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Abstract: Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective
barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothe-
lial barrier function must be strictly integrated. During acute inflammation, vascular permeability
temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues.
Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause
several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular
mechanisms by which endothelial cells regulate the barrier function and physiological permeability.
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1. Introduction

Endothelial cells form a continuous monolayer lining the inner wall of all blood
vessels, and they regulate various vascular functions, such as inflammation, angiogenesis,
hemostasis, and vasodilation. The endothelial cell layer is a selective barrier that restricts
the extravasation of macromolecules and cells while transporting gases and nutrients
into tissues [1]. This barrier is essential for maintaining homeostasis. Therefore, vascular
barrier dysfunction is closely related to various pathogeneses, including edema, asthma,
inflammatory airway diseases, cancer, and atherosclerosis.

Blood exiting the heart passes through the aorta and then enters the branching arteries
and arterioles, which are connected to capillaries throughout the body. The peripheral
blood returns to the heart through the venules, veins, and vena cava. Endothelial cells
line the interior of all vessels. Large arteries and veins form structures consisting of over-
lapping layers of endothelial cells, basement membranes, and smooth muscle cells [2].
Capillaries and small veins are surrounded by an endothelial cell layer, basement mem-
brane, and pericytes [2]. Vascular permeability differs among the organs, depending on
their physiological function. Accordingly, capillaries have different types of endothelia:
continuous, fenestrated, or discontinuous, depending on the specific functions of the organs
that they supply. In contrast, the endothelium of arteries and veins forms a continuous
monolayer [2]. Fenestrated endothelia can be found in the capillaries of tissues involved
in filtration and secretion, such as those of the exocrine and endocrine glands, kidney
glomeruli, and intestinal mucosa; while discontinuous endothelia of the capillaries can
be found in the sinusoidal vascular beds of the liver and bone marrow [2]. In the brain,
the blood–brain barrier consists of endothelial cells, basement membranes, pericytes, and
termini of astrocytic projections, which strictly limit the exchange of substances [3].

Most microvessels have limited permeability under normal conditions because the
endothelium is continuous and it is surrounded by a basement membrane and some
pericytes [2,4]. A strict regulation of vascular permeability is essential for maintaining
organ and tissue functions. The disruption of tissue-specific vascular permeability is
closely associated with various diseases, such as asthma, inflammatory airway disease,
and cancer [1]. Therefore, elucidating the mechanisms controlling vascular permeability
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is essential to establish therapeutic strategies for such diseases. Here, we outlined the
molecular mechanisms that regulate the barrier function of endothelial cells.

2. Endothelial Barrier Structure

The endothelial barrier regulates the exchange of fluids and solutes—including plasma
proteins and cells, particularly leukocytes—between blood and tissues. Under quiescent
conditions, the endothelial barrier suppresses the permeability of macromolecules and
cells. When inflammation occurs, various mediators act on endothelial cells to increase
their permeability, causing the extravasation of large molecules and cells such as plasma
proteins and leukocytes. Two routes, the transcellular and paracellular pathways, regulate
the leakage of substances into the extravasation space [5] (Figure 1). Leukocytes also
extravasate through transcellular and paracellular routes during inflammation. Other
excellent reviews have discussed this process in detail [6]. In this study, we focused on the
molecular permeability mechanisms of the endothelium.
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receptor class B type 1 (SR-B1), respectively, to induce caveolin-coated internalization [7–
9]. Dynamin, a GTPase, accumulates in the caveolar neck region and induces the con-
striction (pinch-off) of caveolae buds from the luminal plasma membrane into endothelial 
cells [10]. Caveolae internalization depends on tyrosine phosphorylation of caveolin-1 and 
dynamin-2 via Src kinase [11]. Internalized caveolin-coated vesicles fuse to the plasma 
membrane of the extravasation side. During exocytosis, SNARE proteins mediate the for-
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Figure 1. Paracellular and transcellular pathways. Endothelial cells form selective barriers in the inner
lumen of vessels. Macromolecules are extravasated from the blood through paracellular and tran-
scellular pathways. In the paracellular pathway, macromolecules pass between endothelial cells by
opening the endothelial junctions. In the transcellular pathway, molecules are transported across en-
dothelial cells through vesicle-based transcellular pathways and vesiculovacuolar organelles (VVOs).

2.1. Transcellular Pathway

Fluids and solutes are transported across the endothelial cytoplasm from the vessel
lumen to the extravascular space —at the basement membrane side—via the transcellular
route (Figure 1). The transport of solutes, particularly those of macromolecules, involves a
vesicle-based transcellular transport pathway, which is also known as transcytosis. Tran-
scytosis involves endocytosis and exocytosis on opposite plasma membranes [7]. In this
pathway, caveolin is an essential molecule that regulates the endothelial barrier function,
and albumin and low-density lipoprotein (LDL) interact with gp60 and scavenger receptor
class B type 1 (SR-B1), respectively, to induce caveolin-coated internalization [7–9]. Dy-
namin, a GTPase, accumulates in the caveolar neck region and induces the constriction
(pinch-off) of caveolae buds from the luminal plasma membrane into endothelial cells [10].
Caveolae internalization depends on tyrosine phosphorylation of caveolin-1 and dynamin-
2 via Src kinase [11]. Internalized caveolin-coated vesicles fuse to the plasma membrane
of the extravasation side. During exocytosis, SNARE proteins mediate the formation of
vesicles that doke and fuse to the plasma membrane, allowing caveolin vesicles to release
their contents [12].

Vesiculovesicular organelles (VVOs) have also been reported as organelles with the
endothelial transcellular permeability of macromolecules. VVOs are composed of numer-



Int. J. Mol. Sci. 2024, 25, 6415 3 of 16

ous continuous uncoated vesicles or vacuoles that enable macromolecules to cross the
cytoplasm from the luminal to the abluminal side. VVOs have been found in the tumor
microvasculature, venules associated with allergic inflammation, and the endothelium of
normal venules [13]. Vascular endothelial growth factor (VEGF), serotonin, and histamine
induce macromolecular extravasation through VVOs [13].

2.2. Paracellular Pathway

The paracellular route is controlled by the opening and closing of endothelial cell
adhesions. Two major junctional complexes, tight and adherent junctions, play essential
roles in controlling endothelial paracellular permeability. Gap junctions are also involved
in controlling endothelial permeability (Figure 2).
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Figure 2. Structure of endothelial cell–cell junctions. Endothelial cell–cell junctions mainly consist
of adherens, tight, and gap junctions. VE-cadherin is a component of adherens junctions, and
homophilic interactions occur between the extracellular domains of these VE-cadherins. Additionally,
the intracellular domain of VE-cadherins interacts with the actin cytoskeleton through adaptor
proteins. Claudins and occludins are the major components of tight junctions. Their extracellular
domains form tight junctions between endothelial cells, whereas their intracellular domains bind to
the actin cytoskeleton via zona occludens (ZO) proteins.

2.2.1. Adherens Junctions

Adherens junctions are mainly comprised of vascular endothelial cadherin (VE-
cadherin); therefore, this molecule plays a critical role in the control of such junctions.
VE-cadherin is a cadherin family protein that is primarily expressed in vascular endothelial
cells. The extracellular domains of the VE-cadherins that are expressed in neighboring
endothelial cells form Ca2+-dependent homophilic interactions [14]. In addition, p120-
catenin binds directly to the membrane peripheral region of the intracellular domains of
VE-cadherins, suppressing their internalization and stabilizing them on the plasma mem-
brane [15,16]. It has also been shown that β-catenin and γ-catenin (plakoglobin) bind to the
VE-cadherin COOH-terminal intracellular domain. This complex interacts with α-catenin,
which is associated with the actin cytoskeleton [6]. The VE-cadherin/catenin complex
interacts with several other proteins, including actin-binding proteins such as vinculin.
The interaction between the VE-cadherin/catenin complex and the actin cytoskeleton is
essential for stabilizing adherens junctions [17] (Figure 2). Under steady-state conditions,
VE-cadherin is associated with the cortical actin bundle, forming continuous VE-cadherin
adhesions [17]. In contrast, endothelial permeability upregulation leads to the formation
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of gaps between endothelial cells through the alteration of actin formation and the distri-
bution of VE-cadherin [17]. Moreover, vascular permeability-promoting factors induce
actin cytoskeleton remodeling. During this process, radial contractile actin bundles connect
to discontinuous cell–cell junctions, and actomyosin contraction promotes gap formation
between endothelial cells, disrupting continuous endothelial adhesion and increasing
endothelial permeability [18]. Under these conditions, even though gaps are formed at
cell–cell contact sites, cell adhesion is not entirely disrupted, because adherens junctions
maintain the connection between endothelial cells via the tips of filopodia-like protru-
sions [1]. The tip region of the filopodia maintains homophilic connections of tight and
adherens junctions. In contrast, in areas that lose junctions and form gaps, VE-cadherin is
internalized, recycled, or degraded through ubiquitination [19]. However, the mechanisms
triggering VE-cadherin internalization remain unclear.

Some vascular permeability factors and blood flow regulate the stabilization of cell ad-
hesion through the phosphorylation of VE-cadherin tyrosine and serine residues (Figure 3).
Well-known regulatory VE-cadherin phosphorylation sites include tyrosine residues 658
(Tyr658), 685 (Tyr685), and 731 (Tyr731), and serine 665 (Ser665) [20,21]. Notably, some
permeability-promoting factors enhance VE-cadherin phosphorylation at Tyr658 and Tyr731
through Src; these modifications prevent VE-cadherin from interacting with p120-catenin
and β-catenin, respectively [20]. Src inhibition reduces Tyr658 and Tyr685 phosphorylation
of VE-cadherin and endothelial permeability. Non-phosphorylated VE-cadherin mutations
at Tyr658 (Y658F) and Tyr685 (Y685F) prevent bradykinin-induced internalization, ubiq-
uitination, and permeability [19]. Src phosphorylates VE-cadherin at these sites, thereby
regulating its internalization (Figure 3). The Src-dependent phosphorylation of Vav2—a
guanine nucleotide exchange factor (GEF)—leads to the activation of Rac and p21-activated
kinase (PAK), which induces VE-cadherin phosphorylation at Ser665, resulting in the
recruitment of β-arrestin [21] (Figure 3). The phosphorylation of VE-cadherin at Ser665
also promotes the opening of endothelial cell–cell adhesions through the internalization
of VE-cadherin [21]. Focal adhesion kinase (FAK) also regulates vascular permeability
through the phosphorylation of β-catenin at Tyr142, leading to the dissociation of β-catenin
from VE-cadherin and disruption of adherens junctions [22].
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Figure 3. Phosphorylation of VE-cadherin and VEGF regulate adherens junctions. VE-cadherin
phosphorylation controls endothelial cell adhesion stabilization. VEGF activates Src and disrupts the
adherens junctions through VE-cadherin phosphorylation at Tyr658 and Tyr685. Src also activates
Vav2 and FAK. Vav2 activates Rac, resulting in PAK activation. PAK phosphorylates VE-cadherin
at Ser665 and promotes its dissociation from p120-catenin (p120). VE-cadherin phosphorylation at
Ser665 recruits β-arrestin and enhances its internalization. FAK phosphorylates β-catenin (β-cat) at
Tyr142. Src also activates Axl, which induces eNOS through PI3 kinase (PI3K) and Akt pathways,
leading to the nitrosylation of β-cat at Cys619.
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2.2.2. Tight Junctions

In endothelial cells, tight junctions consist of claudins, occludins, junction-associated
molecules (JAMs), and other adhesion molecules [23]. The intracellular domains of tight
junction proteins interact with scaffolding proteins, such as zona occludens (ZO), cingulin,
and paracingulin [23]. These scaffolding proteins mediate the association between tight
junction molecules and the actin cytoskeleton [23] (Figure 2). Tight junction molecules
form characteristic strand structures that tightly connect adjacent endothelial cells [23].
However, the permeability of the endothelial barrier is affected by the composition of
the tight junction complex and the number of tight junction strands [24]. Tight junction
strands are more abundant in the endothelial cells of small arteries than in those of small
veins [24]. In particular, tight junctions are more abundant in the endothelial cells of
brain vessels and play a critical role in controlling the blood–brain barrier function [25].
There are few tight junctions in the endothelium of capillaries and post-capillary venules,
where plasma protein and circulating leukocyte extravasation easily occur. Therefore, in
microvascular endothelial cells, adherens junctions are the primary regulators of endothelial
permeability [26].

Tight and adherens junctions mutually regulate each other. VE-cadherin upregulated
claudin-5 expression, indicating that adherens junctions accelerate claudin-5 expression
and stabilize tight junctions [27]. In contrast, ZO-1 or claudin-5 depletion induces the
disruption of tight junctions, redistribution of stress fibers, and reduction of tension in
adherens junction complexes [28]. Thus, tight junctions may control the stabilization of
adherens junctions through ZO-1, which regulates the interaction between VE-cadherin
and the cytoskeleton.

2.2.3. Gap Junctions

Gap junctions comprise hexamers of transmembrane proteins, connexins. Connexins
form channels through which small molecules, such as ions and water, can pass between
adjacent endothelial cells [29]. Connexin family proteins comprise 21 members. Connexin
37, 40, and 43 are expressed in endothelial cells [29]. Connexin 43 has been reported to
be inversely correlated with VE-cadherin expression in lung microvessels after endotoxin-
induced vascular leakage [30]. It has also been reported that connexin 40 contributes
critically to lung vascular barrier failure through myosin light chain (MLC) phosphorylation
by Rho-kinase in a mouse model of acute lung injury (ALI) [31].

3. Regulators of Vascular Endothelial Permeability

Physiological and pathophysiological conditions can open endothelial adhesion. En-
dothelial barrier function is regulated by various regulatory factors of endothelial perme-
ability and fluid shear stress due to blood flow. Importantly, VE-cadherin phosphorylation
and small GTPases regulate the stabilization of endothelial adhesions through endocytosis
and actomyosin contraction.

3.1. Small GTPases

The Rho family of small GTPases regulates actin stress fibers and cortical actin fila-
ments. Actin stress fibers pull junctions and increase endothelial permeability, whereas
cortical actin stabilizes these junctions. Thus, Rho family GTPases strongly affect actin
dynamics at endothelial adhesion junctions and regulate endothelial barriers [32].

RhoA activation enhances endothelial cell permeability through Rho kinase, an effector
molecule of Rho, promoting stress fiber formation and actomyosin contraction via the
MLC [33–35] (Figure 4). Rac1 promotes the maintenance and stabilization of the endothelial
barrier by promoting the assembly of cell–cell adhesion complexes and formation of cortical
actin bundles [32,36,37]. However, Rac1 disrupts endothelial cell barrier function [21,38–40].
Thus, Rac1 exhibits opposite effects on endothelial barrier function, depending on the
upstream stimuli and effectors.
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suppresses endothelial permeability by inhibiting Rho/Rho-kinase activity and stress fiber formation.

Rap1 stabilizes VE-cadherin-dependent endothelial junctions by promoting corti-
cal actin formation via Epac1—a Rap1 GEF that is activated by cAMP [41–44]. cAMP
also activates Rac1 through the Rac1 GEFs, Vav2, and Tiam1, which are activated by
Epac1/Rap1 signaling and active PKA, respectively [45–47] (Figure 4). Furthermore, Rap1
enhances endothelial barrier function by suppressing radial actin stress fiber formation
through the inhibition of RhoA/Rho-kinase activities by recruiting ArhGAP29—a GTPase-
activating protein (GAP) against Rho—to junctions via Ras-interacting protein 1 (Rasip1)
and Radil—effector proteins of Rap1—[48–50] (Figure 4). Rap1 also stabilizes adherens junc-
tions and enhances cortical actin by recruiting FGD5—a Cdc42 GEF—at cell–cell junctions
and inducing the activation of Cdc42 and its effector myotonic dystrophy kinase-related
Cdc42-binding kinase (MRCK) [48] (Figure 4).

3.2. Vascular Endothelial Growth Factor (VEGF)

Increased vascular permeability by VEGF, a vascular permeability factor, has been
shown to play a crucial pathophysiological role in tumorigenesis, diabetic retinopathy, and
ischemia/reperfusion injury [51]. Mammalian VEGF family members include VEGFA,
VEGFB, VEGFC, VEGFD, and placental growth factor (PlGF), which act through the trans-
membrane tyrosine kinase receptors VEGFR1, VEGFR2, and VEGFR3 [52]. VEGFR2 is the
most abundant receptor protein in endothelial cells and is vital for the enhancement of
vascular permeability by VEGFA [52]. VEGFR3 suppresses VEGFR2 expression and limits
vascular permeability [53].

VEGF enhances the tyrosine phosphorylation of VE-cadherin via the tyrosine kinases
Src and Yes [54–56] (Figure 3). VEGF-induced Src activation leads to Ser665 phosphoryla-
tion of VE-cadherin via PAK, recruiting β-arrestin and promoting the clathrin-dependent
endocytosis of VE-cadherin [21] (Figure 3). VEGFA also promotes the binding of FAK to the
cytoplasmic domain of VE-cadherin, which increases endothelial permeability through the
phosphorylation of VE-cadherin at Tyr658 [57]. Additionally, VEGF promotes the binding
of FAK to the cytoplasmic domain of VE-cadherin through Src, which phosphorylates
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β-catenin at Tyr142, dissociates β-catenin from VE-cadherin, and promotes the disruption
of adherens junctions [22] (Figure 3). VEGFA has several splice variants that interact dif-
ferently with basement membrane proteins and the VEGF coreceptors neuropilins [52].
Neuropilins contribute to VEGFA-induced leakage [58]. Neurophilin-1 interacts with VE-
cadherin, promoting its internalization and accelerating vascular endothelial permeability
initiated by histamine both in vitro and in vivo [59]. Furthermore, VEGF promotes vascular
endothelial permeability by enhancing occludin transport from the cell membrane to the
endosomes via phosphorylation and ubiquitination [60]. Vascular endothelial protein tyro-
sine phosphatase (VE-PTP) associates with VE-cadherin, strengthening its adhesion [61,62].
VEGF and other mediators that promote permeability induce the dissociation of VE-PTP
from VE-cadherin, further increasing vascular permeability [63].

It is known that nitric oxide (NO) diffuses from endothelial cells into the surrounding
vascular smooth muscle cells, causing vasodilation, increased flow, and an increased
extravasation of fluids and small molecules. Notably, the suppression of endothelial NO
synthase (eNOS) expression reduces VEGFA-induced vascular leakage [64]. Additionally,
NO induces S-nitrosylation of β-catenin at Cys619, which results in the dissociation of
β-catenin from VE-cadherin and the destabilization of adherens junctions [65] (Figure 3).

VEGFA induces the autophosphorylation of VEGFR2 at several tyrosine residues
including Tyr949 (in humans, Tyr951) and Tyr1173 (in humans, Tyr1175) [66]. The phospho-
rylation of Tyr949 of VEGFR2 induces an interaction with T cell-specific adaptor protein
(TSAd) and activates Src, which attenuates vascular endothelial cell adhesion via the
phosphorylation of VE-cadherin [67–69]. Mice expressing a VEGFR2 mutant that is not
phosphorylated at Tyr949 exhibit no increase in vascular permeability in response to VEGF,
indicating the physiological importance of Tyr949 phosphorylation in VEGFR2 [68]. Mice
expressing a VEGFR2 mutant non-phosphorylated at Tyr1173 or lacking PLCγ suppressed
vascular leakage [70]. These results suggest that the phosphorylation of Tyr1173 in VEGFR2
also increases vascular permeability through PLCγ.

VEGFA initiates angiogenesis by attenuating endothelial adhesion and activating cell
migration, which induces the formation of tip and stalk cells [71,72]. During angiogenesis,
VEGFA attenuates endothelial adhesion via a signaling pathway that induces endothelial
permeability. Downstream of VEGFA, activated VEGFR2 induces Src activation through
TsAd, which phosphorylates VE-cadherin, resulting in an attenuation of adhesion dur-
ing sprouting [73]. VEGFR2 also promotes actin-dependent lamellipodia formation and
reorganizes intercellular adhesions [74].

3.3. Angiopoietin

Several angiopoietins, such as angiopoietin-1, angiopoietin-2, and angiopoietin-4 (the
ortholog of mouse angiopoietin-3), have been reported in humans along with the tyrosine
kinase receptors Tie1 and Tie2 (TEK) [75]. Angiopoietin 1–4 are all ligands for Tie2, whereas
Tie1 is an orphan receptor that interacts with Tie2 and is activated by angiopoietins through
Tie2 [76].

Angiopoietin-1 induces Tie2 activation, promotes vascular stability, and inhibits vas-
cular permeability [77,78]. Angiopoietin-1 increases cortical actin levels and suppresses
endothelial permeability through the activation of Rac1 and suppression of RhoA [36,79].
Moreover, Tie2 activates Rac1 through the activation of IQ domain GTPase-activating pro-
tein 1 (IQGAP1), which stabilizes Rac1 GTPase [36] (Figure 5). In addition, Tie2 suppresses
RhoA activation through PI3-kinase (PI3K), which activates the RhoA GTPase-activating
protein p190RhoGAP [79] (Figure 5). Angiopoietin-1 suppresses the internalization of
VE-cadherin induced by permeability-promoting factors and stabilizes VE-cadherin at
endothelial cell junctions [80].
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Figure 5. Angiopoietin regulates endothelial barrier function. Angiopoietin-1 interacts with Tie2 and
controls vascular permeability by regulating the activities of RhoA and Rac1. Tie2 suppresses RhoA
activation via PI3K and p190RhoGAP. Tie2 also activates Rac1 through IQ domain GTPase-activating
protein 1 (IQGAP1).

Angiopoietin-2 is released from the Weibel–Palade bodies of endothelial cells in re-
sponse to various stimuli and acts both as an agonist and antagonist against of Tie2 [81–83].
During inflammation, angiopoietin-2 switches from being an agonist to being an antagonist,
increasing vascular leakage. Therefore, as an antagonist, angiopoietin-2 increases vascular
permeability via inflammatory cytokines, such as histamine and VEGF [82]. In contrast,
angiopoietin-2 decrease vascular permeability in mice [83].

3.4. Inflammatory Mediators

Inflammatory mediators, such as histamine, bradykinin, and thrombin, have been
shown to induce transient opening of the endothelial barrier. These inflammatory mediators
activate receptors coupled with Gq/G11 [84]. Gq/G11 interact with phospholipase C (PLC),
which cleaves phosphatidylinositol 4,5-diphosphate (PIP2) into inositol 1,4,5-trisphosphate
(IP3) and diacylglycerol. IP3 releases intracellular Ca2+ and diacylglycerol, which activates
protein kinase C (PKC) [84,85]. It is thought that both intracellular Ca2+ release and
the transmembrane influx of extracellular Ca2+ promote endothelial permeability [86].
However, GPCR-induced endothelial Ca2+ signaling is not required for endothelial barrier
opening [87].

Thrombin interacts with proteinase-activated receptor (PAR), which is a GPCR. It
activates RhoA through the guanine nucleotide exchange factor (GEF), and rearranges
cytoskeletal actin in endothelial cells [34,88]. Activated RhoA leads to the activation of
Rho-kinase and inhibition of myosin phosphatase, and leads to increases in MLC phospho-
rylation and actomyosin contraction in endothelial cells [34,89] (Figure 6). Furthermore,
RhoA promotes actin stress fiber formation in response to thrombin in endothelial cells and
destabilizes vascular integrity [90] (Figure 6). Thrombin activates the non-receptor tyro-
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sine kinase Pyk2, which inhibits between VE-PTP and VE-cadherin interactions, thereby
increasing endothelial permeability in a Ca2+-dependent manner [91].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 16 
 

 

  
Figure 6. Inflammatory mediators promote endothelial permeability through GPCR. Histamine and 
bradykinin induce vascular permeability via GPCR. These mediators activate Trio, a RhoGEF, which 
leads to RhoA activation. Activated RhoA induces actomyosin contraction by activating Rho-kinase 
and suppressing myosin light chain phosphatase (MLCP). 

3.5. Fluid Shear Stress 
The lumen of the vascular endothelium is constantly exposed to shear stress related 

to blood flow. Stable and straight blood flow is observed in straight blood vessels, whereas 
disturbed flow is present in branching or curved zones. Stable flow leads to the mainte-
nance of the endothelial barrier function, whereas disturbed flow induces endothelial bar-
rier dysfunction [93–96]. VE-cadherin undergoes tyrosine phosphorylation at Tyr658 and 
Tyr685 by the Src family of protein tyrosine kinases in response to blood flow [19,97]. 

Shear stress promotes the expression of the Notch ligand delta-like 4 (Dll4), which 
activates Notch1 [98,99]. Activated Notch1 is then cleaved, and its transmembrane domain 
promotes the formation of a complex consisting of VE-cadherin, leukocyte common anti-
gen-related (LAR) tyrosine phosphatase, and Trio [100]. This complex activates Rac1, pro-
moting the assembly of adherens junctions and establishing barrier function [100]. There-
fore, shear stress maintains junctional integrity through Notch1, which also mediates in-
tracellular calcium levels in endothelial cells [99]. However, it has also been reported that 
shear stress-induced Notch1 activation depends on the calcium channel Piezo1, which 
opens in response to mechanical forces [101]. Some studies have reported that stable blood 
flow enhances the barrier function of endothelial cells through Tie2 and Kallikrein-related 
peptidase-10 (KLK10) [102,103]. Stable flow promotes the endocytosis of VE-PTP and its 
dissociation from Tie2, leading to Tie2 activation [102]. In addition, secreted serine prote-
ase KLK10 levels are upregulated by undisturbed blood flow [103]. KLK10 reduces endo-
thelial permeability and reverses the barrier disruption induced by disturbed blood flow 
[103]. Further, stable blood flow stabilizes tight junctions by upregulating occludin ex-
pression and promoting its linkage to the actin cytoskeleton [104]. 

Disturbed blood flow also activates PAK and the noncatalytic region of tyrosine ki-
nase-1 (Nck1). Activated Nck1 then recruits PAK to the adherent sites and promotes para-
cellular permeability [105,106]. In addition, G-protein-coupled receptor kinase 2 (GRK2) 
enhances the disruption of adherens junctions and paracellular permeability through the 
phosphorylation and inactivation of vinculin in endothelial cells exposed to disturbed 
blood flow [107]. Disturbed blood flow also promotes LDL transport, which is closely as-
sociated with the development of atherosclerosis [93,108,109]. 

Figure 6. Inflammatory mediators promote endothelial permeability through GPCR. Histamine and
bradykinin induce vascular permeability via GPCR. These mediators activate Trio, a RhoGEF, which
leads to RhoA activation. Activated RhoA induces actomyosin contraction by activating Rho-kinase
and suppressing myosin light chain phosphatase (MLCP).

Histamine and bradykinin promote endothelial intercellular gap formation and
leakage via the VE-cadherin internalization through its phosphorylation at Tyr658 and
Tyr685 [19,92]. In addition, histamine promotes actomyosin contraction through Gq/G11,
Trio, and RhoA, which alter the localization of the VE-cadherin complex to adherens
junctions, forming gaps, and thereby causing vascular leakage [33] (Figure 6).

3.5. Fluid Shear Stress

The lumen of the vascular endothelium is constantly exposed to shear stress related to
blood flow. Stable and straight blood flow is observed in straight blood vessels, whereas
disturbed flow is present in branching or curved zones. Stable flow leads to the maintenance
of the endothelial barrier function, whereas disturbed flow induces endothelial barrier
dysfunction [93–96]. VE-cadherin undergoes tyrosine phosphorylation at Tyr658 and
Tyr685 by the Src family of protein tyrosine kinases in response to blood flow [19,97].

Shear stress promotes the expression of the Notch ligand delta-like 4 (Dll4), which
activates Notch1 [98,99]. Activated Notch1 is then cleaved, and its transmembrane domain
promotes the formation of a complex consisting of VE-cadherin, leukocyte common antigen-
related (LAR) tyrosine phosphatase, and Trio [100]. This complex activates Rac1, promoting
the assembly of adherens junctions and establishing barrier function [100]. Therefore, shear
stress maintains junctional integrity through Notch1, which also mediates intracellular
calcium levels in endothelial cells [99]. However, it has also been reported that shear
stress-induced Notch1 activation depends on the calcium channel Piezo1, which opens
in response to mechanical forces [101]. Some studies have reported that stable blood
flow enhances the barrier function of endothelial cells through Tie2 and Kallikrein-related
peptidase-10 (KLK10) [102,103]. Stable flow promotes the endocytosis of VE-PTP and its
dissociation from Tie2, leading to Tie2 activation [102]. In addition, secreted serine protease
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KLK10 levels are upregulated by undisturbed blood flow [103]. KLK10 reduces endothelial
permeability and reverses the barrier disruption induced by disturbed blood flow [103].
Further, stable blood flow stabilizes tight junctions by upregulating occludin expression
and promoting its linkage to the actin cytoskeleton [104].

Disturbed blood flow also activates PAK and the noncatalytic region of tyrosine kinase-
1 (Nck1). Activated Nck1 then recruits PAK to the adherent sites and promotes paracellular
permeability [105,106]. In addition, G-protein-coupled receptor kinase 2 (GRK2) enhances
the disruption of adherens junctions and paracellular permeability through the phosphory-
lation and inactivation of vinculin in endothelial cells exposed to disturbed blood flow [107].
Disturbed blood flow also promotes LDL transport, which is closely associated with the
development of atherosclerosis [93,108,109].

Additionally, disturbed blood flow induces a differentiation transition from endothelial
cells to mesenchymal cells (endothelial-to-mesenchymal transition; EndMT), resulting in
the loss of intercellular adhesion [110,111]. EndMT is associated with several diseases,
including atherosclerosis [111].

4. Mechanisms of Endothelial Barrier Function in Disease

Endothelial dysfunction and increased permeability play essential roles in many
diseases. Under physiological conditions, microvascular permeability is tightly con-
trolled, but a variety of stimuli such as physiological inflammation lead to a transient
and brief—therefore, reversible—upregulation of vascular permeability [1,112]. However,
permeability control loss leads to various pathological conditions, including hypoxia,
chronic inflammatory diseases, tumor angiogenesis, and atherosclerosis [1,112].

In the alveolar capillaries, an abnormal increase in endothelial permeability leads to
impaired gas exchange, resulting in hypoxia and death [1]. In addition, elevated pulmonary
microvascular inner pressure increases capillary permeability and disrupts barrier func-
tion [113]. Under high blood pressure, mice lacking vascular endothelial Piezo1 showed
suppressed pulmonary microvasculature edema, leakage, and decreased expression of
adherens junction proteins (VE-cadherin, β-catenin, and p120-catenin) [114]. These results
suggest that high vascular pressure at the lung endothelial surface is sensed by Piezo1,
which dissociates adherens junctions via VE-cadherin endocytosis and degradation, thereby
increasing pulmonary microvascular leakage and edema.

Angiogenesis and microvascular remodeling are features of tissue in chronic inflam-
matory diseases [115]. Chronic inflammation leads to the formation of leaky capillaries. In
tumors, the blood vessels lose their typical hierarchical structure, leading to small leaky
arteries, capillaries, and veins [116]. Endothelial dysfunction and increased permeability
can also induce atherosclerosis, which is a chronic inflammatory condition characterized
by lipid-rich plaque accumulation within the vessel wall [93]. Additionally, in mice with
endothelium-specific loss of Piezo1 or Gαq/Gα11, disturbed flow-induced inflammatory
signaling and atherosclerosis progression at atherogenic sites are suppressed [117]. Thus,
Piezo1 may be involved in disturbed flow-induced inflammatory signaling and atheroscle-
rosis progression. Interestingly, atherosclerotic plaques preferentially develop in the curved
and branching regions of arteries, which are associated with disturbed blood flow [118].

Dysfunction of the blood–brain barrier is associated with neurodegenerative diseases,
including multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease [119]. Exercise
has been suggested to contribute to disease recovery by improving endothelial cell func-
tion [120]. In multiple sclerosis, exercise restores the expression of occludin and claudin-4
and maintains the blood–brain barrier in a normal state [121,122]. Aged endothelial cells, in
contrast, have low expression of occludin, claudin, and ZO-1, suggesting increased vascular
permeability and impaired blood–brain barrier function [123,124].

5. Conclusions

The control of vascular endothelial barrier function is essential for tissue homeostasis.
Endothelial barrier dysfunction leads to several diseases, such as chronic inflammation,
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cancer, and atherosclerosis. Therefore, understanding the mechanisms controlling vascular
permeability is expected to significantly contribute to the development of preventive and
therapeutic strategies against these diseases.
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