgifCSPs
4.5. Construction of Recombinant Plasmid
4.6. Expression and Purification of Recombinant Protein
4.7. Fluorescence Competitive Binding Assay
4.8. 3D Structural Modeling and Molecular Docking
4.9. Site-Directed Mutagenesis
4.10. Y-Tube Olfactometer Assay
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Primer Sequences for RT–qPCR and Site-Directed Mutagenesis
Gene | Sequence |
CSP1-F | GTTCATGCACAGCTGAAGGA |
CSP1-R | AAGCCTGTCCCAATCAGTTG |
CSP2-F | TCAAGTGTCTCTTGGAACAAGG |
CSP2-R | CCCACTTGTCACGATCATTTT |
CSP3-F | TCTTCAGGTGTATCATCT |
CSP3-R | TTTAGCTCATCAGGTGTA |
CSP4-F | TTGGCACAGGACCTTGTGTA |
CSP4-R | GCTTTTGCAACAACAGCTTG |
CSP5-F | AATATGGCTGAGGCAGTGGT |
CSP5-R | TTTTTGGCTTTGGCTTCATC |
CSP6-F | CCGAAGCATTGAAAACTGCA |
CSP6-R | TGGCTCGTATTCCCTCAAGT |
CSP7-F | TCCTGATGGACTGGAACTCA |
CSP7-R | TTTACCCTCAAGTCTCATCCAA |
CSP8-F | TGCAGCAAATGTAATCCAAAA |
CSP8-R | CCACGTTTAGCTGCTTCTTGT |
CSP9-F | GTCCTTGTGATGCTATTG |
CSP9-R | CTAATATCTTTCAGGTCTTTACT |
R24A-F | GATGATGCAGCAAATTCATATTACAATTGTTTTATGGGA |
R24A-R | TGAATTTGCTGCATCATCATTATCAAGAATTTCTTC |
Y75A-F | ATAGCTTCATGGGCTTCCGAGCACGATGAAAATGC |
Y75-AR | GGAAGCCCATGAAGCTATTTTGTCAAATGCTGA |
Appendix B. Binding Data of Different Ligands to AgifCSP5
Ligand Classification | Ligand Name | CAS No. | Purity (%) | IC50 | Ki (μM) | Binding Energy (kcal/mol) |
Ketones | (R)-(−)-Carvone | 6485-40-1 | 98 | 22.99 ± 0.91 | 17.02 ± 0.67 | - |
Nepetalactone | 21651-62-7 | 96 | 33.76 ± 6.81 | 25.00 ± 5.04 | - | |
Acetosyringone | 2478-38-8 | 97 | 36.88 ± 6.77 | 27.30 ± 5.01 | - | |
6-Methyl-5-hepten-2-one | 110-93-0 | 99 | 24.53 ± 1.43 | 18.16 ± 1.06 | - | |
Nepetalactone | 21651-62-7 | 96 | 33.76 ± 6.81 | 25.00 ± 5.04 | - | |
Aldehydes | Tetradecanal | 124-25-4 | 97 | 20.61 ± 2.11 | 15.26 ± 1.57 | - |
trans-2-Nonenal | 18829-56-6 | 99.7 | 16.58 ± 1.78 | 12.27 ± 1.31 | −5.2 | |
Benzaldehyde | 100-52-7 | 99 | 18.23 ± 0.88 | 13.49 ± 0.65 | −4.73 | |
trans-2-Hexen-1-al | 6728-26-3 | 95 | 18.08 ± 1.18 | 13.38 ± 0.87 | −4.37 | |
cis-3-Hexenal | 6789-80-6 | 50 | 29.76 ± 1.55 | 22.03 ± 1.15 | - | |
Alkenes | Sabinene | 3387-41-5 | 75 | 16.37 ± 0.94 | 12.12 ± 0.69 | −6.25 |
(Z)-β-ocimene | 13877-91-3 | 90 | 17.98 ± 2.89 | 13.31 ± 2.14 | −6.07 | |
(1R)-(+)-α-Pinene | 7785-70-8 | 97 | 22.54 ± 2.42 | 16.69 ± 1.79 | - | |
(E)-β-Farnesene | 28973-97-9 | 80 | 25.87 ± 1.16 | 19.15 ± 0.86 | - | |
Myrcene | 123-35-3 | 99.7 | 22.53 ± 2.51 | 16.68 ± 1.86 | - | |
(S)-(−)-Limonene | 5989-54-8 | 99 | 28.36 ± 2.84 | 21.00 ± 2.10 | - | |
(R)-(+)-Limonene | 5989-27-5 | 95 | 25.23 ± 4.06 | 18.68 ± 3.01 | - | |
Esters | Methyl jasmonate | 39924-52-2 | 95 | 20.07 ± 1.92 | 14.86 ± 1.42 | −7.3 |
Geranyl acetate | 105-87-3 | 99.7 | 27.26 ± 4.87 | 20.18 ± 3.61 | - | |
cis-3-Hexenyl acetate | 3681-71-8 | 95 | 24.53 ± 0.49 | 18.16 ± 0.36 | - | |
Methyl salicylate | 119-36-8 | 99 | 20.63 ± 3.58 | 15.28 ± 2.65 | - | |
Alkanes | Tridecane | 629-50-5 | 99 | >40 | - | - |
Heneicosane | 629-94-7 | 98 | 22.54 ± 2.42 | 16.69 ± 1.79 | - | |
Nonadecane | 629-92-5 | 99.7 | 38.91 ± 7.44 | 28.81 ± 5.51 | - | |
Alcohols | Benzyl alcohol | 100-51-6 | 99 | 22.38 ± 4.58 | 16.56 ± 3.39 | - |
Linalool | 78-70-6 | 99.7 | 25.47 ± 3.46 | 18.86 ± 2.56 | - | |
1-Heptadecanol | 1454-85-9 | 98 | 21.41 ± 1.07 | 15.85 ± 0.79 | - | |
cis-3-Hexen-1-ol | 928-96-1 | 99 | 23.41 ± 5.54 | 17.33 ± 4.10 | - | |
cis-2-Hexen-1-ol | 928-94-9 | 95 | 34.51 ± 2.09 | 25.55 ± 1.55 | - | |
cis-3-Octen-1-ol | 20125-84-2 | 98 | 17.04 ± 1.08 | 12.61 ± 0.80 | −5.13 | |
(+)-α-Terpineol | 7785-53-7 | 97 | 29.38 ± 1.6 | 21.75 ± 1.19 | - | |
Leaf alcohol | 928-96-1 | 98 | 27.86 ± 0.80 | 20.62 ± 0.59 | - | |
Note: ‘>40’ means that the IC50 values could not be calculated directly from the tested ligand concentrations, and the corresponding Ki values of the ligands are indicated with ‘-’. |
References
- Pan, M.Z.; Liu, T.X.; Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): The role of natal rearing effects and host availability? Insect Sci. 2018, 25, 1035–1044. [Google Scholar] [CrossRef]
- Honek, A.; Martinkova, Z.; Dixon, A.F.G.; Saska, P. Annual predictions of the peak numbers of Sitobion avenae infesting winter wheat. J. Appl. Entomol. 2017, 141, 352–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Liu, X.B.; Fan, J.; Liu, H.; Chen, J.L. SmCSP4 from aphid saliva stimulates salicylic acid-mediated defence responses in wheat by interacting with transcription factor TaWKRY76. Plant Biotechnol. J. 2023, 21, 2389–2407. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.L.; Tian, X.T.; Xu, Y.; Cheng, W. Effectiveness of seven pesticides in controlling wheat blossom midge and wheat aphids. Chin. Bull. Entomol. 2014, 51, 548–553. (In Chinese) [Google Scholar]
- Sun, H.W.; Shang, Y.F.; Zhao, J.H.; Lu, X.B.; Wang, S.J.; Yang, C.L. Effects of different pesticides on wheat aphids and natural enemies. Tcrop 2007, 27, 543–547. (In Chinese) [Google Scholar]
- Ohta, I.; Honda, K.I. Use of Sitobion akebiae (Hemiptera: Aphididae) as an alternative host aphid for a banker-plant system using an indigenous parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae). Appl. Entomol. Zool. 2010, 45, 233–238. [Google Scholar] [CrossRef]
- Wei, J.N.; Bai, B.B.; Yin, T.S.; Wang, Y.; Yang, Y.; Zhao, L.H.; Kuang, R.J. Development and use of parasitoids (Hymenoptera: Aphidiidae & Aphelinidae) for biological control of aphids in China. Biocontrol Sci. Techn. 2005, 15, 533–551. [Google Scholar]
- Pan, M.Z.; Liu, T.X. Suitability of three aphid species for Aphidius gifuensis (Hymenoptera: Braconidae): Parasitoid performance varies with hosts of origin. Biol. Control. 2014, 69, 90–96. [Google Scholar]
- Qiu, R.; Zhang, Z.; Li, C.J.; Yu, S.Q.; Chen, Y.G.; He, L.; Li, S.J. Control efficiency of Aphidius gifuensis on aphids in wheat fields. Tob. Sci. Technol. 2021, 54, 35–40. (In Chinese) [Google Scholar]
- Yang, S.; Xu, R.; Yang, S.Y.; Kuang, R.P. Olfactory responses of Aphidius gifuensis to odors of host plants and aphid-plant complexes. Insect Sci. 2010, 16, 503–510. [Google Scholar] [CrossRef]
- Jiang, X.; Qin, Y.; Jiang, J.; Xu, Y.Y.; Francis, F.; Fan, J.; Chen, J.L. Spatial expression analysis of odorant binding proteins in both sexes of the aphid parasitoid Aphidius gifuensis and their ligand binding properties. Front. Physiol. 2022, 13, 877133. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, J.; Yu, M.M.; Zhang, S.Y.; Qin, Y.; Xu, Y.Y.; Chen, J.L. Functional analysis of odorant-binding proteins for the parasitic host location to implicate convergent evolution between the grain aphid and its parasitoid Aphidius gifuensis. Int. J. Biol. Macromol. 2023, 226, 510–524. [Google Scholar] [CrossRef]
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef]
- Li, X.M.; Liu, Q.; Ma, S.; Yin, M.Z.; Gu, N.; Qian, L.F.; Zhang, Y.N. Screening of behaviorally active compounds based on the interaction between two chemosensory proteins and mung bean volatiles in Callosobruchus chinensis. Int. J. Biol. Macromol. 2023, 250, 126137. [Google Scholar] [CrossRef]
- Huang, G.Z.; Liu, Z.D.; Gu, S.H.; Zhang, B.; Sun, J.H. Identification and functional analysis of odorant-binding proteins of the parasitoid wasp Scleroderma guani reveal a chemosensory synergistic evolution with the host Monochamus alternatus. Int. J. Biol. Macromol. 2023, 249, 126088. [Google Scholar] [CrossRef]
- Guo, H.; Mo, B.T.; Li, G.C.; Li, Z.L.; Huang, L.Q.; Sun, Y.L.; Dong, J.F.; Smith, D.P.; Wang, C.Z. Sex pheromone communication in an insect parasitoid, Campoletis chlorideae Uchida. Proc. Natl. Acad. Sci. USA 2022, 119, e2215442119. [Google Scholar] [CrossRef]
- Shan, S.; Wang, S.N.; Song, X.; Khashaveh, A.; Lu, Z.Y.; Dhiloo, K.H.; Zhang, Y.J. Antennal ionotropic receptors IR64a1 and IR64a2 of the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidate) collaboratively perceive habitat and host cues. Insect Biochem. Mol. 2019, 114, 103204. [Google Scholar] [CrossRef]
- Shan, S.; Wang, S.N.; Song, X.; Khashaveh, A.; Lu, Z.Y.; Dhiloo, K.H.; Li, R.J.; Gao, X.W.; Zhang, Y.J. Molecular characterization and expression of sensory neuron membrane proteins in the parasitoid Microplitis mediator (Hymenoptera: Braconidae). Insect Sci. 2020, 27, 425–439. [Google Scholar] [CrossRef]
- Sparks, J.T.; Bohbot, J.D.; Dickens, J.C. Chapter four-olfactory disruption: Toward controlling important insect vectors of disease. In Progress in Molecular Biology and Translational Science; Academic Press: Cambridge, MA, USA, 2015; Volume 130, pp. 81–108. [Google Scholar]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef]
- Ma, C.; Cu, S.W.; Tian, Z.Y.; Zhang, Y.; Chen, G.M.; Gao, X.Y.; Tian, Z.Q.; Chen, H.S.; Zhou, Z.S. OcomCSP12, a chemosensory protein expressed specifically by ovary, mediates reproduction in Ophraella communa (Coleoptera: Chrysomelidae). Front. Physiol. 2019, 10, 01290. [Google Scholar] [CrossRef]
- Zeng, Y.; Merchant, A.; Wu, Q.J.; Wang, S.L.; Kong, L.; Zhou, X.; Zhang, Y.J. A chemosensory protein BtabCSP11 mediates reproduction in Bemisia tabaci. Front. Physiol. 2020, 11, 709. [Google Scholar] [CrossRef]
- Maleszka, J.S.; Forêt, S.; Saint, R.; Maleszka, R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev. Genes. Evol. 2007, 217, 189–196. [Google Scholar] [CrossRef]
- Benton, R. Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci. 2007, 30, 512–519. [Google Scholar] [CrossRef]
- Zhu, J.; Iovinella, I.; Dani, F.R.; Liu, Y.L.; Huang, L.Q.; Liu, Y.; Wang, G.R. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. Int. J. Biol. Sci. 2016, 12, 1394–1404. [Google Scholar] [CrossRef]
- Liu, G.X.; Xuan, N.; Chu, D.; Xie, H.Y.; Fan, Z.X.; Bi, Y.P.; Picimbon, J.F.; Qin, Y.C.; Zhong, S.T.; Li, Y.F.; et al. Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch. Insect Biochem. 2014, 85, 137–151. [Google Scholar] [CrossRef]
- Li, J.Q.; Zhu, R.; Yao, W.C.; Yu, H.P.; Huang, J.R.; Wang, Z.; Zhang, Y.N. Chemosensory protein 2 of male Athetis lepigone is involved in the perception of sex pheromones and maize volatiles. J. Agric. Food Chem. 2023, 71, 6277–6287. [Google Scholar] [CrossRef]
- Zhang, C.N.; Tang, B.W.; Zhou, T.L.; Yu, X.T.; Hu, M.F.; Dai, W. Involvement of chemosensory protein BodoCSP1 in perception of host plant volatiles in Bradysia odoriphaga. J. Agric. Food Chem. 2021, 69, 10797–10806. [Google Scholar] [CrossRef]
- Calvello, M.; Brandazza, A.; Navarrini, A.; Dani, F.R.; Turillazzi, S.; Felicioli, A.; Pelosi, P. Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochem. Mol. Biol. 2005, 35, 297–307. [Google Scholar] [CrossRef]
- Wang, K.; HE, Y.Y.; Zhang, Y.J.; Guo, Z.J.; Xie, W.; WU, Q.J.; Wang, S.L. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa. J. Integr. Agric. 2023, 22, 514–525. [Google Scholar] [CrossRef]
- Faal, H.; Silk, P.J.; LeClair, G.; Teale, S.A. Biologically active cuticular compounds of female Sirex noctilio. Entomol. Exp. Appl. 2022, 170, 327–338. [Google Scholar] [CrossRef]
- Hao, E.H.; Yang, X.; Ma, M.; Lu, P.; Qiao, H. Investigating SnocCSP4 expression and key compound interactions with SnocOBP4 in Sirex noctilio Fabricius (Hymenoptera: Siricidae). Int. J. Biol. Macromol. 2023, 247, 125827. [Google Scholar] [CrossRef]
- Li, B.; Du, Z.; Tian, L.; Zhang, L.; Huang, Z.; Wei, S.; Song, F.; Cai, W.; Yu, Y.; Yang, H.; et al. Chromosome-level genome assembly of the aphid parasitoid Aphidius gifuensis using Oxford Nanopore sequencing and Hi-C technology. Mol. Ecol. Resour. 2021, 21, 941–954. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Q.; Xu, Q.X.; Xue, W.X.; Han, Z.L.; Sun, J.; Chen, J.L. Differential expression analysis of olfactory genes based on a combination of sequencing platforms and behavioral investigations in Aphidius gifuensis. Front. Physiol. 2018, 9, 1679. [Google Scholar] [CrossRef]
- Sheng, S.; Liao, C.W.; Zheng, Y.; Zhou, Y.; Xu, Y.; Song, W.M.; Wu, F.A. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. Comp. Biochem. Phys. D 2017, 22, 20. [Google Scholar] [CrossRef]
- Liu, Y.; Du, L.X.; Zhu, Y.; Yang, S.Y.; Zhou, Q.; Wang, G.R.; Liu, Y. Identification and sex-biased profiles of candidate olfactory genes in the antennal transcriptome of the parasitoid wasp Cotesia vestalis. Comp. Biochem. Phys. D 2020, 34, 100657. [Google Scholar] [CrossRef]
- He, Y.; Wang, K.; Zeng, Y.; Guo, Z.J.; Zhang, Y.J.; Wu, Q.J.; Wang, S.L. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 2020, 112, 2291–2301. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, F.; Zhang, X.; Zhang, S.; Guo, S.; Zhu, G.; Li, M. Transcriptome and expression patterns of chemosensory genes in antennae of the parasitoid wasp Chouioia cunea. PLoS ONE 2016, 11, e0148159. [Google Scholar] [CrossRef]
- Kamala, J.P.D.; Kempraj, V.; Aurade, R.M.; Roy, T.K.S.; Verghese, A. Computational reverse chemical ecology: Virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genom. 2014, 15, 1–7. [Google Scholar]
- Ahmed, T.; Zhang, T.T.; Wang, Z.Y.; He, K.L.; Bai, S.X. Three amino acid residues bind corn odorants to McinOBP1 in the polyembryonic endoparasitoid of Macrocentrus cingulum Brischke. PLoS ONE 2014, 9, e93501. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, S.N.; Li, K.M.; Liu, J.T.; Zheng, Y.; Shan, S.; Guo, Y.Y. Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. PLoS ONE 2017, 12, e0180775. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Li, B.; Zhang, G.; Li, Y.; Wu, J. Binding properties of general odorant binding proteins from the oriental fruit moth, Grapholita molesta (Busck)(Lepidoptera: Tortricidae). PLoS ONE 2016, 11, e0155096. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, C.; Cai, P.; Chen, W.; Guo, Y.; Lin, J.; Zhang, S. Host-seeking behavior of Aphidius gifuensis (Hymenoptera: Braconidae) modulated by chemical cues within a tritrophic context. J. Insect Sci. 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, A.; Mitra, S.; Barik, A. Systemically released volatiles from Solena amplexicaulis plant leaves with color cues influencing attraction of a generalist insect herbivore. Int. J. Pest Manag. 2018, 64, 210–220. [Google Scholar] [CrossRef]
- Braasch, J.; Kaplan, I. Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomol. Exp. Appl. 2012, 145, 115–123. [Google Scholar] [CrossRef]
- Urbina, A.; Verdugo, J.A.; López, E.; Bergmann, J.; Zaviezo, T.; Flores, M.F. Searching behavior of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) in response to mealybug sex pheromones. J. Econ. Entomol. 2018, 111, 1996–1999. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant. 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2017, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D.L. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession Number | ORF | Length (aa) | Signal Peptide (aa) | pI | MW (kDa) |
---|---|---|---|---|---|---|
AgifCSP1 | MK049013.1 | 375 | 124 | 18 | 9.05 | 12.04 |
AgifCSP2 | MK049014.1 | 387 | 128 | 17 | 7.79 | 12.88 |
AgifCSP3 | MK049015.1 | 351 | 116 | 20 | 9.24 | 10.84 |
AgifCSP4 | MK049016.1 | 351 | 116 | 18 | 7.79 | 11.35 |
AgifCSP5 | MK049022.1 | 378 | 125 | 20 | 4.59 | 12.05 |
AgifCSP6 | MK049018.1 | 408 | 135 | 23 | 9.55 | 13.3 |
AgifCSP7 | MK049019.1 | 396 | 131 | 19 | 4.66 | 12.85 |
AgifCSP8 | MK049020.1 | 387 | 128 | 16 | 8.89 | 12.72 |
AgifCSP9 | MK049021.1 | 354 | 117 | 25 | 8.99 | 10.52 |
Ligand Name | Wild-Type | R24A Mutant | Y75A Mutant | |||
---|---|---|---|---|---|---|
IC50 | Ki (μM) | IC50 | Ki (μM) | IC50 | Ki (μM) | |
trans-2-Hexen-1-al | 18.08 ± 1.18 | 13.38 ± 0.87 a | 15.03 ± 8.09 | 13.81 ± 7.43 a | 14.59 ± 5.42 | 10.36 ± 3.85 a |
Methyl jasmonate | 20.07 ± 1.92 | 14.86 ± 1.42 b | 8.89 ± 0.95 | 8.16 ± 0.87 c | 29.68 ± 1.06 | 21.09 ± 0.75 a |
Benzaldehyde | 18.23 ± 0.88 | 13.49 ± 0.65 a | 17.26 ± 3.62 | 15.85 ± 3.33 a | >40 | - |
trans-2-Nonenal | 16.58 ± 1.78 | 12.27 ± 1.31 a | 25.86 ± 16.38 | 23.75 ± 15.05 a | >40 | - |
Sabinene | 16.37 ± 0.94 | 12.12 ± 0.69 a | 22.37 ± 14.63 | 20.55 ± 13.44 a | 26.23 ± 11.59 | 18.64 ± 8.23 a |
(Z)-β-ocimene | 17.98 ± 2.89 | 13.31 ± 2.14 a | 18.19 ± 1.97 | 16.71 ± 2.73 a | 30.80 ± 7.87 | 21.88 ± 5.59 a |
cis-3-Octen-1-ol | 17.04 ± 1.08 | 12.61 ± 0.80 a | 18.94 ± 9.83 | 17.40 ± 9.03 a | 22.95 ± 6.68 | 16.31 ± 4.75 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Xue, J.; Yu, M.; Jiang, X.; Cheng, Y.; Wang, H.; Liu, Y.; Dou, W.; Fan, J.; Chen, J. Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis. Int. J. Mol. Sci. 2024, 25, 6392. https://doi.org/10.3390/ijms25126392
Jiang J, Xue J, Yu M, Jiang X, Cheng Y, Wang H, Liu Y, Dou W, Fan J, Chen J. Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis. International Journal of Molecular Sciences. 2024; 25(12):6392. https://doi.org/10.3390/ijms25126392
Chicago/Turabian StyleJiang, Jun, Jiayi Xue, Miaomiao Yu, Xin Jiang, Yumeng Cheng, Huijuan Wang, Yanxia Liu, Wei Dou, Jia Fan, and Julian Chen. 2024. "Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis" International Journal of Molecular Sciences 25, no. 12: 6392. https://doi.org/10.3390/ijms25126392
APA StyleJiang, J., Xue, J., Yu, M., Jiang, X., Cheng, Y., Wang, H., Liu, Y., Dou, W., Fan, J., & Chen, J. (2024). Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis. International Journal of Molecular Sciences, 25(12), 6392. https://doi.org/10.3390/ijms25126392