Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer–Narrative Review
Abstract
:1. Introduction
2. Standard Treatment Strategies for Gastric Cancer
3. Immunotherapy in Gastric Cancer
3.1. Immune Checkpoint Molecules
3.2. Importance of Immune Checkpoint Inhibitors in Cancer Therapy
4. Clinical Trials That Have Evaluated Immune Checkpoint Inhibitors in Gastric Cancer
5. Future Outlook and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–2040: A population-based modelling study. EClinicalMedicine 2022, 47, 101404. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, P.S.; Rong, Z.Y.; Huang, C. One stomach, two subtypes of carcinoma-the differences between distal and proximal gastric cancer. Gastroenterol. Rep. 2021, 9, 489–504. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Keszei, A.P.; Goldbohm, R.A.; Schouten, L.J.; Jakszyn, P.; van den Brandt, P.A. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in The Netherlands Cohort Study. Am. J. Clin. Nutr. 2013, 97, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Zamani, N.; Hajifaraji, M.; Fazel-tabar Malekshah, A.; Keshtkar, A.A.; Esmaillzadeh, A.; Malekzadeh, R. A case-control study of the relationship between gastric cancer and meat consumption in Iran. Arch. Iran. Med. 2013, 16, 324–329. [Google Scholar] [PubMed]
- Yusefi, A.R.; Bagheri Lankarani, K.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk Factors for Gastric Cancer: A Systematic Review. Asian Pac. J. Cancer Prev. 2018, 19, 591–603. [Google Scholar] [PubMed]
- Li, Q.; Zhang, J.; Zhou, Y.; Qiao, L. Obesity and gastric cancer. Front. Biosci. 2012, 17, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001, 345, 784–789. [Google Scholar] [CrossRef]
- Bertuccio, P.; Chatenoud, L.; Levi, F.; Praud, D.; Ferlay, J.; Negri, E.; Malvezzi, M.; La Vecchia, C. Recent patterns in gastric cancer: A global overview. Int. J. Cancer 2009, 125, 666–673. [Google Scholar] [CrossRef]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef] [PubMed]
- Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol. 2006, 12, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Japanese Gastric Cancer Association. Japanese Gastric Cancer Treatment Guidelines 2021 (6th edition). Gastric Cancer 2023, 26, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Mei, L.; Yang, X.; Sun, T.; Wang, Z.; Ji, Y. Biomarkers of gastric cancer: Current advancement. Heliyon 2022, 8, e10899. [Google Scholar] [CrossRef] [PubMed]
- Grávalos, C.; Jimeno, A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Zhang, X.T.; Li, Y.F.; Tang, L.; Qu, X.J.; Ying, J.E.; Zhang, J.; Sun, L.Y.; Lin, R.B.; Qiu, H.; et al. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2021. Cancer Commun. 2021, 41, 747–795. [Google Scholar] [CrossRef] [PubMed]
- Rose, S. Two Win Nobel for Immune Regulation Discoveries. Cancer Discov. 2018, 8, 1338–1339. [Google Scholar]
- Leowattana, W.; Leowattana, P.; Leowattana, T. Immunotherapy for advanced gastric cancer. World J. Methodol. 2023, 13, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Ariga, S. History and Future of HER2-Targeted Therapy for Advanced Gastric Cancer. J. Clin. Med. 2023, 12, 3391. [Google Scholar] [CrossRef]
- Liu, K.; Wu, C.X.; Liang, H.; Wang, T.; Zhang, J.Y.; Wang, X.T. Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis. World J. Gastrointest. Surg. 2024, 16, 700–709. [Google Scholar] [CrossRef]
- Liu, B.W.; Shang, Q.X.; Yang, Y.S.; Chen, L.Q. Efficacy and safety of PD-1/PD-L1 inhibitor combined with chemotherapy versus chemotherapy alone in the treatment of advanced gastric or gastroesophageal junction adenocarcinoma: A systematic review and meta-analysis. Front. Oncol. 2023, 13, 1077675. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Cilin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Huang, J.; Liu, X.; Cheng, Q.; Luo, C.; Liu, Z. CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Chikuma, S. CTLA-4, an Essential Immune-Checkpoint for T-Cell Activation. Curr. Top Microbiol. Immunol. 2017, 410, 99–126. [Google Scholar] [PubMed]
- Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008, 322, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Klatka, J.; Szkatuła-Łupina, A.; Hymos, A.; Klatka, M.; Mertowska, P.; Mertowski, S.; Grywalska, E.; Charytanowicz, M.; Błażewicz, A.; Poniewierska-Baran, A.; et al. The Clinical, Pathological, and Prognostic Value of High PD-1 Expression and the Presence of Epstein–Barr Virus Reactivation in Patients with Laryngeal Cancer. Cancers 2022, 14, 480. [Google Scholar] [CrossRef] [PubMed]
- Batur, S.; Kain, Z.E.; Gozen, E.D.; Kepil, N.; Aydin, O.; Comunoglu, N. Programmed Death Ligand 1 Expression in Laryngeal Squamous Cell Carcinomas and Prognosis. Clin. Pathol. 2020, 13, 2632010X20964846. [Google Scholar] [CrossRef]
- Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A. CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms. Mol. Cell Biol. 2005, 25, 9543–9553. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef]
- Kythreotou, A.; Siddique, A.; Mauri, F.A.; Bower, M.; Pinato, D.J. PD-L1. BMJ Publ. Group 2018, 71, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Coutzac, C.; Pernot, S.; Chaput, N.; Zaanan, A. Immunotherapy in advanced gastric cancer, is it the future? Crit. Rev. Oncol. Hematol. 2019, 133, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, W.; Huang, Y.; Cui, R.; Li, X.; Li, B. Evolving Roles for Targeting CTLA-4 in Cancer Immunotherapy. Cell. Physiol. Biochem. 2018, 47, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dai, Z.; Wu, W.; Wang, Z.; Zhang, N.; Zhang, L.; Zeng, W.J.; Liu, Z.; Cheng, Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 2021, 40, 184. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, F.; Rumio, C.; Corti, A. Tumor cell-associated immune checkpoint molecules—Drivers of Malignancy and stemness. Biochim. Biophys. Acta Rev. Cancer. 2017, 1868, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, Z.; Aru, B.; Aydın, F.; Yanıkkaya, D.G. Immune checkpoint inhibitors in the treatment of hepatocellular carcinoma. Front. Immunol. 2024, 15, 1379622. [Google Scholar] [CrossRef] [PubMed]
- Pauken, K.E.; Wherry, E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015, 36, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Dyck, L.; Mills, K.H.G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 2017, 47, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Apetoh, L.; Smyth, M.J.; Drake, C.G.; Abastado, J.P.; Apte, R.N.; Ayyoub, M.; Blay, J.Y.; Bonneville, M.; Butterfield, L.H.; Caignard, A.; et al. Consensus nomenclature for CD8 T cell phenotypes in cancer. Oncoimmunology 2015, 4, e998538. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, S.D.; Shin, H.; Haining, W.N.; Zou, T.; Workman, C.J.; Polley, A.; Betts, M.R.; Freeman, G.J.; Vignali, D.A.; Wherry, E.J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 2009, 10, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Watari, H. Tumor-Intrinsic PD-L1 Signaling in Cancer Initiation, Development and Treatment: Beyond Immune Evasion. Front. Oncol. 2018, 8, 386. [Google Scholar] [CrossRef]
- Nair, V.S.; Elkord, E. Immune checkpoint inhibitors in cancer therapy: Ocus on T—Regulatory cells. Immunol. Cell Biol. 2018, 96, 21–33. [Google Scholar] [CrossRef]
- Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, F.; Rumio, C. Depleting tumor cells expressing immune checkpoints ligands—A new approach to combat cancer. Cells 2021, 10, 872. [Google Scholar] [CrossRef]
- Niedźwiedzka-Rystwej, P.; Majchrzak, A.; Aksak-Wąs, B.; Serwin, K.; Czajkowski, Z.; Grywalska, E.; Korona-Głowniak, I.; Roliński, J.; Parczewski, M. Programmed Cell Death-1/Programmed Cell Death-1 Ligand as Prognostic Markers of Coronavirus Disease 2019 Severity. Cells 2022, 12, 1978. [Google Scholar] [CrossRef]
- Ballman, K.V. Biomarker: Predictive or prognostic? J. Clin. Oncol. 2015, 33, 3968–3971. [Google Scholar] [CrossRef]
- Kim, J.W.; Nam, K.H.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, S.H.; Chang, H.; Lee, J.O.; Kim, Y.J.; Lee, H.S.; et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer 2016, 19, 42–52. [Google Scholar] [CrossRef]
- Takaya, S.; Saito, H.; Ikeguchi, M. Upregulation of Immune Checkpoint Molecules, PD-1 and LAG-3, on CD4+ and CD8+ T Cells after Gastric Cancer Surgery. Yonago Acta Med. 2015, 58, 39–44. [Google Scholar] [PubMed]
- Cheng, G.; Li, M.; Wu, J.; Ji, M.; Fang, C.; Shi, H.; Zhu, D.; Chen, L.; Zhao, J.; Shi, L.; et al. Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis. Int. J. Clin. Exp. Pathol. 2015, 8, 9452–9457. [Google Scholar] [PubMed]
- Taieb, J.; Moehler, M.; Boku, N.; Ajani, J.A.; Yañez Ruiz, E.; Ryu, M.H.; Guenther, S.; Chand, V.; Bang, Y.J. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat. Rev. 2018, 66, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Arkenau, H.T.; Lee, J.; Rha, S.Y.; Oh, D.Y.; Wyrwicz, L.; Kang, Y.K.; Lee, K.W.; Infante, J.R.; Lee, S.S.; et al. Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: Phase 1b results from the JAVELIN Solid Tumor trial. J. Immunother. Cancer. 2019, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Zhang, X.T.; Tang, L.; Wu, Q.; Cai, M.Y.; Li, Y.F.; Qu, X.J.; Qiu, H.; Zhang, Y.J.; Ying, J.E.; et al. The Chinese society of clinical oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2023. Cancer Commun. 2024, 44, 127–172. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.D.; Rizzo, A.; Rojas Llimpe, F.L.; Di Fabio, F.; De Biase, D.; Rihawi, K. Novel HER2-directed treatments in advanced gastric carcinoma: AnotHER paradigm shift? Cancers 2021, 13, 1664. [Google Scholar] [CrossRef]
- Moehler, M.; Högner, A.; Wagner, A.D.; Obermannova, R.; Alsina, M.; Thuss-Patience, P.; van Laarhoven, H.; Smyth, E. Recent progress and current challenges of immunotherapy in advanced/metastatic esophagogastric adenocarcinoma. Eur. J. Cancer 2022, 176, 13–29. [Google Scholar] [CrossRef]
- Fei, S.; Lu, Y.; Chen, J.; Qi, J.; Wu, W.; Wang, B.; Han, Y.; Wang, K.; Han, X.; Zhou, H.; et al. Efficacy of PD-1 Inhibitors in First-Line Treatment for Advanced Gastroesophageal Junction and Gastric Cancer by Subgroups: A Systematic Review and Meta-Analysis. Chemotherapy 2023, 68, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Entezam, M.; Sanaei, M.J.; Mirzaei, Y.; Mer, A.H.; Abdollahpour-Alitappeh, M.; Azadegan-Dehkordi, F.; Bagheri, N. Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci. 2023, 318, 121459. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yao, Z.; Bai, H.; Duan, J.; Wang, Z.; Wang, X.; Zhang, X.; Xu, J.; Fei, K.; Zhang, Z.; et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitor-Based Combination Therapies in Clinical Trials: A Systematic Review and Meta-Analysis. Lancet Oncol. 2021, 22, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, S.; Yang, F.; Qi, X.; Wang, X.; Guan, X.; Shen, C.; Duma, N.; Vera Aguilera, J.; Chintakuntlawar, A.; et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials. JAMA Oncol. 2019, 5, 1008. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Liu, L.; Shan, B. Future of Immune Checkpoint Inhibitors: Focus on Tumor Immune Microenvironment. Ann. Transl. Med. 2020, 8, 1095. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Li, M.; Zhou, R.; Zhang, J.; Sun, H.; Shi, M.; Bin, J.; Liao, Y.; Rao, J.; Liao, W. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 2019, 7, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K inhibitors in cancer: Clinical implications and adverse effects. Int. J. Mol. Sci. 2021, 22, 3464. [Google Scholar] [CrossRef]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.; Marabelle, A.; Soria, J.-C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef]
ICPM | Cells Expressing the ICPM | Ligand/Receptor | Function |
---|---|---|---|
PD-1 | T cells | PD-L1/PD-L2 | Interaction between PD-1 and ligands and impacts cytokine secretion |
PD-L1 (CD274, B7H1) | DCs and macrophages | PD-1 | Inhibits T cell responses by anergising tumour-reactive T cells by binding to its PD-1 receptor; renders tumour cells resistant to CD8+ T cell and Fas ligand–mediated lysis; tolerises T cells through CD80 |
CTLA-4 | Tregs | CD80/86 | Inhibits T cell responses |
BTLA (CD272) | T CD8+ and T CD4+, NK cells, B cells, DCs, and macrophages | unknown | Inhibits T cell responses and maintains immune homeostasis |
B7H3 (CD276) | T and B-cells, monocytes, DCs, MDSCs, neutrophils, and macrophages | unknown | Inhibits T cell responses and proliferation, and downregulates cytokine production |
B7H4 (B7x, B7S1) | T cells, B cells, monocytes, and DCs | unknown | Inhibits T cell proliferation, cell cycle progression, and cytokine production |
HHLA2 (B7H5, B7H7) | APCs, monocytes, B cells and DCs | unknown | Inhibits T cells |
IOD1 | T cells and NK cells | unknown | Suppresses CD8+ T cells and NK cells, and induces iTregs |
PVRIG | DCs, Th1, and NK cells | CD112 | Inhibits T cell responses |
TIM-3 | DCs, NK cells, Th1 cells, Th17 cells, and macrophages | GAL-9, PS | Inhibits T cell responses |
GAL-9 | Eosinophils, DCs, IEC, T cells, macrophages, lymphoid cells, Kupffer cells, and vascular endothelial cells | TIM-3 | Maintains immune homeostasis |
VISTA | T cells and APCs | unknown | Inhibits T cell responses |
LAG3 (CD223) | Plasmacytoid DCs, NK T cells, and Tregs | MHC II, GAL-9, FGL1 | Interacts with MHC II |
TIGIT | T cells and NK cells | CD155, CD112 | Suppresses anti-tumour immunity |
CD28 | T cells | CD80/CD86 (form CTLA-4) | Inhibits T cell responses |
CD40 | B cells, DCs, and HPCs | CD154 | Activates several signalling pathways; |
CD70 | T cells, B cells, and DCs | CD27 | Stimulates T cell differentiation, enhances cytotoxicity of T cells, and promotes TNF-α production |
CD47 | RBCs and non-HPCs | integrins | Inhibits macrophage activity |
CD137 | T cells and APCs | CD137L (TNFSF9, 4-1BBL) | Activates the MAPK and NF-κB signalling pathway |
Trial Number | Type of GC | Status/Phase | Checkpoint Inhibitor(s) | Age (Years) | Locations |
---|---|---|---|---|---|
NCT04694183 | Advanced, unresectable, metastatic GC | Completed | Camrelizumab | 18–75 | China |
NCT02903914 | Metastatic/locally advanced GC | Completed | Pembrolizumab | ≥18 | USA, Italy, Spain, and The Netherlands |
NCT04294784 | Recurrent or metastatic gastric and esophagogastric adenocarcinoma | Active, not recruiting | Shr-1210 | 18–70 | China |
NCT04267549 | Stage IV gastric adenocarcinoma | Active, not recruiting | Sintilimab | 18–75 | China |
NCT03841110 | Advanced solid tumours | Completed | Nivolumab, pembrolizumab, atezolizumab, | ≥18 | USA |
NCT03321630 | Metastatic or recurrent gastric or gastroesophageal junction (GEJ) adenocarcinoma | Completed | Pembrolizumab | 18–100 | USA |
NCT06238752 | HER2-negative, advanced G/GEJ cancer patients with signet ring cell carcinoma or peritoneal metastasis | Completed | Tislelizumab | ≥18 | China |
NCT04249739 | Advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma–EBV negative and MSS (or MMR-proficient) GC | Active, not recruiting | Pembrolizumab | ≥19 | Republic of Korea |
NCT04082364 | HER2-positive gastric cancer (GC) or gastroesophageal junction (GEJ) cancer | Active, not recruiting | Retifanlimab, Tebotelimab (anti PD-1, anti-LAG3) | ≥18 | USA, China, Germany, Italy, Republic of Korea, Poland, Singapore, Taiwan, and UK |
NCT03236935 | Recurrent, locally advanced, or metastatic gastric cancer | Active, not recruiting | Pembrolizumab | ≥18 | USA |
NCT04306900 | Unresectable or metastatic solid tumours | Completed | Pembrolizumab, budigalimab | 18–110 | USA and Republic of Korea |
NCT05311176 | Advanced or metastatic HER2/neu overexpressing gastric or GEJ adenocarcinoma | Active, not recruiting | Pembrolizumab | ≥18 | Australia and Taiwan |
NCT03797326 | Advanced (metastatic and/or unresectable) solid tumours | Active, not recruiting | Pembrolizumab | ≥18 | USA, Argentina, Australia, Canada, Chile, Colombia, France, Germany, Israel, Italy, Republic of Korea, Russian Federation, Spain, Switzerland, Taiwan, Thailand and UK |
NCT03228667 | Recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma | Active, not recruiting | Nivolumab Pembrolizumab, Atezolizumab, Avelumab, Durvalumab | ≥18 | USA |
NCT02465060 | Advanced refractory solid tumours | Active, not recruiting | Nivolumab, Relatlimab | ≥18 | USA, Guam, and Puerto Rico |
NCT04078152 | Any type | Active, not recruiting | Durvalumab | 18–130 | USA, Argentina, Australia, Belgium, Brazil, Bulgaria, Canada, Chile, Czechia, France, Germany, Greece, Hungary, India, Israel, Japan, Republic of Korea, Malysia, The Netherlands, Poland, Romania, Russian Federation, Serbia, Switzerland, Spain, Taiwan, Thailand, Turkey, Ukraine, UK, and Vietnam |
NCT03170960 | Locally advanced or metastatic solid tumours | Active, not recruiting | Atezolizumab | ≥18 | USA, Australia, Belgium, France, UK, Germany, Italy, The Netherlands, and Spain |
NCT03539822 | Advanced gastroesophageal cancer and other gastrointestinal (GI) malignancies | Active, not recruiting | Durvalumab, Tremelimumab | ≥18 | USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poniewierska-Baran, A.; Sobolak, K.; Niedźwiedzka-Rystwej, P.; Plewa, P.; Pawlik, A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer–Narrative Review. Int. J. Mol. Sci. 2024, 25, 6471. https://doi.org/10.3390/ijms25126471
Poniewierska-Baran A, Sobolak K, Niedźwiedzka-Rystwej P, Plewa P, Pawlik A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer–Narrative Review. International Journal of Molecular Sciences. 2024; 25(12):6471. https://doi.org/10.3390/ijms25126471
Chicago/Turabian StylePoniewierska-Baran, Agata, Karolina Sobolak, Paulina Niedźwiedzka-Rystwej, Paulina Plewa, and Andrzej Pawlik. 2024. "Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer–Narrative Review" International Journal of Molecular Sciences 25, no. 12: 6471. https://doi.org/10.3390/ijms25126471
APA StylePoniewierska-Baran, A., Sobolak, K., Niedźwiedzka-Rystwej, P., Plewa, P., & Pawlik, A. (2024). Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer–Narrative Review. International Journal of Molecular Sciences, 25(12), 6471. https://doi.org/10.3390/ijms25126471