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Abstract: Alzheimer’s disease (AD), the leading cause of dementia worldwide, remains a challenge
due to its complex origin and degenerative character. The need for accurate biomarkers and treatment
targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal
proteome methodology to examine the temporal development of molecular alterations in the cor-
tex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease
initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic
protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6
showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators,
and functional effects of proteome alterations were dissected using advanced bioinformatics meth-
ods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified
Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-
causing pathways. Huntington’s Disease Signaling and Synaptogenesis Signaling were stimulated
while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular con-
nections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic
processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration.
These results help us comprehend AD’s molecular foundation and demonstrate the promise of
focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling
personalized medicine.

Keywords: intracerebroventricular streptozotocin; Alzheimer’s disease proteomics; temporal expression
profiling; neurodegenerative biomarkers; pathway dysregulation

1. Introduction

Alzheimer’s disease (AD), the leading cause of dementia globally, presents a constella-
tion of neurodegenerative manifestations characterized by cognitive decline and memory
loss [1]. The disease’s insidious onset and complex etiology, compounded by the absence
of curative treatments, underline the urgency for advanced research into its pathophysio-
logical foundations. The increasing worldwide occurrence of AD dictates a more profound
comprehension as well as innovative strategies for diagnosis and treatment because of its
significant impact on millions of people and their families [2].
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Predominantly, AD is characterized by amyloid-beta (Aβ) plaque deposition and
tau protein hyperphosphorylation [3], yet these hallmarks do not entirely account for
the disease’s multifactorial nature [4]. Moreover, current biomarkers lack sensitivity and
specificity, such as Aβ and tau levels in cerebrospinal fluid (CSF) and imaging techniques.
One of the significant challenges in AD research is the heterogeneity of the disease, which
complicates the identification of universal biomarkers and therapeutic targets [5]. Re-
cent paradigms have shifted focus toward metabolic dysfunction, implicating impaired
glucose metabolism and insulin resistance in the brain as pivotal factors in AD’s early
stages [6–9]. A critical gap slows down the pressing need for early detection and interven-
tion in AD in our understanding and identification of precise biomarkers and effective
therapeutic targets. This metabolic perspective of AD pathogenesis has engendered the
development of novel animal models that more closely replicate the human condition [10].
One such model, involving the intracerebroventricular administration of streptozotocin
(ICV-STZ), has been seminal in emulating AD’s metabolic and cognitive disturbances [11].
The ICV-STZ-induced rodent model has emerged as a valuable tool for replicating the
disease’s metabolic dysfunction, including impaired glucose metabolism and insulin resis-
tance within the brain [12–14]. The ICV-STZ model reflects these metabolic irregularities
and replicates the cognitive impairments characteristic of AD, making it an instrumental
framework for investigating the disease [11,15,16].

Our AD study hypothesis suggests that metabolic dysfunction, particularly poor
glucose metabolism and insulin resistance in the brain, is critical in the disease’s initial
phases [17,18]. This metabolic concept is vital for connecting the biochemical pathways to
the cognitive decline symptoms seen in AD and guiding the experimental investigations
that shape our methodological emphasis. Our study focuses on how changes in protein
expression and enzyme activity provide early biomarkers for AD before the typical signs
like Aβ buildup and tau are hyperphosphorylated. We aim to create a dynamic disease pro-
gression model by systematically outlining molecular changes using advanced proteomic
tools, combining metabolic dysfunction with synaptic and cytoskeletal degradation.

To test our hypothesis, we employed advanced proteomic technologies that heralded
a new neurodegenerative disease research era. Mass spectrometry (MS)-based proteomics
offers a powerful lens through which the molecular mechanism of diseases like AD can be
examined in unprecedented detail [19–21]. This approach allows for the comprehensive
profiling of the proteome, providing insights into the dynamic changes in protein expres-
sion and interactions that occur as the disease progresses. By mapping these proteomic
landscapes, researchers can identify critical proteins and pathways that play pivotal roles
in the onset and development of AD, offering potential avenues for discovering novel
biomarkers and therapeutic targets [22].

This study presents a longitudinal proteomic analysis to explore the temporal evo-
lution of molecular changes in the ICV-STZ-induced AD rodent model. By employing
data-independent acquisition (DIA) and data-dependent acquisition (DDA) MS techniques,
we aimed to examine the cortical proteome at multiple post-treatment intervals comprehen-
sively. The dual MS strategy enables an in-depth proteomic analysis, uncovering significant
alterations in protein expression and perturbed pathways critical for understanding AD’s
pathogenesis. To this end, our study harnesses the power of Ingenuity Pathway Analysis
(IPA) to explore the proteomic alterations identified in the ICV-STZ-induced AD rodent
model. IPA’s advanced computational tools and machine learning algorithms allow for
predicting the functional consequences of the observed proteomic changes, offering insights
into the roles of specific proteins and pathways in the disease’s pathology. By mapping
these molecular alterations to known networks of gene and protein interactions, we can
untangle the complex web of biological processes that underlie AD’s progression. This
integrative analysis promises to highlight critical pathways that are dysregulated in the
disease, providing fertile ground for identifying biomarkers and therapeutic targets.
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2. Results
2.1. Overview of Identified Proteins and Peptides in STZ and Control Groups Reveals
Significant Overlaps

In our longitudinal proteomic analysis of an Alzheimer’s disease (AD) rodent model,
we followed the protein expression dynamics at various stages of disease progression
using a robust experimental design (Figure 1). The subjects were divided into two cohorts,
intracerebroventricularly (ICV) administered with either the vehicle (ICVV) or streptozo-
tocin (ICV-STZ), the latter inducing AD-like neuropathology. Progression of proteomic
changes were tracked at weeks 1, 3, and 6 (1 W, 3 W, 6 W) post-administrations. Rigorous
sample collection from cortex tissues was ensured by stereotaxic isolation, succeeded by
a series of preparatory steps including homogenization, lysis, and centrifugation, culmi-
nating in protein digestion into peptides by trypsinization. We subsequently refined the
peptides using C18 columns and concentrated them through speed vacuum concentration,
equipping us with high-resolution mass spectrometric analysis. The proteomic analysis
was two-pronged: employing label-free quantification data-dependent acquisition (LFQ-
DDA-MS/MS) for a sweeping proteomic profile alongside label-free data-independent
acquisition (LFQ-DIA-MS/MS) for fine-tuned quantification. This dual approach allowed
us to juxtapose peptide abundance across the delineated temporal milestones, bridging the
quantitative divide in proteomic alterations.

In the proteomic analysis of ICV-STZ-treated AD rodent models, proteins were selected
based on criteria ensuring high confidence and biological relevance (Table 1). We included
proteins with 15 or more peptide spectrum matches (PSMs) and at least 4 unique peptides
to ensure robust protein identification and quantification. Only proteins that demonstrated
statistically significant abundance changes were considered (adj. p-value < 0.05). To focus
on the most biologically significant alterations, proteins with log2 abundance ratios of 2.00
or more and those less than or equal to −2.00 were included, highlighting proteins with at
least a 4-fold change in expression levels. These stringent selection parameters ensured that
the data presented captured the most prominent and reliable protein expression changes
relevant to the AD pathology induced by ICV-STZ treatment (Table 1). The complete
proteins and peptides identified in the ICV-STZ and control groups within the cortex
datasets are detailed in Table S1. Detailed protein identification metrics and associated
statistical analyses are provided in Figure S1, offering a comprehensive overview of the
proteomic landscape at each time point post-treatment.

2.2. Identification of Differentially Abundant Proteins Offers Insight into Early AD
Neuropathophysiology

Volcano plots (Figure 2A–F) represent the comparative proteomic landscape, where
each point denotes an individual protein’s relative abundance, contrasted between ICV-STZ
and ICV-Vehicle for the three time points. Red points highlight proteins with increased
abundance (upregulated), blue points denote decreased abundance (downregulated), and
grey points indicate proteins without significant changes.

One-week post-administration (Figure 2A), out of 1041 proteins analyzed, 432 exhib-
ited exclusive significant differential abundance. The 1 W time point shows a significant
downregulation for proteins such as Aldoa, Psmb7.1, and Aldoart3, Cct4.2 (FC < −5; adj.
p-values < 0.05). In contrast, Clip2, Sptbn2, Pdap2, Dclk1, Ndufa9 emerge as significantly
upregulated (FC > 7; adjusted p-values < 0.05). At the 3 W juncture, proteins such as
Gdpd2 and Ube2o are significantly downregulated (Figure 2B). Dclk1 and Ndufa proteins
show a consistent increase in abundance, illustrated by their red-colored point. At 6 W,
we observed proteins like Prdx6, Bat2, Xpo7, and Vim identified as having significant
downregulation (FC < −7.5; adjusted p-values < 0.0001). They stand out in the blue zone,
indicating a significant increase in protein abundance. Conversely, proteins such as Alcam,
Idh3B, Slc1a4, Arhgap1, and Cplx2 are significantly upregulated (Figure 2C).

We compared the proteomic landscape across different time points post-ICV-STZ
administration to discern the evolution of protein regulation patterns pertinent to AD-like



Int. J. Mol. Sci. 2024, 25, 6469 4 of 23

pathology (Figure 2D–F). The transition from 1 W to 3 W reveals a notable downregulation
in proteins such as Map1b.4, Lxn.1, Pebp (FC < −5; adjusted p-values < 0.0001). These early
alterations in abundance reflect initial cellular responses to the induced pathological state.
On the opposite spectrum, proteins such as Gpd2.4, Gstm1.1, Dclk1.6, and Sv2b display
a significant upregulation (FC > 5). As we move further along the timeline, examining
the proteomic changes from 3 W to 6 W, we observe proteins such as Cand1.2, Gpd1,
and Sv2b remain prominently downregulated, and proteins such as Vim, Prdx6, and
Tbca are upregulated, supporting the notion of sustained biological responses or further
advancement of disease mechanisms.
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Figure 1. Schematic overview of the experimental workflow for the longitudinal proteomic analysis
in an Alzheimer’s disease rodent model. (A) Schematic timeline of the experimental setup. Rats
were divided into two groups: one receiving intracerebroventricular (ICV) administration of vehicle
(ICVV) and the other receiving streptozotocin (ICV-STZ) to induce Alzheimer ’s-like pathology. The
timeline includes three key time points: the start, week 1, week 3, and week 6 post-administration. At
each time point, rats were sacrificed, and prefrontal cortex (PFC) tissues were collected. Each group
consisted of 10 rats (n = 10 for ICVV and ICV-STZ). (B) workflow of sample processing and analysis.
Post-cortex isolation using a stereotaxic apparatus, tissues were homogenized and lysed. The proteins
were then digested into peptides through trypsinization. Peptides underwent cleanup using C18

columns and were concentrated. The prepared samples were analyzed using two mass spectrometry
techniques: label-free quantification data-dependent acquisition (LFQ-DDA-MS/MS) for broad
proteomic profiling and label-free data-independent acquisition (LFQ-DIA-MS/MS) for targeted
quantification. The bioinformatics analysis included generating volcano plots to identify significantly
altered proteins, hierarchical clustering for pattern recognition, and pathway analysis to elucidate
the molecular mechanisms underlying observed proteomic changes. This approach facilitates the
identification of temporal proteomic alterations and the discovery of potential biomarkers and
therapeutic targets for Alzheimer’s disease.
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Table 1. Temporal Protein Expression Profiles in ICV-STZ Treated Alzheimer’s Disease Rodent Model. This table presents a comprehensive overview of the protein
expression profiles in a rodent model of Alzheimer’s disease at different time points following intracerebroventricular streptozotocin (ICV-STZ) treatment compared
to control (ICV-Vehicle). The columns display the gene symbol, the corresponding protein name, percentage coverage, number of peptide spectrum matches (PSMs),
unique peptides identified, overall protein score, and the log2 fold changes in protein abundance between the time points of 3 weeks and one week (3 W/1 W),
six weeks and one week (6 W/1 W), six weeks and three weeks (6 W/3 W), and each time point compared to its respective control (1 W/C, 3 W/C, 6 W/C). The fold
change color coding reflects the direction and magnitude of expression changes: blue indicates downregulation, red indicates upregulation, and white represents no
significant change. The extent of color saturation corresponds to the degree of fold change. Proteins are ranked by the magnitude of their expression changes and
the statistical significance of their altered abundance at each post-treatment time point, facilitating the identification of potential biomarkers and insights into the
molecular dynamics of disease progression.

Gene Symbol Protein Name Coverage [%] # PSMs # Unique Peptides Score 3 W/1 W 6 W/1 W 6 W/3 W 1 W/C 3 W/C 6 W/C
Gprin1 G protein-regulated inducer of neurite outgrowth 1 26 123 24 197.43 −0.04 3.91 −0.8 −1.85 1.76 0.04
Pgk1 Phosphoglycerate kinase 1 25 48 11 86.72 0.3 −3.77 −4.04 1.72 2.7 −2.77
Atp6v1b2 V-type proton ATPase subunit B, brain isoform 18 70 10 111.94 0.99 1 4.17 0.43 2.25 1.74
Mbp Myelin basic protein 25 88 10 158.79 1.79 5.15 −1.84 −0.84 3.9 2.29
Canx Calnexin 9 52 7 83.15 −1.73 5.52 −0.66 −0.96 −1.03 −0.23
Glul Glutamine synthetase 18 81 7 148.53 −2.77 0.36 5.3 −0.72 −1.92 1.45
Atp5f1c ATP synthase subunit gamma 21 54 6 87.43 3.03 −3.3 −3.17 4.8 3.26 −0.98

Dlst Dihydrolipoyllysine-residue succinyltransferase component of
2-oxoglutarate dehydrogenase complex, mitochondrial 13 21 6 34.1 2.43 4.19 0.39 0.12 −1.96 −1.4

Lsamp Limbic system-associated membrane protein 13 54 5 82.43 −2.65 4.03 3.6 −0.16 −5.48 −3.73
Atp6v1g2 V-type proton ATPase subunit G 42 78 5 177.36 0.57 −4.49 −3.96 2.56 1.25 −4.48
Nucks1 Nuclear casein kinase and cyclin-dependent kinase substrate 1 20 19 5 32.98 4.05 1.44 −4.59 1.7 −0.29 −4.02
Prpsap2 Phosphoribosyl pyrophosphate synthase-associated protein 2 10 21 5 35.64 −2.24 −3.21 −2.57 0.56 −1.48 5.58
Got1 Aspartate aminotransferase, cytoplasmic 11 54 5 91.37 1.32 −2.53 0.52 2.57 3.09 −1.7
Ndufs1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 7 21 4 36.45 −4.74 −1.05 3.59 0.39 0.35 0.54
Aldh1l1 10-formyltetrahydrofolate dehydrogenase 3 37 4 44.98 0.78 −4.06 −3.19 1.22 2.81 −1.97
Cap2 Adenylyl cyclase-associated protein 2 7 15 4 34.76 0.4 2.14 −0.56 1.84 0.58 2.36
Cadm2 Cell adhesion molecule 2 11 26 4 39.97 2.95 −0.98 −3.11 −2 −0.22 −1.85

Myosin-6 2 24 4 39.3 1.01 −3.92 −4.13 2.26 1.63 −5.41
Crmp1 Collapsin response mediator protein 1 12 118 4 212.19 −0.58 −1.13 4.09 −0.82 −0.44 −0.27
Cdv3 CDV3 homolog 23 82 4 105.62 −0.97 0.68 1.54 −0.19 −1.47 2
Grb2 Growth factor receptor-bound protein 2 14 25 4 40.85 1.84 −2.49 −2.01 1.74 2.04 −1.83
Ensa Alpha-endosulfine 24 20 4 33.57 −2.82 −0.68 0.26 6.64 6.64 1.72
Wfs1 WFS1 4 26 4 37.31 1.3 6.64 5.74 −5.63 −4.74 1.75
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Figure 2. Differential proteomic profiling across time points in an ICV-STZ AD rodent model. Panels
(A–C) represent volcano plots displaying the log2 fold change of protein expressions in the cortex of
rats induced with Alzheimer’s pathology using intracerebroventricular streptozotocin (ICV-STZ) at
weeks 1, 3, and 6, respectively, against their corresponding controls (ICVV). The x-axis shows log2
fold change between groups, and the y-axis represents the negative log10 of the adjusted p-value,
indicating the significance of the change. Red dots indicate proteins with a statistically significant
increase in expression, blue dots represent a significant decrease, and gray dots denote proteins with
no significant change. Panels (D–F) juxtapose the same time points (weeks 1, 3, and 6 post-ICV-
STZ administration) directly against each other to highlight the temporal progression of proteomic
alterations. Panels (G–I) are scatter plots comparing the log2 fold changes between two time points,
illustrating the correlation of proteomic changes for the disease model. In all scatter plots, the red line
indicates the unity line, where equal expression changes between the time points would lie. Green
dots above the line indicate a more significant fold change at the later time point (e.g., week 3 vs.
week 1), while blue dots below the line indicate a more significant fold change at the earlier time
point. Each dot in the volcano plot is annotated with the protein identifier and the fold change value
where space allows. Proteins were considered significantly altered with a fold change threshold set at
two and an adjusted p-value of less than 0.05.

Proteins significantly upregulated in 6 W compared to 1 W are shown in red and
predominantly in the right upper quadrant of the plot (Figure 2F). This cluster of upregu-
lated proteins, such as Vim (Vimentin), Prdx6 (Peroxiredoxin-6), and Tbca (Tubulin folding
cofactor A), indicates a substantial increase in their abundance, signifying a response to
prolonged STZ treatment. Conversely, downregulation in 6 W compared to 1 W included
Cltb (Clathrin light chain B) and Gnb2 (Guanine nucleotide-binding protein G(I)/G(S)/G(T)
subunit beta-2). The correlation of fold changes in protein abundance between the different
time points provides a visual semblance of the protein expression stability or fluctuation
as the disease pathology evolves (Figure 2G–I). A bi-dimensional correlation between 1 W
and 3 W (Figure 2G), 3 W and 6 W (Figure 2H), and 1 W and 6 W (Figure 2I) explains the
longitudinal proteomic flux. Here, the grey points elucidate proteins that did not meet
the significance threshold across the comparative weeks. This might indicate a homeo-
static proteomic equilibrium or a transitional state in the disease’s trajectory. A pattern
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emerges where a cluster of proteins in the light blue points suggests a group of proteins
consistently upregulated from the first to the third week, which may indicate progressive
disease pathology or a heightened cellular response to the initial STZ insult.

A significant shift between 1 W and 6 W towards the blue area (lower right quadrant)
can be observed (Figure 2H). These proteins are more abundant at 1 W and show a relative
decrease by 6 W, suggesting a potential reversal or downregulation in the latter stages of
the observation period. Proteins upregulated (light green) from 1 W to 6 W and remaining
upregulated by W6 may play critical roles in the chronic phases of the STZ-induced
AD-like pathology. The trajectory of proteomes from W3 to W6 is compared directly
(Figure 2I). A spread of dark blue dots in the left and right halves of the plot indicates
proteins that had increased by 3 W but then decreased in abundance by 6 W, possibly
suggesting transient responses or adaptations that may not be sustained in the longer term.
Conversely, the light blue dots indicate proteins whose abundance continues to rise, which
could be involved in ongoing disease processes or represent a delayed response to the
STZ treatment. Principal Component Analysis (PCA) of the proteomic profiles and their
distribution across all experimental groups is depicted in Figure S2. Figure S3 illustrates
the distribution of peptide intensities, an additional validation layer for our proteomic
quantification approach.

2.3. Temporal and Comparative Proteomic Profiling Reveals Differential Cortex Protein Dynamics
in ICV-STZ Treated Rats

The UpSet plot illustrates the intricate landscape of enriched protein expression across
different experimental conditions (Figure 3A,B). The horizontal bars indicate the number
of proteins uniquely identified in each set. In contrast, the vertical bars represent the
size of the intersection, showing the number of proteins common between the sets. The
upregulated protein plot (Figure 3A) indicates a prominent intersection involving over
150 proteins shared between the 6 W vs. 3 W and 6 W vs. 1 W conditions. In contrast,
the downregulated protein plot (Figure 2B) presents a peak intersection with 129 proteins
between 6 W vs. 3 W and 6 W vs. 1 W comparison.

The uniform distribution seen in the enrichment plot, with intersection counts such
as 155 and 117 for other sets, contrasts with the reduced plot, where there is a significant
decrease following the most prominent intersection, descending to counts of 149 and 129.
This indicates a more variable pattern of protein downregulation. The individual set
sizes differ significantly, with the reduction plot (Figure 3B) exhibiting a broader range
of unique proteins, especially in the 300–400 set size range for 3 W vs. control, compared
to the upregulated plot (Figure 3A). The temporal aspect reveals a shift; while the shared
downregulated proteins diminish over time, the shared upregulated proteins amplify, as
evidenced by the intersection size growing from 6 W to 1 W comparisons (Figure 3A).

The Venn diagram represents the unique and shared proteins identified at different
time points following the ICV-STZ treatment model (Figure 3C). The chart shows 64 unique
proteins in the 6 W group, indicating a substantial proteomic alteration occurring 6 W
post-treatment. The 1 W group shows 280 unique proteins and the 3 W group presents
432 unique proteins, highlighting the temporal dynamics of the proteome response.

The intersection of all three groups, where 91 proteins are shared, suggests a core set
of proteins consistently affected at all examined time points, which may be central to the
disease’s pathology or the model’s response to the treatment. Notably, the most significant
overlap between the 3 W and 6 W groups, with 460 shared proteins, suggests that the
proteomic changes initiated at 3 W persist or evolve up to 6 W. In contrast, the intersection
between the 1 W and 6 W groups is comparatively more minor, with 58 proteins, implying
a more significant proteomic shift occurring after the 1 W and before the 6 W. Protein rank
plot with proteins labeled with higher abundance is highlighted in (Figure 3D). Proteins
from the Aldoa family are found in the top left, indicating a high abundance within the
sample set. As we move to the right, there is a gradual transition to proteins such as
Vim, Cand1, Psma5, and finally to Ola1 and Rpl13 towards the far right, indicating their
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lower abundance in the sample set. The density distribution in protein expression levels
among replicates and time points is shown in Figure S4. Correlation Heatmap of Protein
Intensities is further elucidated in Figure S5, showcasing the complex interplay between
various proteins in the disease state.
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Figure 3. Dynamic Proteomic Patterns in a Streptozotocin-Induced Alzheimer’s Disease Rodent
Model Over Time. Panel (A) displays an UpSet plot for proteins with enriched abundance, indicating
the number and intersections of proteins upregulated at weeks 1, 3, and 6 post-ICV-STZ administra-
tion. Panel (B) shows an UpSet plot for proteins with reduced abundance, highlighting the count and
intersection points of downregulated proteins at the corresponding time points. Panel (C) presents a
Venn diagram detailing the overlap and unique counts of significantly altered proteins at each time
point, illustrating the study’s progression and changes in protein expression. Panel (D) demonstrates
a protein rank abundance plot, ranking proteins by their abundance in the study and annotating
those of particular interest.

In the analysis of proteomic changes, a consistent expression pattern across con-
trol and ICV-STZ treated samples at W1, W3, and W6 is observed for proteins such as
A6IKU1, A6IT26, and A6JG42, indicating their potential role in processes unaltered by
ICV-STZ treatment. In contrast, Hspa12a (heat shock protein family A (Hsp70) member
12A) shows significant variability, suggesting a differential regulation upon treatment
(adj. p-value < 0.05) (Figure 4). Pyruvate dehydrogenase E1 component subunit alpha
(Pdha1) demonstrates increased expression levels over time, which may indicate progres-
sive alterations in metabolic pathways because of the ICV-STZ treatment. In contrast,
proteins involved in synaptic functioning, such as Synapsin-1 (Syn1) and Vesicle-associated
membrane protein 2 (Vamp2), exhibit a moderate variability in expression, reflecting the
subtleties of synaptic alterations post-treatment.
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Figure 4. Violin plots representing the distribution of log2-transformed intensity values for selected
proteins. Each plot corresponds to a specific protein, with individual points denoting replicate
measurements—colored as red for replicate 1, orange for replicate 2, and blue for replicate 3. Gray
shapes indicate the overall distribution of values, while colored points reflect observed data; the
absence of a colored dot indicates imputed data points for missing values. Asterisks (*) in the figure
indicate statistical significance between the conditions compared (p < 0.05). Statistical significance
was determined using ANOVA followed by post-hoc analysis for multiple comparisons.
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The heatmap visualizes the z-score normalized protein expression levels from ICV-STZ
treated rat cortices samples at 1 W, 3 W, and 6 W post-treatment (Figure 5A). The z-score
normalization emphasizes these shifts, with proteins that exhibit higher expression in the
treated groups displaying a marked change towards red compared to the control group.
Conversely, those with lower expression levels are represented in shades of blue, showing
a decrease in abundance relative to the control. A consistent red across the 1 W, 3 W, and
6 W columns indicates sustained upregulation over the studied time course. The dot plot
illustrates the differential abundance of proteins across the time points studied (Figure 5B).
The size of the dots signifies the magnitude of change, with larger dots indicating a more
pronounced fold change. The circle color reflects the adjusted p-value, with black denoting
proteins with statistically significant changes (p < 0.05), whereas blue represents non-
significant changes. Proteins such as Picalm, Nipsnap1, and Ndufa9 are indicated by larger
black circles across multiple time points, suggesting these proteins undergo significant and
consistent abundant changes in response to ICV-STZ treatment. Conversely, proteins with
smaller blue circles, such as pgk1 and pgam1, show changes that do not reach statistical
significance. Notably, some proteins exhibit a significant fold change at earlier time points
(1 W or 3 W) but not at later stages (6 W) or vice versa. The important changes observed
in proteins such as Pepbp1, Rps25, and RGD1560402 at W3, characterized by large yellow
dots (>9Log2FC; adj. p-value < 0.05), suggest these proteins play crucial roles in the later
stages of the model’s pathology (Figure 5B). The coefficient of variation (CV) distributions
for each treatment and time point were measured, with median CVs annotated to provide
insight into the precision of our measurements (Figure S6). Pairwise correlation analyses
were performed, which depicted strong positive relationships between proteomic patterns
at various time points, suggesting a consistent proteomic response to ICV-STZ treatment
throughout the study (Figure S7). The comprehensive nature of our protein coverage
is depicted through a stacked bar chart, illustrating the cumulative number of proteins
identified across all samples (Figure S8).

2.4. Temporal Dynamics of Proteomic Alterations in ICV-STZ Treated Rats: GO and KEGG
Pathway Analyses from Acute to Chronic Stages

The gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis elucidate the cellular functions and biological processes
impacted in the AD model from 1 W to 6 W post-ICV-STZ treatment (Figure 6). Each bar
in the charts represents a GO term or KEGG pathway, and the length corresponds to the
−log10 (adj. p-value), which indicates the statistical significance of enrichment. At 1 W,
molecular functions (GO: MF) related to cytoskeletal proteins and nucleotide binding
are notably enriched, with −log10 (p-values) peaking around 8, indicating significant
enrichment (Figure 6A). In cellular components (GO: CC), synapse-related terms such
as neuron-to-neuron synapse and synaptic membrane show high enrichment (−log10
(p-value > 12). Biological processes (GO: BP) associated with vesicle-mediated transport
and cell-cell junction organization are prominent, with −log10 (adj. p-values > 4). The
KEGG pathway analysis highlights the glycolysis/gluconeogenesis pathway (−log10 adj.
p-value > 3.5).

By 3 W, there is a noticeable shift, with (GO: MF) such as ATP binding and protein
folding peaking around −log10 (p-values) of 6 (Figure 6B). Cellular components like the
neuron projection and synaptic membrane remain highly represented, with p-values around
the −log10 (p-value) of 15. Biological processes continue to show significant enrichment
in metabolic processes and vesicle-mediated transport, with −log10 (p-values) around 7.5.
KEGG pathways such as synaptic vesicle cycle and carbon metabolism show increased
enrichment, with −log10 (p-values) around 3. At week 6 (Figure 6C), molecular function
categories shift slightly, with cytoskeletal protein binding and phosphatidylinositol binding
showing significant enrichment at a −log10 (p-value) of approximately 3. Cellular com-
ponents such as the postsynaptic membrane and dendrite part continue to be enriched,
with p-values peaking at a −log10 (p-value) of 6. For biological processes, terms related
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to vesicle-mediated transport in synapses show enrichment, albeit with a lower −log10
(p-value) of around 1, suggesting a decrease in significance. KEGG pathway analysis indi-
cates that processes like synaptic vesicle cycle and retrograde endocannabinoid signaling
are enriched, with a −log10 (p-value) close to 2.
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Figure 5. Hierarchical Clustering and Differential Expression Analysis in an STZ-Induced Alzheimer’s
Model. Panel (A) presents a heatmap coupled with hierarchical clustering, showing proteins’ z-score
normalized expression levels across six experimental groups, denoted by color coding at the top:
ICV-STZ treated (1, 3, and 6 weeks) and their corresponding controls. Each row represents a different
protein, while each column represents an experimental replicate—the clustering dendrograms on axes
group proteins and replicates based on expression similarities. Panel (B) details a dot plot showing
selected proteins’ log2 fold change (Log2FC) at each time point. Circle size indicates the relative fold
change in abundance, and color coding signifies the adjusted p-value, with a smaller p-value represented
by a darker shade. The statistical significance cutoff was set at an adjusted p-value of <0.05.

2.5. Integrated Bioinformatics and Machine Learning Analysis Unveils Key Molecular Pathways in
Disease Progression and Potential Therapeutic Targets

In our investigation into the molecular pathways of AD progression, we employed
Ingenuity Pathway Analysis (IPA) software (v.24.0.1) to analyze and interpret the data gen-
erated from our proteomic experiments. Utilizing IPA’s algorithms, we aimed to uncover
the intricate web of biological interactions and pathways affected in our model. By applying
IPA’s network generation based on principles of biological relevance, interconnectivity,
density optimization, and network size, we constructed biologically relevant networks from
our list of differentially expressed proteomes. IPA’s causal analytics algorithms, includ-
ing Upstream Regulator Analysis (URA), Mechanistic Networks (MN), Causal Network
Analysis (CNA), and Downstream Effects Analysis (DEA), allowed us to predict upstream
regulatory molecules, draw connections between regulators and genes within our dataset,
and hypothesize on the broader implications of our findings on biological functions and
diseases (Figure 7). The network depicted in ICV-STZ-1W reveals interactions between
PPARGC1B and AGT, which are associated with myelination and the invasion of carcinoma
cell lines (Figure 7A). PPARGC1B, a gene known to play a role in energy metabolism, is
implicated in myelination, suggesting a potential link between metabolic processes and
neuronal integrity. AGT is connected to the concept of carcinoma cell invasion, which
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might reflect an aberrant activation of processes typically associated with cell migration
and tissue invasion.
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Figure 6. Gene Ontology and Pathway Enrichment Analysis in STZ-Induced Alzheimer’s Disease
Model. Panel (A) represents the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways in the 1-week post-treatment group. The x-axis displays the
−log10 (p-value) for the most significant GO terms in the categories of molecular function (GO: MF,
blue), cellular component (GO: CC, red), and biological process (GO: BP, green), along with KEGG
pathway analysis (purple). Panel (B) shows similar enrichment analysis results for the 3-week post-
treatment group. Panel (C) depicts the analysis for the 6-week post-treatment group, highlighting
the most significant terms and pathways at this later stage. Bars extend rightward from the y-axis
corresponding to their −log10 (p-value), indicating the significant level of enrichment for each term
or pathway, with longer bars representing higher significance. The analyses elucidate the evolving
biological context of the disease model over time, identifying critical molecular and cellular processes
affected during the progression of Alzheimer’s-like pathology induced by STZ.

ICV-STZ-3W treatment showed proteins such as CX3CR1 and APP, both of which
are connected to the function of long-term potentiation of collateral synapses, indicating
synaptic plasticity changes. CX3CR1 is also tied to motor dysfunction, while APP’s cleavage
product generated by ADAM10 is implicated in AD. The involvement of STK11 and CD28
highlights the complexity of intracellular signaling pathways that may underline synaptic
modifications and neuronal communication in the disease state (Figure 7B). ICV-STZ-6W
treatment revealed that CSF1 and TGFBR2 are linked to neoplasia of epithelial cells, while
the MTOR protein is associated with Huntington’s Disease signaling and soft tissue lesions.
The direct interaction between MTOR and AR and the indirect association with MYCN
suggest an involvement of growth and neurodegenerative disease signaling pathways,
potentially reflecting the multifaceted nature of Alzheimer’s disease that goes beyond
classical neurodegeneration (Figure 7C).
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Figure 7. Ingenuity Pathway Analysis (IPA) of Molecular and Cellular Functions Altered in an
STZ-Induced Alzheimer’s Disease Model Utilizing Machine Learning. Panels (A–C) illustrate the
IPA-derived network analyses at 1, 3, and 6 weeks post-intracerebroventricular STZ administration,
highlighting vital biological functions and diseases with the predicted activation (orange) or inhibi-
tion (blue) states based on the expression data. The graphical summary legend details the nature of
the molecular relationships, including direct and indirect interactions and predicted activations and
inhibitions, inferred through machine learning algorithms from IPA. Panel (D) shows a histogram of
the z-scores for the top disease and function annotations across the time points, with orange repre-
senting a positive z-score, blue a negative z-score, and gray indicating no activity pattern available.
Panel (E) displays a heat map of the disease and function annotations, with the intensity of the
color representing the degree of association as determined by IPA’s machine-learning analysis. This
multifaceted approach elucidates the complex biological landscape of the disease model, predicting
the activation state of various pathways and functions implicated in the disease’s progression.

The histogram in Figure 7D reflects the −log10 (p-value) of the involvement of various
pathways, with the threshold line demarcating the significance level. Pathways such as
Huntington’s Disease Signaling and synaptogenesis signaling exhibit positive z-scores
above the threshold, indicating a significant activation in our dataset (Figure 7D). This
is consistent with the neuronal and synaptic dysfunctions commonly observed in AD.
Conversely, pathways like Glutamate Receptor Signaling and Calcium Signaling, crucial
for neuronal signaling and plasticity, show negative z-scores, suggesting a significant
downregulation in these pathways. The interconnected pathways and regulatory networks
are elaborated in Figure S9.

Applying IPA’s Knowledge Mining has allowed the identification of approximately
1500 diseases, phenotypes, and function pathways (Figure 7D). For example, the high posi-
tive z-score observed in the Glycolysis/Gluconeogenesis pathway aligns with altered en-
ergy metabolism associated with AD. The machine learning-driven summary construction
has helped to infer relationships and visualize biological activities, such as the activation of
microtubule dynamics, which are not directly observed but are crucial to understanding the
disease’s mechanistic landscape. The heatmap in Figure 7E complements the previous anal-
ysis by providing a high-resolution view of the disease and biological function categories
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affected in our AD model. Sized by the −log10 (p-value) and colored by the z-score, the
heatmap presents an intricate portrait of the biological landscape modulated by the disease
state. Notable categories such as ‘Organismal Injury and Abnormalities’ and ‘Neurological
Disease’ are prominently featured with both high significance and positive z-scores, empha-
sizing the pronounced impact of AD pathology on these functions. In contrast, areas like
‘Cancer’ show a mixture of positive and negative z-scores, suggesting a complex interplay
of biological processes that the disease or treatment regimen could influence.

Further investigation within ‘Nervous System Development and Function’ reveals
significant activation across multiple facets of this category, aligning with the expected
neurodegenerative aspect of AD. ‘Cellular Function and Maintenance’ and ‘Cell-to-Cell
Signaling and Interaction’ exhibit a range of activations and suppressions, reflecting the
disruption of cellular homeostasis and communication pathways in the diseased state.
Categories like ‘Cell Death and Survival’ and ‘Cellular Growth and Proliferation’ depict
a nuanced pattern, with patches of significant activation (orange squares) interspersed
with areas of no significant change (grey squares), indicating selective regulation of these
processes at various stages or conditions of the disease model. Overall, the heatmap
visualizes specific disease mechanisms and biological functions that are dysregulated in
AD, offering a quantitative foundation for understanding the model’s complexity and
guiding further experimental inquiry into these targeted areas (Figure 7E).

3. Discussion

This study presents a widespread temporal analysis of proteomic changes in an ICV-
STZ-induced AD model in Wistar rats, elucidating the dynamic progression of protein
expression in the cortex—a primary site of AD pathology [23]. Our longitudinal pro-
teomic analysis offers a detailed temporal examination, uncovering the progression from
early metabolic dysfunction to later-stage synaptic and cytoskeletal alterations. Using
both data-independent acquisition (DIA) and data-dependent acquisition (DDA) mass
spectrometry techniques has unveiled significant alterations in protein expression and
perturbed pathways, which are critical to understanding the pathogenesis of AD. Through
a meticulous experimental protocol, this study delineates the progressive stages of AD-like
pathology at one, three-, and six weeks post ICV-STZ administration [24]. Noteworthy is
the emphasis on a refined stereotaxic delivery of STZ, calibrated to induce the characteristic
oxidative stress and cognitive impairments associated with AD without peripheral glucose
imbalances [25].

The differential protein abundance observed across various stages of disease pro-
gression (Figure 2) suggests a multifaceted response to ICV-STZ treatment. The initial
downregulation of proteins such as Aldoa and Pgk1 related to energy metabolism and
synaptic structure during the first week post-administration underscores the metabolic
hypothesis of AD etiology [26–28]. This decline is characterized by impaired glucose uti-
lization and reduced energy metabolism, as described by Vijay et al. [29]. Furthermore, the
upregulation of stress response proteins like Heat shock proteins (Hspa1b), observed at the
three-week mark, aligns with studies [30–33] that discussed the activation of cellular stress
responses during AD progression. The observed temporal downregulation of synaptic
proteins, such as Synapsin-1 (Syn1) and Vesicle-associated membrane protein 2 (Vamp2),
provides a proteomic narrative that complements the synaptic dysfunction widely reported
in AD literature, akin to the synaptic loss [34–37].

The downregulation of Vimentin (Vim) across the six-week timeframe reflects the
reactive gliosis found in AD, as reported in [38]. Vimentin and Peroxiredoxin-6, protein
level changes associated with neuroinflammation, and neuronal stress response illustrate
a shift towards chronic pathological responses (Figure 2F) [39–41]. The downregulated
presence of these proteins by the sixth week corroborates their proposed role in neurodegen-
erative processes and reinforces the relevance of addressing oxidative stress in therapeutic
strategies [38,42].
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Moreover, the differential expression of the mitochondrial electron transport chain
components, such as NADH-ubiquinone oxidoreductase 75 kDa subunit (Ndufs1), high-
lights mitochondrial dysfunction as a critical element of AD pathophysiology [43–45].
These findings echo the mitochondrial cascade hypothesis [46], which posits mitochondrial
dysfunction as a primary event leading to AD. Future research should explore strategies to
bolster mitochondrial function and oxidative stress resilience, offering a therapeutic avenue
to mitigate AD progression. Our data also indicated alterations in proteins associated with
neuroinflammation and glial cell activation, such as Glutamine Synthetase (Glul), predom-
inantly expressed in astrocytes [47,48]. The role of glia in AD, especially astrocytes and
microglia, has gained significant attention, with these cells implicated in both protective and
degenerative processes within the AD brain [49–51]. The observed proteomic signatures
suggest that glial cells undergo functional changes throughout AD, potentially shifting
from a neuroprotective to a neurotoxic role. Investigating the triggers and consequences of
glial activation in AD could reveal targets for modulating neuroinflammation and halting
disease progression.

Ingenuity Pathway Analysis (IPA) further enriched our understanding by elucidating
the interconnected pathways affected by the disease state. The machine learning compo-
nents of IPA identified significant alterations in canonical pathways, such as Huntington’s
Disease Signaling and Glycolysis/Gluconeogenesis, which parallel the impaired energy
metabolism and synaptic deficiencies often seen in AD [52] (Figure 7D). Moreover, the
inferred relationships generated by IPA’s machine learning algorithms enabled the iden-
tification of novel pathways that might not be immediately apparent through traditional
analysis (Figure 7E). The involvement of PPARGC1B in myelination and AGT in the in-
vasion of carcinoma cell lines suggests that pathways traditionally associated with other
biological processes may also play a role in AD pathogenesis. This finding may reflect the
complexity of AD, indicating potential shared mechanisms with other neurodegenerative
diseases and even cancer biology [53,54] (Figure 7A).

The disease and biological function categories illustrated in the heatmap (Figure 7E)
delineate the extensive impact of AD pathology. Notable areas such as ‘Organismal Injury
and Abnormalities’ and ‘Neurological Disease’ exhibited high significance and positive
z-scores, emphasizing the extensive influence of AD pathology on these functions. Our
discussion integrates these findings into the current landscape of AD research, highlighting
the potential of a proteomics-based approach in identifying novel pathways and targets.
It also sets the stage for further validation studies and underscores the importance of
integrating various omics data to form a holistic view of AD pathophysiology. Future
research should explore the therapeutic potential of the identified targets and pathways,
focusing on those proteins consistently altered across all examined time points. It is
crucial to expand upon the machine learning analyses to predict the activation state of
various pathways and functions implicated in disease progression, ultimately informing
the development of intervention strategies [55].

While our study provides valuable insights into the molecular mechanisms of AD
using an ICV-STZ-induced rodent model, several limitations must be acknowledged regard-
ing the translational potential of these findings to human AD pathology. First and foremost,
relying on a single animal model to mimic human AD pathology is a significant constraint,
considering the complexity and heterogeneity of the disease in humans. The ICV-STZ
model primarily simulates aspects of sporadic AD related to metabolic dysfunction, which
may not encompass the entire spectrum of pathological events seen in human patients.
Rodents have a less developed prefrontal cortex and different immune system responses,
which may not fully replicate the chronic neuroinflammation in human AD [14,56]. An-
other limitation lies in the exclusive use of male Wistar rats. This gender-specific approach
does not account for the potential differences in disease pathology and progression that
could be present in females, which is particularly pertinent given that AD prevalence
is higher in women [57,58]. The utilization of female subjects in subsequent studies is
paramount, considering the gender disparities in AD prevalence. Such inclusion would
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enhance the generalizability of our findings and uncover potential sex-specific therapeutic
targets. Finally, while our study spanned six weeks post-treatment, more is needed to
observe the entire progression of the disease, especially for late-stage pathological events.
A longer duration might provide additional insights into the chronic phase of the disease
and further clarify the relevance of the observed protein changes.

These limitations stress the need for a multi-faceted approach, including different
AD models, genders, broader omics analyses, and longer observation periods, to validate
and extend our findings. Such comprehensive studies will help to translate these find-
ings into clinical research and, eventually, therapeutic interventions for AD. To ensure
the translational validity of our findings, we plan to perform cross-species validations
using transgenic mouse models. This will bolster the clinical relevance of our identified
protein targets and pathways. In parallel, integrating our proteomic data with genomics,
transcriptomics, and metabolomics is expected to unravel complex molecular networks and
regulatory mechanisms in AD (Figure 7). An in-depth examination of post-translational
modifications (PTMs) is another critical aspect that can illuminate the functional conse-
quences of protein alterations observed in our study, offering insights into regulating
protein activity and interactions in AD. The advancement of machine learning algorithms
will be integral to refining predictive disease progression models, enhancing our findings’
predictive power and clinical applicability. Such technological developments could pave
the way for personalized medicine approaches in AD management.

In conclusion, our work provides a valuable resource for the AD research community,
offering a rich dataset of protein expression changes. By delineating the trajectory of
proteomic fluctuations, we pave the path for future investigations to explain the molecular
underpinnings of AD further and spearhead the development of novel therapeutics aimed
at the early and precise interception of the disease.

4. Materials and Methods
4.1. Reagents and Equipment

High-purity reagents essential for proteomic analysis were procured, including pro-
tease inhibitor tablets and BCA protein assay kits from Thermo Fisher Scientific Inc. (Pitts-
burgh, PA, USA). Acetonitrile and formic acid were sourced from Sigma-Aldrich (St. Louis,
MO, USA). High-grade trypsin (Promega Corporation, Madison, WI, USA), Iodoacetamide
(IAA), and dithiothreitol (DTT) (Sigma-Aldrich, St. Louis, MO, USA) were also obtained.
Equipment critical for protein isolation and analysis, including a high-speed centrifuge,
EASY-nLC™ 1200 system, and Q-Exactive HF LC-ESI-MS/MS system, was calibrated and
validated for proteomic studies.

4.2. Animal Model and Tissue Preparation

Three-month-old adult male Wistar rats were utilized to establish an intracerebroven-
tricular streptozotocin (ICV-STZ) induced model of Alzheimer’s disease (AD), focusing
on the brain’s cortical region for proteomic analysis. The Animal Resources Center at the
Faculty of Medicine, Kuwait University, provided the animals, and they were housed under
controlled conditions conducive to their well-being. Following the guidelines of the Health
Sciences Center Animal Research Ethics Committee at Kuwait University, which align
with the NIH Guidelines for the Care and Use of Laboratory Animals, the rats underwent
surgery for administration. The procedure was designed to minimize distress and ensure
the delivery of STZ precisely into the lateral ventricles, fostering the development of an
Alzheimer’s-like pathology in the prefrontal cortex (PFC).

4.3. Experimental Design

The AD model was established using intracerebroventricular streptozotocin (ICV-
STZ) to induce oxidative stress and cognitive impairments in the brain, and the temporal
progression of these alterations was emphasized. The study was conducted anonymously
to minimize bias, with animals randomly assigned to each experimental group.
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Sixty adults male Wistar rats were divided into six groups, with ten rats per group, rep-
resenting different time points post-administration: one week (ICVV-1W and ICV-STZ-1W),
three weeks (ICVV-3W and ICV-STZ-3W), and six weeks (ICVV-6W and ICV-STZ-6W). Con-
trol groups received 5 µL of sterile citrate buffer (0.1 M, pH 4.6) into each lateral ventricle,
mirroring the ICV-STZ groups in which rats were injected with streptozotocin (3 mg/kg
body weight) in sterile 0.1 M citrate buffer, adjusted to pH 4.0, and made in artificial
cerebrospinal fluid (CSF). This specific STZ dose is based on previous studies [4,59,60].

Following injections, rats were observed for 1, 3, or 6 weeks. ICV-STZ-treated rats did
not exhibit elevated blood glucose levels, reinforcing the localized effect of the treatment.
At the end of each observation period, rats were euthanized, and their brains were rapidly
harvested. Given its significance in AD research and for proteomic analyses, the focus was
on isolating the prefrontal cortex. Cortical tissues were immediately snap-frozen in liquid
nitrogen and preserved at –80 ◦C until processed for detailed proteomic studies.

Surgical Procedure for ICV-Vehicle/STZ Injection

The surgical procedure for intracerebroventricular (ICV) administration of vehicle
or streptozotocin (STZ) was meticulously carried out under aseptic conditions to ensure
minimal animal distress, following protocols established in prior studies [60]. Before the
operation, all surgical tools and the stereotaxic apparatus were sterilized using autoclaving
and 70% ethanol to maintain a sterile environment.

For anesthesia, rats received an intramuscular injection of a ketamine hydrochlo-
ride/xylazine hydrochloride solution (ketamine: 60 mg/kg, xylazine: 5 mg/kg). Once
anesthetized, each rat was secured in a stereotaxic frame. A small incision was made on
the scalp to expose the skull, and two marks were placed for the creation of burr holes:
0.8 mm posterior to the bregma and 1.5 mm lateral to the midline on both sides. Care was
taken to drill these holes up to the dura mater without causing damage to the underlying
brain tissue.

A 10 µL Hamilton syringe equipped with a 26 G needle, filled with either sterile citrate
buffer (0.1 M, pH 4.7) for the control group or STZ solution prepared in the same buffer
for the ICV-STZ group, was inserted 4.0 mm below the dura mater to target the lateral
ventricles accurately. For the control group, 5 µL of sterile citrate buffer was administered
into each ventricle over 20 min to ensure optimal diffusion without local toxicity. Similarly,
the ICV-STZ group received 5–6 µL of STZ solution (1.5 mg/kg/ventricle) in sterile citrate
buffer over 20 min. To prevent the backflow of the injected solution, the syringe was left in
place for an additional five minutes before being carefully withdrawn.

Post-injection, the incision was sutured, and a betadine solution was applied to the
site for its antiseptic properties. Each rat was placed in a warmed recovery area until it
regained consciousness. Post-operative care included the daily application of betadine for
three days and providing wet food within the cage. Rats were housed individually for the
remainder of the study to monitor recovery and ensure well-being.

4.4. Post-Treatment Brain Tissue Processing for Proteomic Analysis

Following the treatment periods of 1, 3, and 6 weeks, rats from all experimental
groups were euthanized for brain tissue collection. To eliminate bias, tissue samples
were anonymized by a third party before processing. The cortex was rapidly dissected,
immediately snap-frozen in liquid nitrogen, and stored at –80 ◦C. This preservation step is
crucial for maintaining the integrity of the proteome for subsequent analysis. The stored
tissues were then prepared for proteomic workflows involving isolating protein samples for
mass spectrometry-based analyses to identify and quantify differential protein expressions
related to Alzheimer’s disease pathology. Cortical brain tissues were homogenized using a
Wheaton tissue homogenizer in a chilled homogenization buffer of 8 M urea and 50 mM
ammonium bicarbonate to preserve protein integrity. The homogenate was then subjected
to brief sonication to reduce sample viscosity, followed by centrifugation at 16,000× g for
10 min to remove debris.
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Protein concentrations in the supernatant were determined using a BCA assay. A
quantity of 20 µg of total protein from each sample was then reduced by incubation with
10 mM dithiothreitol (DTT) at 60 ◦C for 30 min. The samples were allowed to cool to room
temperature, followed by alkylation with 25 mM iodoacetamide (IAA) for 25 min in the
dark to prevent interference with the alkylation reaction. For reduction and alkylation,
dithiothreitol (DTT) was added to a final concentration of 5 mM, and the mixture was
incubated at 60 ◦C for 30 min, followed by alkylation with 15 mM iodoacetamide (IAA)
in the dark at room temperature for 20 min. The sample was then diluted with 50 mM
ammonium bicarbonate to reduce the urea concentration to less than 2 M before enzymatic
digestion. Trypsin was added at a 1:50 trypsin-to-protein ratio and incubated at 37 ◦C for
16 h for protein digestion. This step was followed by centrifugation at 18,000× g for 10 min
to precipitate any insoluble material. The reaction was quenched with formic acid to a final
pH of <3. Peptides were desalted using a C18 solid-phase extraction column and dried
using a vacuum centrifuge. Before LC-MS/MS analysis, the peptides were reconstituted
in 0.1% formic acid. The samples were analyzed by nanoLC-MS/MS using a Nano LC
(nLC1200) system coupled to a high-resolution Orbitrap mass spectrometer.

4.5. DIA Acquisition and Data Processing

Peptides derived from cortical brain tissue homogenates were subjected to high-
resolution analysis using the Bruker timsTOF Pro system coupled with a nanoElute High-
Performance Liquid Chromatography (HPLC) system. Chromatographic separation of the
peptides was carried out on a specialized C18 column featuring a particle size of 1.6 µm
and dimensions of 75 µm by 25 cm. The separation was achieved through a carefully
optimized gradient of water and acetonitrile, each containing 0.1% formic acid, over 90 min.
This setup was chosen for its ability to provide a high peptide separation efficiency and
resolution, which is crucial for the subsequent mass spectrometry analysis.

In the data-independent acquisition (DIA) phase on the Bruker timsTOF Pro, the mass
spectrometer was operated leveraging the advanced capabilities of parallel accumulation
serial fragmentation (PASEF) technology. This enabled the efficient and rapid acquisition
of MS/MS data by employing expansive isolation windows to sequentially capture and
fragment all precursor ions across the targeted m/z range of 400 to 1200. The instrument
settings, including ramp time and collision energy, were optimized based on precursor ion
characteristics. The ramp time was optimized to 100 milliseconds (ms) for each DIA win-
dow. Collision energy settings were intricately tailored based on precursor ions’ mass and
charge state, applying a dynamic range of 20 to 40 electron volts (eV). For lower mass ions
(m/z < 600), lower collision energy near 20 eV was utilized to prevent excessive fragmenta-
tion, maintaining identifiable peptide fragments. For higher mass ions (m/z > 1000), the
collision energy was increased up to 40 eV to ensure adequate fragmentation. The overall
cycle time was carefully calibrated to scan each DIA window multiple times throughout
the LC run.

The raw DIA data was processed and analyzed using Bruker’s Compass Data Analysis
software (v. 4.4), focusing on feature detection and extraction to ensure high-quality
data were forwarded for peptide identification. A spectral library, generated from data-
dependent acquisition (DDA) runs or curated from relevant databases, is a reference for
identifying peptides by matching the DIA spectra against library entries. The quantification
of peptides involved using specialized software, Spectronaut (v. 18), which relied on
extracted ion chromatograms (XICs) for every identified peptide.

4.6. Label-Free Data-Dependent Acquisition LC-ESI-MS/MS

Samples underwent analysis utilizing the Q-Exactive HF LC-ESI-MS/MS system from
Thermo Fisher Scientific, paired with an EASY-nLC™ 1200 nano-LC System through an
EASY-Spray Ion Source (Thermo Fisher Scientific). The mobile phase A comprised 0.1%
formic acid in water, while mobile phase B consisted of 0.1% formic acid in 80% acetonitrile
and water. For the LC separation, a trap-elute configuration was utilized, integrating both
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a trapping column (Acclaim PepMap100, 75 µm × 2 cm) and an analytical column (ES801A
PepMap RSLC C18, 2 µm, 100 A, 50 µm × 15 cm), both from Thermo Fisher Scientific.
The process began with loading the trapping column with 5 µg of digested peptide, using
mobile phase A at a delivery rate of 5 µL/min for 3 min. This step was designed to trap and
purify the peptides. The samples were transferred to the analytical column at a 300 nL/min
flow rate. The eluent was ionized using an Easy Spray nano ESI source operating in positive
ion mode with a nanoflow column maintained at 40 and a run duration of 170 min. The
ionization voltage was 2.3 kV, and the capillary temperature was 230 ◦C. Data-dependent
acquisition (DDA) mode was used to operate the Q Exactive HF, and it was automatically
switched between full scan MS and MS/MS acquisition. MS1 full scans were acquired
for 350–2000 m/z at 120,000 resolution, 60 ms maximum IT, 3 × 106AGC target. The top
10 multiply charged ions were chosen for MS/MS analysis, where they were fragmented
using higher-energy collisional dissociation (HCD). The process was set with a normalized
collision energy of 27 eV. This was conducted at a resolution of 30,000, with a maximum
injection time (IT) of 20 ms, an automatic gain control (AGC) target of 1e5, and an isolation
window of 2.0 m/z.

4.7. Workflow for Label-Free Quantitative Proteomics Analysis

The protein quantification in this workflow was conducted using Thermo Scientific’s
Proteome Discoverer software (version 3.1.0.638). Raw spectral data was obtained and
preprocessed to ensure quality before analysis. The preprocessing involved using the
“Spectrum Files RC” node for data retrieval, followed by the “Minora Feature Detector” for
feature identification within the raw spectra. Selected features from the spectral data were
processed through the Spectrum Selector node to filter and isolate relevant spectra. This was
followed by the Precursor Detector node, which identified precursor ions in preparation
for peptide identification. The filtered spectral data was subjected to peptide-spectral
matching via three search algorithms: CHIMERYS, Sequest HT, and Comet. CHIMERYS
was utilized as the primary search engine. A non-redundant protein sequence database
(uniprotkb_taxonomy_id_10116.fasta) was employed, with trypsin as the specified enzyme
for up to two missed cleavages. The peptide length was set between 7 and 30 amino acids,
with a peptide charge range from 2 to 4. The precursor mass tolerance was set at 20 ppm,
and the fragment mass tolerance at 0.02 Da.

Static modifications included oxidation on methionine residues and carbamidomethy-
lation on cysteine residues, with up to three modifications allowed per peptide. Specific
static modifications, including carbamidomethyl (C) at peptide N-termini, were also des-
ignated. Post-search validation was performed by the Target Decoy PSM Validator node,
ensuring peptide-spectral matches met stringent criteria based on score thresholds defined
by the search nodes and the target/decoy strategy. The False Discovery Rate (FDR) was set
at strict (0.01) thresholds to validate identifications and ensure high-confidence results. The
results from CHIMERYS, Sequest HT, and Comet searches were integrated to provide a
comprehensive proteomic profile.

The quantification was based on a combination of unique and razor peptides, ac-
counting for protein groups during peptide assignment. The software was configured to
accept shared quantitative results and to exclude any with missing data. Quantitation was
intensity-based with no minimum requirement for replicate features, ensuring comprehen-
sive data inclusion. Normalization was performed on the total peptide amount, and scaling
was done on the average of all detected peptides. All peptides were included for protein
quantification and roll-up. The top N average method was applied, selecting the three most
abundant peptides for protein abundance calculation. Ratio calculations were pairwise,
accommodating a substantial fold change up to 1000. Imputation of missing values was
handled by replicate-based resampling, and statistical significance was assessed via t-test.
Results were categorized into distinct fold change thresholds ranging from 2-fold to 10-fold
to facilitate detailed analysis of protein expression levels across the samples.
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Stringent filtration criteria were applied to ensure high-confidence protein identifica-
tion and quantification. Only proteins with 15 or more Peptide-Spectrum Matches (PSMs)
and at least four unique peptides were considered to enhance identification accuracy—an
adjusted p-value of 0.05 or less determined significance in protein abundance changes. The
reliability of the peptide matches was further verified by a minimum Sequest HT score
of 10. Consistency across biological replicates was ensured by including only proteins
with detectable abundance in all samples. Differential protein expression was assessed
with log2-transformed abundance ratios, accepting only those proteins exhibiting a change
greater than or equal to a 2-fold increase or decrease. These criteria sharpened the dataset,
focusing on the most biologically relevant and statistically robust proteins.

4.8. Bioinformatics Analysis: GO Enrichment and Network Analysis

Data visualization and analysis were facilitated using Amica [61] and LFQ-Analyst [62],
respectively, to explore label-free quantitative proteomics data. Bioinformatics analyses
such as GO enrichment and network analysis were performed using Ingenuity Pathway
Analysis [63] (IPA QIAGEN, version 24.0.1), which employs machine learning to analyze
molecular interactions and predictive markers within vast datasets. IPA facilitated in-depth
canonical pathway analyses, disease and function assessments, regulator effects, identifica-
tion of upstream regulators, and the construction of molecular networks. IPA’s network
generation algorithm breaks down complex interaction maps into distinct networks, as-
signing each score based on hypergeometric distribution and the significance level derived
from Fisher’s exact test. A −log (p-value) threshold greater than two was established for
significance in canonical pathways and disease/function analysis. Activation states were
determined with a Z-score, where values above 2 indicated significant activation and values
below −2 signified significant inhibition. For regulator effects and molecular networks,
consistency scores were employed, with higher scores reflecting more accurate predictions
of regulatory impacts. Upstream regulators required a p-value of overlap below 0.05 to
be considered significant. The algorithms for Z-score and p-value calculations adhere to
previously established methods in the field.

5. Conclusions

This study investigates proteome changes over time in a Wistar rat AD model caused
by ICV-STZ. It gives insights into the dynamic evolution of protein expression in the PFC
of the brain. The results of our study reveal notable changes in the levels of proteins and
disrupted pathways crucial for understanding the development of AD. The evolution
of AD is characterized by early metabolic failure, activation of the stress response, and
later-stage abnormalities in synaptic and cytoskeletal structures, highlighting the complex
nature of the disease. Essential factors such as malfunctioning mitochondria, the route of
synaptic vesicles, and signaling related to neuroinflammation were shown to be crucial
components of the pathogenesis of AD. Although our work provides valuable insights, its
scope is restricted due to using just one animal model and the exclusive inclusion of male
rats. This may not completely encompass the intricacy and diversity seen in human AD.
To improve the translational potential of our results, future research should include other
AD models, involve both genders, use more comprehensive omics studies, and extend the
observation durations. By combining proteomic data with genomes, transcriptomics, and
metabolomics and doing cross-species validations, we may better understand the intricate
molecular networks involved in AD. This holistic strategy will facilitate the creation of
new biomarkers and therapeutic targets, eventually leading to the implementation of
personalized medicine in treating AD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25126469/s1.
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