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Abstract: Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects
around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains
elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms,
including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort,
EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological mani-
festations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP
serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroin-
flammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the
inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms.
In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms
by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving
into the complex relationship between EM pain and psychological comorbidities. It subsequently
addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common
links among these abovementioned conditions. Furthermore, the review explores how dietary and
nutritional interventions may influence the composition and function of the microbiome, reduce
inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological
disorders.

Keywords: endometriosis; psychological disorders; microbiome; chronic pelvic pain; inflammation;
oxidative stress; diet; nutrition

1. Introduction

Endometriosis (EM) is a chronic, inflammatory disease characterized by the presence
of ectopic endometrial tissue outside the uterine cavity [1,2]. This tissue comprises nerves,
blood vessels, macrophages, and glandular and stromal cells [3]. Most cases of ectopic
endometrium are found in the ovaries, but it can infiltrate different areas such as the
pelvic peritoneum, uterosacral ligaments, fallopian tubes, and wide ligaments. Ectopic
endometrium may also be observed in atypical locations both within and beyond the
pelvic region, although such occurrences are less common [4]. Endometriosis is a prevalent
gynaecological condition, affecting approximately 10% of women in their reproductive
years [5]. Furthermore, EM stands as a primary contributor to female infertility [1,2].
Notably, 25 to 50% of women facing infertility are diagnosed with endometriosis, and
additionally, 30 to 50% of EM patients encounter challenges in achieving pregnancy [6].

Moreover, EM is associated with heterogeneous symptoms such as chronic pelvic pain
(CPP), defined as persistent pain perceived in the pelvic areas that occur over a period of

Int. J. Mol. Sci. 2024, 25, 6473. https://doi.org/10.3390/ijms25126473 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25126473
https://doi.org/10.3390/ijms25126473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3141-1091
https://orcid.org/0000-0002-6797-9343
https://doi.org/10.3390/ijms25126473
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25126473?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 6473 2 of 29

6 months [7]. It constitutes a substantial incapacitating factor, influencing 25% of menstruating
women worldwide [7]. CPP is manifested as dysmenorrhea, dyschezia, dysuria, dyspareunia,
and acyclic pelvic pain, but also as fatigue, gastrointestinal symptoms, and somatosensory
amplification [1,2]. Notably, this symptom arises from the activation of macrophages and mast
cells, contributing to an ongoing cycle of inflammation, oxidative stress, and pain [8–10]. While
pain originates from endometrial lesions, its manifestation is often attributed to processes
such as neuroinflammation, angiogenesis, and sensitization [11].

Given that an accurate diagnosis requires surgical visualization, the true prevalence
of EM remains uncertain [2]. Modern imaging methods and related serum biomarkers
have been proposed and may hasten the EM diagnosis, but surgical viewing, ideally
laparoscopy with histological verification, is the main approach used to detect it [2,12].
Conventional treatments consist of surgical removal of endometriotic lesions, followed
by hormonal therapy, which frequently has negative side effects and limited outcomes.
In the absence of prolonged treatments, 50% of women undergoing surgery may require
another procedure within 5 years. This recurrence can contribute to organ deterioration,
exacerbated by function loss [13]. Remarkably, women with EM have been noted to
show an increased likelihood of developing cardiovascular disease, rheumatoid arthritis,
asthma, melanoma, ovarian, and breast cancer, attributed to the persistent inflammation
and immunological dysregulation associated with this disease [14]. Moreover, due to
the presence of CPP, endometriosis causes a decreased quality of life for women in their
reproductive years [15,16]. Disturbances in the work environment, family connections,
social life, self-esteem, mood symptoms, depression, and anxiety can also be experienced
by EM patients [17–19]. Regarding associated psychological symptoms, CPP appears to
be the primary mediator [20,21]. Hence, the main objectives of current treatments are to
preserve fertility and provide sustained relief from symptoms [22].

Overall, endometriosis is the result of interconnected endocrine, inflammatory, im-
mune, oxidative, and proangiogenic mechanisms, but its pathogenesis is still unclear.
Recent hypotheses for EM genesis include Müllerianosis, coelomic metaplasia, extrauterine
stem cell differentiation, benign lymphatic or hematogenous metastasis, bacterial con-
tamination, and the most plausible theory, Sampson’s retrograde menstruation [23]. The
latter refers to the reflux of menstrual fluid and endometrial cells into the peritoneal cavity
through the fallopian tubes [24].

The latest research suggests that the microbiome imbalance could also contribute to
the pathogenesis of endometriosis and associated CPP. Indeed, microbial dysbiosis in both
the gut and reproductive tract can boost immune system dysregulation, induce elevated
proinflammatory cytokines, and disrupt oestrogen metabolism. In addition, oxidative stress
can instigate a comprehensive inflammatory response within the peritoneal cavity [25] that
correlates to EM severity [26]. Both microbial dysbiosis and oxidative stress [27], when
involved in the regulation of inflammation that gives rise to CPP, contribute to the develop-
ment of EM-associated gastrointestinal symptoms and psychological comorbidities [28].

Therefore, the administration of diet and nutritional supplements in treating en-
dometriosis and its associated symptoms encompasses the modulation of the gut micro-
biome, inflammation, oxidative stress, and oestrogen activity.

Within this framework, the main goal of this review is to dissect the relationships
among endometriosis, pain, and associated psychological comorbidities. It aims to reveal
the emerging role of the interplay among the microbiome, inflammation, and oxidative
stress as a common thread. Furthermore, for the first time, the review will highlight the
impact of dietary and nutritional interventions in regulating the above-mentioned interplay
to relieve EM-associated pain and symptoms.

As a data source, we used the PubMed, Google Scholar, and Scopus databases for
indexed English-language published material, and we examined reviews and original
research articles, using combinations of keywords specific to each chapter. In detail, we
used endometriosis, chronic pelvic pain, microbiome, oxidative stress, mood disorders,
depression, anxiety, gut–brain axis, inflammation, diet, and nutrition. We analysed in vitro
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studies, animal models, observational clinical studies, and trials. We used our judgment to
select articles and evidence and to interpret results. We considered articles and reviews
published from 1994 to now.

2. Psychological Disorders Associated with Endometriosis

Although there are many symptoms reported by women with endometriosis, the most
complex ones are frequently linked to psychiatric comorbidities and distress related to
mental health, such as depression, anxiety, and increased stress, as well as poor sexual
health, inadequate sleep quality, and generally low quality of life [15,29,30]. Endometriosis
patients exhibited higher rates of any form of depression (18.9 compared to 9.3%) and
anxiety (29.7 against 7.0%) than healthy controls, with a diminished quality of life, especially
those who reported severe and painful symptoms [20,30–37].

In addition, the patient’s experience of endometriosis and related mental health symp-
toms is usually exacerbated by consequential psychosocial challenges and by CPP pres-
ence [37]. Notably, pain seems to be the main mediator between endometriosis and psycho-
logical conditions [20,21]. Indeed, the presence of psychiatric disorders is more strongly
correlated with the pain intensity with respect to other aspects of the illness [33]. According
to two recent meta-analyses, endometriosis and the associated CPP have a detrimental ef-
fect on mental health and quality of life [38,39]. Gambadauro et al. found that women with
EM pain presented higher depressive symptoms compared to women without EM pain [21].
Furthermore, there is no significant difference between the depressive symptoms experi-
enced by women without EM pain and those of healthy women [21]. Moreover, individual
psychological factors are likely to influence how each patient experiences the EM-associated
CPP. Regardless of pelvic pain, the psychological well-being of endometriosis patients is
connected to their sense of self-esteem and self-efficacy [40]. Indeed, catastrophizing and
negative pain-related thoughts are prevalent in women with symptomatic endometriosis,
and these characteristics independently affect the quality of life [41,42].

In addition, a fascinating study focused on the phenotypic and genetic connections
underlying the psychiatric comorbidities of endometriosis revealed that eating disorders,
depression, and anxiety remained linked to endometriosis even after considering various
concurrent conditions, such as CPP [43]. These phenotypic associations mirrored the
genetic correlation observed between endometriosis and depression, anxiety, and eating
disorders (EDs).

On the other hand, concerning EDs, there is limited available evidence [44].
An interesting study revealed that among endometriosis patients, pain is correlated with
compromised eating behaviours. Significant differences were observed between women
experiencing no or mild pain and those with moderate to severe pain regarding their
attitudes, emotions, thoughts, and actions related to eating. Furthermore, Aupetit et al. in-
vestigated the correlation between EDs, irritable bowel syndrome (IBS), and endometriosis.
Women with both conditions exhibited significantly higher anxiety and depression scores.
These findings suggest a noteworthy association between IBS, ED, and endometriosis [45].
Another potential risk factor for ED emergence among women with endometriosis could
be the high incidence of body image disturbances [46]. Indeed, a study reported that 77.3%
of their EM cohort experienced disruptions in body image. However, the authors did not
explore whether there was an association with EDs [46].

Additionally, treatment options for pain caused by endometriosis (such as ovarian
suppression or advanced surgery) and infertility (such as assisted reproduction) sometimes
yield unsatisfactory outcomes and are consistently convoyed by psychological discomfort.
Unsurprisingly, poor access to care and interactions with caregivers are associated with
lower psychological health in EM patients, potentially acting as moderators of mood
symptoms [47]. Furthermore, endometriosis patients may encounter varying and diverse
levels of health care, which can also influence their individual experiences. Notably,
detection of and effective care for endometriosis are consistently hindered by a lack of
non-invasive tests and limited knowledge among nonspecialized practitioners. Finally, the
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social stigma around endometriosis has a role in patients’ poor psychosocial well-being
and delayed diagnosis [48].

3. Key Factors Influencing Chronic Pelvic Pain in Endometriosis

It has been reported that almost 50% of EM patients suffer from CPP [49] due to
heterogenous pelvic pain, including dysmenorrhea, dyspareunia, non-menstrual (chronic)
pelvic pain, discomfort during ovulation, dyschezia, and dysuria [50]. The pain seems
to be independent of the EM stage, and so women with moderate disease may experi-
ence intense pelvic pain, while those with more severe EM may encounter less acute or
chronic pain [51–53]. Patients mainly experience pain in the pelvis and abdomen, but also
in the back and legs. The endometriotic lesions themselves can cause pain by offering
afferent access to peripheral and central pain and sensory pathways. This is due to the
vascularization and innervation of these lesions by sensory and autonomic fibres. However,
lesions cannot be the exclusive source of pain [54]. Interestingly, given the abovementioned
connection between endometriosis and psychiatric comorbidities, it seems that these co-
morbidities arise from the sensation of pelvic pain and its neurogenic origin, rather than
being a direct consequence of endometriosis itself [20,55]. Nevertheless, it remains un-
clear whether psychological discomfort influences the pain perception or if psychological
distress and psychopathological symptoms are consequences of the pain [30,56,57]. In
addition, depression and anxiety may intensify the emotional and cognitive aspects of pain
perception, leading to decreased pain tolerance and increased sensitivity to all physical
symptoms, creating a vicious cycle [56]. Hence, distinguishing between endometriosis itself
and pain is challenging, since they interact with each other through the same neurological,
inflammatory, and immune-oxidative pathways [58,59].

In this scenario, the development of EM-associated pain can be attributed to a combination
of underlying mechanisms (Figure 1), including inflammation, oxidative stress, neurogenic
inflammation, peripheral and central sensitization, and cross-organ sensitization [11].
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Figure 1. Principal mechanisms involved in Chronic Pelvic Pain (CPP) onset.

3.1. Inflammation

During menstruation, there is a natural decline in oestrogen and progesterone levels in
the uterus. As a result, the endometrial tissue breaks down and is removed, serving to clear
the uterus of menstrual debris and prepare it for a new cycle of endometrial regeneration.
This process, orchestrated by the innate immune system, involves the recruitment of various
immune cells, including neutrophils, macrophages, and natural killer cells (NKs), to assist
in the breakdown of menstrual tissue. So, after going through apoptosis and necrosis, the
uterine lining is eventually lost [60]. Alongside various other biological factors, programmed
cell death during menstruation leads to the release of iron, ROS, prostaglandins, and a family
of damage-associated molecular patterns (DAMPs) [61]. When retrograde menstruation takes
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place, endometrial fragments give rise to lesions in the peritoneum. These lesions, which
retain their endometrial characteristics, express estrogenic receptors and undergo menstrual
and immune-mediated events in a cyclical manner [62].

It has been reported that EM women’s peritoneal cavities include higher levels of
inflammatory cytokines/chemokines, growth factors, neutrophils, and prostaglandins,
which are visible at lesion sites [61]. In addition, the peritoneal fluid of EM patients with
CPP is characterized by an elevated level of PGE2, tumour necrosis factor-α (TNF-α), nerve
growth factor (NGF), and CCL5 (C-C chemokine ligand 5:), as well as interleukin (IL) IL-8
and IL-1β [63–65]. Crucially, all these inflammatory mediators can directly activate sensory
nerve endings, inducing CPP [66–68]. Moreover, long-term exposure to proinflammatory
cytokines is thought to activate and sensitize sensory nerves in endometriotic lesions,
causing discomfort to be transferred to the central nervous system (CNS) [61]. Notably, the
pain transition to the CNS is a critical step in the pain-processing pathway that contributes
to different types of persistent visceral pain [69–72].

3.2. Oxidative Stress

As mentioned earlier, oxidative stress is believed to be a significant contributor to
the inflammatory process in endometriosis [25]. ROS act as intermediates generated dur-
ing oxygen metabolism; cells utilize antioxidant systems as a protective mechanism to
counteract the ROS effects. However, an imbalance between ROS production and the
availability of antioxidants, resulting in an excess of ROS and a deficiency in antioxidants,
can lead to oxidative stress [73]. Specifically, superoxide and hydrogen peroxide (H2O2) are
identified as ROS that play a role in regulating cellular proliferation within endometriosis
by establishing connections with inflammation and extracellular matrix (ECM) degrada-
tion [74–77]. Excessive oxidative stress activates NF-κB, stimulating cellular processes
that elevate cytokine production and trigger T helper Th1 and Th2 immune responses
in pelvic endometriosis. [78]. In particular, IL-10 plays a crucial role in endometriosis
development, as its expression triggers the activation of MMPs, ECM remodelling, and
angiogenesis in serum and peritoneal fluid [78]. The IL-10 increase may be linked to the
upregulated activation of the NF-κB signalling pathway resulting from oxidative stress
and iron overload in the peritoneal cavity [78]. Indeed, NF-κB-mediated transcriptional
activation of oncogenes, such as COX-2, inhibits apoptosis, promoting cellular proliferation
in endometriosis [29,79]. When the NF-κB signalling pathway was downregulated, an
alleviation of endometriosis symptoms was observed [80].

Additionally, oxidative stress triggers other pathways, including the upregulation
of glycodelin, which enhances VEGF (vascular endothelial growth factor) expression and
promotes angiogenesis [81].

Moreover, the activation of protein kinase ERK1/2 by ROS brings about alterations in
cell proliferation and survival of endometrial cells, reminiscent of those observed in tumour
cells [82]. ROS lead to oxidative protein modification, and it has been reported that women
with EM show significantly higher levels of oxidative stress-associated protein in their
peritoneal fluid [83]. Endometriosis-related pain has been associated with these oxidized
proteins and the subsequent activation of nociceptors. Additionally, oxidized lipoproteins
abundant in the endometriotic peritoneal fluid can induce MCP-1 [84]. In a recent study,
a significant correlation between lipid peroxidation, ROS production, and CPP intensity
was demonstrated [85]. On the other hand, the authors observed a negative correlation
between the oxygen radical absorbance capacity (ORAC), expression of antioxidant capac-
ity, and pain intensity. CPP patients exhibited elevated lipid peroxidation markers and
disrupted antioxidant levels [86,87].

In endometriosis, higher numbers of macrophages are recruited to the peritoneal
cavity [88]; they produce proinflammatory cytokines and prostaglandins which trigger the
upregulation of nociceptive transient receptor potential (TRP) cation channels [89]. TRP
cation channels have previously been linked to CPP development, given their expression
in the human endometrium [90]. Oxidative stress induces changes in the transient receptor
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potential cation channel, subfamily V, member 1 (TRPV1), thereby contributing to pain
generation in inflammatory conditions [91]. Furthermore, the activation of TRPV1 also
results in increased production of ROS and an elevation in receptors for TNF-α, a recognized
inducer of inflammatory hyperalgesia [92].

However, the underlying mechanisms linking endometriotic pain with oxidative stress
are still unknown and require further elucidation [93].

3.3. Neuroangiogenesis and Neurogenic inflammation

Recent papers documented that once endometrial fragments adhere to a peritoneal
region and form lesions, they promote a neuroangiogenesis process with a coordinated
growth of nerves and blood vessels [94]. In detail, neuroangiogenesis is regulated by
oestrogen, immune cells (especially macrophages), which are a major source of VEGF, and
endothelial cells, which produce NGFs (nerve growth factors), both enhanced in EM [95].
Moreover, high levels of NGFs, as well as other neurotrophins like brain-derived neu-
rotrophic factor (BDNF) or neurotrophin 4 and 5 (NT4/5), are found in the peritoneal fluid
of women with EM, suggesting their role in the modulation of EM-associated innervation
and CPP [96–98].

Furthermore, macrophages worsen local inflammation and are directly implicated in an-
giogenesis, releasing chemokines and cytokines promoting endometrial tissue growth [99,100].
While angiogenic factors (e.g., VEGF and TNF-α) enable lesion growth and formation and in-
crease blood supply, neurotrophic factors are crucial for the proliferation of autonomic neurons
and sensory afferent neurons, the latter of which can transmit nociceptive impulses [101,102].
Endometrium and endometrial lesions in EM patients have a higher density of small, unmyeli-
nated nerve fibres (sensory afferents, sympathetic, and parasympathetic efferents) [103,104].
The great majority of these unmyelinated nerve fibres have been identified as C-fibre sensory
afferents, generally operating as nociceptors that are strongly implicated in CPP develop-
ment [105]. Numerous studies have shown that aberrant cytokines’ production and imbal-
ances in sympathetic, parasympathetic, and sensory innervation can influence neurogenesis
and consequent peripheral neuroinflammation in endometriosis [67]. Furthermore, women
with greater nerve fibre innervation in their endometriotic lesions experienced the worst
menstrual pain associated with endometriosis [3,106].

Additional studies showed that neuroangiogenesis contributes to invading and irri-
tating the existing nerves and to deeply infiltrating endometriotic nodules [103,105,107].
Notably, endometrial adhesions and lesions can enclose or compress pelvic nerves, which
contributes to CPP brought on by endometriosis [108]. Indeed, it has been demonstrated
that progestogens and oral contraceptives (common hormone treatments for EM pain relief)
greatly reduced the density of nerve fibres in the ectopic endometrium [104].

Finally, the phenomenon of neurogenic inflammation occurs due to the accumulation
of by-products of degraded tissue, including ROS, PGE2, and acidification, which can
sensitise sensory nerve fibres via receptors on nociceptive afferent nerves located within
endometrial lesions in the peritoneal cavity [109,110]. The neurogenic inflammation con-
tributes to its maintenance thanks to the release of further proinflammatory mediators, such
as substance P (SP) and calcitonin gene-related peptide (CGRP) [111]. Additionally, when
sensory afferent nerves are activated, mast cells are drawn to the releasing proinflammatory
cytokines, such as IL-1β, TNF-α, NGF, and PGE2, leading to a persistent state of neurogenic
inflammation [112]. Indeed, women with EM have higher amounts of circulating mast
cells and macrophages that are located near nerve fibres and stimulated further by these
mediators of inflammation [8,113].

3.4. Pain Sensitization

“Pain sensitization” is defined as an “increased responsiveness of nociceptive neurons
to their normal input and/or recruitment of a response to normally subthreshold inputs” by
the International Association for the Study of Pain (IASP) [114]. The sensitization manifests
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as allodynia (pain in response to ordinarily non-noxious stimuli) and/or hyperalgesia
(abnormally heightened sensitivity to noxious stimuli) [54].

3.5. Peripheral Sensitization

Peripheral sensitization is defined by the IASP as an “increased responsiveness and
reduced threshold of nociceptive neurons in the periphery to the stimulation of their re-
ceptive fields” [114]. Endometriotic lesions, the immune system, and peripheral nerve
fibres in both the lesions and adjacent peritoneum, as well as peripheral neurons, all have
a role in peripheral processes of EM-associated pain [66]. Chronic inflammation medi-
ated by cytokines/chemokines (such as IL-1β, IL-6, TNF-α, and CCL2), growth factors
(e.g., β-nerve growth factor and VEGF), and several others can increase nociceptors’ sen-
sitivity to pain at endometrial lesions, which can cause allodynia and hyperalgesia [115].
The inflammatory environment induced in the peritoneal fluid contributes to creating
a nociceptive hypersensitivity: elevated levels of TNF-α and glycodelin are correlated with
a higher level of menstrual pain, altered pain response to nociceptive withdrawal reflex,
and brain hyperexcitability in response to repeated electrical stimulation [112,116].

Finally, the inflammatory mediators can have the ability to directly elicit excitatory
inward currents or change how ion channels work, including the TRPV1 [3]. The latter oper-
ates as a molecular sensor to enhance and integrate reactions to stimuli that cause pain, such
as acidosis, oxidative stress, or inflammatory mediators [117,118]. TRPV1’s alterations have
been found in other chronic pain diseases, including rheumatoid arthritis (RA), osteoarthri-
tis, and IBS [118–120]. As previously reported, higher levels of ROS and neurotrophins,
as found in endometriosis, promote sensitization and upregulation of TRPV1, mediating the
sensitization of peripheral nociceptors, which also drives CNS sensitization [71,118,121,122].

3.6. Cross-Organ Sensitization

Cross-organ sensitization refers to the phenomenon where the pain in one visceral
organ heightens the sensitivity to pain in another organ [54]. This interplay, particularly
between the gastrointestinal, urinary, and gynaecological viscera, exemplifies another mech-
anism through which the peripheral nervous system contributes to mitigating EM-related
pain [123]. Endometriosis is frequently associated with other pathological conditions that
have been studied for cross-organ sensitization, such as IBS, inflammatory bowel disease
(IBD), interstitial cystitis, and other CPP disorders [70,124].

Although the right mechanisms behind cross-organ sensitization are still unknown,
it is critical to consider the overlap of peripheral afferent pathways in the dorsal root
ganglion (DRG) and spinal cord. [70,125,126]. In fact, due to their physical proximity,
visceral afferents converge into similar regions of the spinal cord, giving nearby cells the
chance to become sensitized. Indeed, cross-organ sensitization is hypothesized to happen
when the afferents that innervate one organ become more sensitive [70,127].

Due to neuroangiogenesis, the endometriotic lesions’ sensory nerves, from the pe-
ripheric afferents they initially originated from, may intersect into the same spinal path-
ways [128]. As a result, they will have similar central terminals inside the spinal cord and
analogous cell bodies in the DRG [129]. The distribution of ectopic lesions appears to be
random, which may explain why different EM patients have different pain thresholds.

3.7. Central Sensitization

Central sensitization is described as an increase in the nociceptive neurons’ CNS
reactivity to their regular or subthreshold afferent input [114]. Although pain is commonly
localized to a specific site, coordinated CNS activity leads to the conscious perception of
pain originating from the brain. This phenomenon underscores the intricate nature of pain
processing and perception in the CNS [130].

Neuroimaging approaches revealed that the brains of women experiencing CPP,
both with and without endometriosis, exhibit alterations in regions responsible for pain
perception. Specifically, a decrease in grey matter has been identified in the thalamus
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and insula of EM patients with CPP, but not in those who are asymptomatic. Addi-
tionally, compared to healthy women, EM patients exhibited higher amounts of excita-
tory neurotransmitters in their anterior insula, according to results from proton magnetic
resonance spectroscopy [131].

The ongoing nociceptive process from inflamed endometriotic lesions causes long-
lasting cerebral sensitization of sensory afferents. Peripheral sensitization frequently serves
to both trigger and maintain central sensitization, which causes pain to persist long after
the peripheral insult or illness has subsided [132]. Many women with EM report on-
going pain, despite receiving therapy for or having endometrial lesions removed. This
CPP persistence, as well as the mismatch between the severity of a lesion’s diagnosis
and the experienced pain, may find an explanation in the central sensitization of pain
pathways. This phenomenon suggests that changes in the CNS processing of pain signals
contribute to the ongoing perception of pain, independent of the presence or severity of
physical lesions [133,134].

The relationship between endometriosis and changes in central pain processing raises
the question of whether these changes exacerbate CPP due to alterations caused by EM
or if women with these changes are inherently more sensitive to endometrial disease. The
precise causal direction of this connection remains unclear. However, the prolonged pe-
riod between the pain onset and the EM diagnosis provides ample time for these lesions
to induce the chronic alterations necessary for triggering central sensitization. In addi-
tion, animal models documented that removing lesions in the early stages led to reduced
pain experience [135,136].

Additionally, CPP is frequently linked to detrimental cognitive, behavioural, sexual,
and emotional outcomes, potentially aggravating pain [33]. The interaction between psycho-
logical discomfort and pain perception is bidirectional, as psychological factors can influence
the perception of pain, while pain itself may contribute to psychological discomfort [56].

4. Impairment of the Immune System in Endometriosis

As previously mentioned, several studies highlight an immune system dysfunction in
EM patients. Indeed, the relative and absolute levels of various immune cells and factors
that play key regulatory roles are altered in the peritoneal fluid and the endometriotic
lesions [2,137,138]. In general, EM etiopathology involves the participation of both innate
(e.g., macrophages, neutrophils, mast cells, dendritic cells (DCs), and natural killer (NK)
cells) and adaptive immune cells (T and B cells) [139,140].

Concerning innate immune cells, macrophages and neutrophils are initially recruited
to the peritoneal cavity in response to inflammation caused by menstrual endometrial
fragments. Specifically, these cells secrete and promote the release of proinflammatory
cytokines and angiogenic mediators, like TNF-α, IL-17, and IL-8 [141], while also modu-
lating hypoxia-induced angiogenesis through the VEGF secretion [142]. The presence of
these cytokines may induce a prolonged state of chronic inflammation. Macrophages can
directly induce excitatory alterations in TRPV1 channel activity, encourage the sensitization
of peripheral nerves, provoke sensitivity, and start a complex feedback loop that enhances
microenvironmental inflammatory reactions and exacerbates pain generation. Elevated
levels of TRPV1/TRPA1 isomers may prompt macrophage polarization, facilitate the mi-
gration of ectopic endometrial cells [143], and subsequently advance EM development.
Increased IL-17 levels within the peritoneal fluid regulate the recruitment and polarization
of macrophages toward the alternatively activated M2 phenotype (anti-inflammatory) as
opposed to the M1 phenotype (proinflammatory). Additionally, they promote angiogenesis,
thereby stimulating the growth of endometriotic lesions [144]. Therefore, alterations in
the inflammatory profile within the abdominal microenvironment prompt macrophages
to secrete elevated levels of cytokines. This, in turn, leads to the recruitment of greater
numbers of macrophages and other immune cells. Consequently, this condition promotes
the migration and invasion of endometrial cells favouring the development of endometri-
otic lesions. Furthermore, neutrophils produce IL-17α, the level of which is higher in EM
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patients and connected to the severity of the disease and infertility [145–147], and release
VEGF in the abdominal cavity, promoting the development of endometrial lesions [148,149].
Activated mast cells directly contribute to the symptoms of neuropathic pain by producing
mediators such as histamine, leukotrienes, tryptase, TNFα, PGs, serotonin, IL-1, and IL-8.
The recruitment of leukocytes that produce analgesic mediators by the activation of mast
cells may also indirectly contribute to the rise of neuropathic pain [150].

The endometriotic lesions and the surrounding peritoneal membrane show the pres-
ence of immature DCs, while mature DCs are diminished throughout the menstrual
phase [151]. In addition, NK cells are diminished within the peritoneal cavity. NK cells
have significant roles in EM development, either promoting or contrasting the survival,
implantation, and proliferation of endometrial cells [152]. NK cells are also implicated
in various pathogenic processes involving immune cells by modulating cytokine expres-
sion levels [153]. Moreover, NK cells may contribute to the onset of clinical symptoms
like dysmenorrhea and pelvic discomfort, as well as complications (e.g., infertility) in
EM patients [154].

Regarding adaptive immunity, its role in EM is complex and contrasting, as it is
influenced by the phases of the disease. In detail, T cells are increasingly recognized
as significant factors in EM pathogenesis. Patients with endometriosis showed T helper
(Th) cells towards the Th2. This is attributed to intracellular expression of IL-4 and the
absence of IL-2 in lymphocytes isolated from ectopic lesions [155]. Additionally, T cell
function may be correlated with EM severity [156]. A notable accumulation of Tregs
(regulatory T cells) in the peritoneal fluid of patients with advanced endometriosis has been
observed [157]. This accumulation may be associated with persistent local inflammatory
responses and the chemotaxis of inflammatory cells. Insufficient local induction and
activity of Tregs in the early EM stages might adversely affect the function of other effector
immune cells (such as macrophages, neutrophils, and NK cells), thus collectively promoting
EM persistence and progression [157]. Reduced Tregs may decrease the aggregation of
platelets, M2 macrophages, and Th2 and Th17 cells and increase that of Th1 cells in lesions,
thereby inhibiting epithelial–mesenchymal transition (EMT), fibroblast to myofibroblast
transdifferentiation (FMT), and fibrosis, consequently impeding EM progression [138].

Moreover, heightened activation of B cells has been detected in both the eutopic
endometrium and the lesions compared to the healthy endometrium [158].

Finally, endometriotic lesions can also increase the expression of PGs, MCP1, gly-
codelin, and other inflammatory mediators and pain-related compounds [159,160]. These in-
flammatory and pain-associated factors influence inflammatory cells in turn. Consequently,
the recruitment of more inflammatory cells induces a vicious cycle, leading to the establish-
ment of a new impaired inflammatory milieu in the peritoneal and pelvic environment [139].

Regarding the molecular immune response, the peritoneal fluid harbours elevated con-
centrations of proinflammatory and angiogenic cytokines, originating from macrophages
as well as from the lesions. Several studies have highlighted increased concentrations of
IL-1α [161], IL-1β [162], and total IL-1 [163], supporting the presence of a localized inflam-
matory milieu. Moreover, endometriotic lesions exhibit higher levels of IL-1β expression
compared to both eutopic endometria from healthy women and those with endometriosis,
underscoring the locally induced inflammation characteristic of endometriosis. The over-
production of TNF-α, induced by activated macrophages, NK cells, and Th1 cells, has been
observed in the peritoneal fluid exclusively in the mild or early stages of the disease [163],
suggesting its involvement during the initial EM phases. Both TNF-α and IL-1β stimulate
the expression of cyclooxygenase-2 (COX-2), responsible for regulating the synthesis of
prostaglandin E2 (PGE2) [164]. Additionally, PGE2 can induce COX-2 expression, establish-
ing a positive feedback loop that amplifies inflammation and pain through excessive PGE2
production. In addition, PGE2 can also diminish macrophage cytotoxicity and stimulate
cell proliferation, local oestrogen synthesis, and angiogenesis [164]. Besides, elevated levels
of IL-6 produced by macrophages, Th1 cells, B cells, fibroblasts, and endothelial cells were
found in the peritoneal fluid of EM patients [165], positively correlated with the size and
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number of endometriotic lesions [165]. Furthermore, IL-6 concentrations increase in more
advanced EM stages [166]. The increase in IL-1β and TNF-α could stimulate peritoneal
mesothelial cells to produce IL-6, thereby exacerbating the local inflammation observed in
endometriosis. Moreover, high IL-10 levels have been observed in the peritoneal fluid of
EM patients [167] compared with healthy subjects, as well as women with other gynaeco-
logical diseases [168]. The increased concentration of IL-10 has been linked to the reduced
cytotoxicity of NK cells observed in endometriosis [169], underscoring the concept that
local cytokine dysregulation facilitates the implantation of endometrial fragments in the
peritoneal cavity. Additionally, elevated levels of the neutrophil chemotactic IL-8 [88] have
been detected in the peritoneal fluid of EM women [170], although not in the serum or
peripheral blood [171], suggesting a localized dysregulation in endometriosis. Moreover,
higher IL-8 levels have been reported in the early EM stages compared to more advanced
stages [171]. Finally, MCP-1 has been detected in high concentrations in the peritoneal fluid
of EM women [170], increasing with disease severity [172]. Peritoneal mesothelial cells of
women with endometriosis produce MCP-1 in response to IL-1α and TNF-α stimulation.
In healthy women, MCP-1 production was correlated with the stage of the menstrual
cycle, where the peritoneal fluid of healthy women had higher MCP-1 levels during the
proliferative phase compared to the secretory phase. These results point towards a re-
sponsiveness of MCP-1 to ovarian hormones. The production and expression of MCP-1 in
isolated endometrial stromal cells are inhibited by E2 in a dose-dependent manner [173].
Endometriotic lesions can be stimulated to produce MCP-1 by IL-1β, and this response
is further enhanced by E2. These results not only demonstrate the significant involve-
ment of MCP-1 in EM development but also highlight the complex interplay between the
endocrine and immune systems, showing the crucial role of oestrogen in amplifying the
chemokine-induced recruitment of immune mediators to the sites of endometriotic lesions.

5. Microbiome Composition and Function in Endometriosis

Currently, researchers are investigating the potential role of the microbiome as
a counterpart of immune response in EM development. This is because certain bacte-
ria can stimulate the immune system and induce inflammation, while others contribute to
the host’s homeostasis by producing antimicrobial or immunomodulatory compounds. The
microbiome may indeed contribute to EM development by promoting hormonal dysregula-
tion (through the estrobolome, defined as the microbiome members capable of metabolizing
and modulating oestrogen), altering cellular proliferation/apoptosis, metabolism, oxidative
stress, and angiogenesis [174]. Moreover, recent investigations demonstrated the potential
interaction between the microbiomes of various human disorders, such as the gut and
urogenital microbiomes, given their proximity [175,176].

5.1. The Gut, Vaginal, and Peritoneal Bacterial Flora

Differences in the faecal microbiome composition between women with endometrio-
sis and those without showed the depletion of several taxa, including Lachnospiraceae
Ruminococcus, Clostridia Clostridiales, Ruminococcaceae Ruminococcus, and Clostridiales Lach-
nospiraceae, along with an increased abundance of Eubacterium dolicum and Eggerthella
lenta in EM patients as compared to EM-free women [177]. Likewise, an increased Fir-
micutes/Bacteriodetes ratio in the endometriosis group was reported, with enrichment of
Cynaobacteria, Actinobacteria, Fusobacteria, Saccharibacteria, and Acidobacteria as compared
to the control [177]. In addition, the LEfSe analysis demonstrated that Blautia, Dorea,
Bifdobacterium, and Streptococcus abundances are related to the inflammatory and serum
hormone levels [177]. Another study found that Firmicutes and Bacteroidetes were the major
abundant phyla in the gut microbiomes of EM patients. Furthermore, they found that
Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes, Fusobacteria, and Verrucomicrobia in the
gut were correlated with concentrations of urinary oestrogen [178]. In another research,
both the alpha and beta diversities were different between EM patients and healthy con-
trols [179]. In addition, Coriobacteriia, Bacilli, Clostridia, Bacteroidia, and Gammaproteobacter



Int. J. Mol. Sci. 2024, 25, 6473 11 of 29

levels differed between the endometriosis group and the control group. A significant
variation in β diversity was additionally observed in experimental animals. Bacteroides
were enriched in the control group while Firmicutes were enriched in the model group [179].
The Firmicutes/Bacteroides ratio in the body also increased in rats with EM, suggesting that
endometriosis causes a gut microbiome imbalance [180].

Furthermore, a decrease in the synthesis of microbial products such as short-chain fatty
acids (SCFAs) has been directly connected to an imbalance in the gut microbiome [181,182].
In detail, SCFAs, like butyric acid, are crucial for preserving the intestinal barrier, reducing
immunological response, and enhancing mitochondrial performance [183]. In addition,
butyrate acts to avoid the immune response caused by the gut biological imbalance [184].
Finally, a recent study reported that the gut microbiome can be linked to depression via re-
ducing the butyrate; indeed, as previously mentioned, depression is more common among
EM patients, and women who experience persistent pelvic discomfort typically experience
depression at a higher level than those who do not [185]. A recent study demonstrated
that butyrate produced from the gut microbiome protects mice from endometriosis via
controlling G-protein-coupled receptors [186].

In mice with endometriosis, a study examining the relationship between faecal
metabolomics and gut microbiome showed a decrease in linolenic acid (ALA) abundance
and a rise in chenodeoxycholic acid (CDCA) and ursodeoxyl content [187]. Another report
demonstrated that ALA reduced the inflammatory response by inhibiting the accumulation
of nitrite and prostaglandin E2 (PGE2) [188]. Additionally, in EM mice, ALA can lessen
the LPS amount and enhance the inflammatory milieu in the abdomen [188]. Collectively,
all these findings essentially suggest that the gut microbiome plays a role in the EM onset;
in detail, metabolic changes can participate in the disease pathogenesis, and some microbial
metabolites may have the potential to treat endometriosis.

On the other hand, an increasing body of research indicates that EM women have
higher levels of bacterial colonization in their menstrual blood and endometrial tissues
than do women in the general population [189–192].

A different distribution of microorganisms in the various sections of the female repro-
ductive tract has been reported [193,194]. Notably, Lactobacillus spp dominates the lower
tract, creating a low-pH environment and producing bacteriocins as well as hydrogen
peroxide, thus protecting the host against pathogens. Studies of the vaginal microbiome
using the community state type (CST) classification system reported five CSTs that can
change throughout women’s lifetimes, whereby CST I, II, III, and V are dominated by
Lactobacillus crispatus, Lactobacillus iners, Lactobacillus gasseri, and Lactobacillus jensenii, re-
spectively [195,196]. These four CSTs are associated with healthy vaginal microbiome
composition, whereas CST IV, which exhibits greater percentages of strictly anaerobic
microorganisms (e.g., Finegoldia, Prevotella, Atopobium, Dialister, Aerococcus, Gardnerella,
Peptoniphilus, Megasphaera, Sneathia, Eggerthella, and Mobiluncus), is hypothesized to be
connected to vaginal inflammation or dysbiosis. However, despite Lactobacillus spp. dom-
inating the microbiome ecosystem, according to a recent study, EM patients also have
a larger abundance of Corynebacterium, Enterobactericaea, Flavobacterium, Pseudomonas, and
Streptococcus in their cervical microbiomes than controls [197].

Additional research has demonstrated that a high concentration of Gardnerella, Pre-
votella, and Bacteroides spp. in the cervicovaginal microbiome may increase the risk of
endometriosis and other pelvic inflammatory diseases. Consequently, this could lead
to infertility [198].

Moreover, the American Society of Reproductive Medicine (ASRM) classification
system divides endometriosis stages into four grades according to the number of lesions
and depth of infiltration: minimal (Stage I), mild (Stage II), moderate (Stage III), and severe
(Stage IV). Several differences in the microbial vaginal architecture have been observed
between EM patients in Stages I and II as compared to those in Stages III and IV [199], and
potential vaginal microbial biomarkers can be specific for different stages: (a) Stage I–II:
L. jensenii or members in Corynbacteriales, Porphyromonadaceae, and Ruminococcaceae, (b) Stage
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III–IV: Bifidobacterium breve and Streptococcaceae members. In addition, the metagenome
activities analysed through bioinformatic tools showed a higher proportion of bacteria
involved in general and lipid metabolism, as well as the synthesis and breakdown of
ketone bodies [200].

Finally, the peritoneal microbiome has also been explored to elucidate EM devel-
opment. This tract was once thought to be “sterile”; however, a recent study reported
a total of 276 operational taxonomic units (OTUs) detected in peritoneal fluid collected
from EM patients (as compared to 211 OTUs in the control group), out of which 120 were
typical of the endometriosis group [201]. At the genus level, there was a significantly
higher abundance of Acidovorax, Devosia, Methylobacterium, Phascolarctobacterium, and Strep-
tococcoccus in the EM group than in the control group. Moreover, microbes present in the
extracellular vesicles in the peritoneal fluid of EM patients showed a significant decrease
in Actinobacteria [202]. However, a recent investigation demonstrated that the prognostic
value of the vaginal microbiome in endometriosis might not be as relevant as that of the
gut microbiome, which to some extent brings a new direction in EM exploration [177]. In
peritoneal and intestinal fluids, Ruminococcus and Pseudomonas have been suggested as
potential biomarkers for EM diagnosis [177].

5.2. The Oestrogen–Gut Microbiome Axis and the Estrobolome

As previously mentioned, endometriosis is an oestrogen-dependent disease. In detail,
by raising mucus secretion, glycogen levels, and epithelial thickness, oestrogen can control
the microenvironment of the female lower genital tract. It can also indirectly lower vaginal
pH by raising lactic acid levels and Lactobacillus abundance [203]. The host metabolism of
oestrogen mainly occurs in the liver. Indeed, the liver can produce sex hormone-binding
globulin, and the combination of sex hormone-binding globulin and oestrogen can lead to
the loss of oestrogen biological activity [204]. Plottel and Blaser defined “estrobolome” as
“the aggregate of enteric bacterial genes whose products are capable of metabolizing estro-
gens” [205]. Indeed, the gut microbiome produces β-glucuronidase and β-glucosidase, and
these products can promote the degradation of oestrogen, thus increasing the reabsorption
of free oestrogen and improving the level of oestrogen in circulation [206,207]. Distinct bac-
terial ß-glucuronidase genes from the human gut microbiome have been reported [208,209].
The well-characterized gus gene is commonly found in gut bacteria here, as the BG gene has
been reported by metagenomic analysis [209]. The BG gene is represented in the bacterial
phyla Bacteroidetes and Firmicutes. On the other side, gus is more common in Firmicutes [210].

Multiple bacterial genera in the gut microbiome can produce β-glucuronidase, includ-
ing Bacteroides, Bifidobacterium, Escherichia coli, and Lactobacillus [211]. It has been reported
that EM patients have a faecal increase in Escherichia coli [190,192]. Collectively, all these
studies confirmed that the gut microbiome could lead to an increase in circulating oestrogen
levels, which could induce a high-oestrogen environment for EM progression [212]. Of
course, further research is needed to discover the factors that stimulate the production of
β-glucuronidase by specific gut microbiomes in EM pathogenesis, as well as the relation-
ship between the gut microbiome and the female upper reproductive tract microbiome and
whether they collaboratively operate to cause the disease.

6. Microbiome, Inflammation, and Oxidative Stress as Modulators of CPP Associated
with Endometriosis

As previously reported, endometriosis is characterised by changes to the microbiome
architecture in the gut, female reproductive tract, and peritoneal fluid. It is not yet clear
whether these changes are the cause of EM or consequences [213]. However, the microbiome
plays a central role in the modulation of the inflammatory, immune, and oxidative processes
of endometriosis [28] (Figure 2).



Int. J. Mol. Sci. 2024, 25, 6473 13 of 29

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 13 of 31 
 

 

glucuronidase and β-glucosidase, and these products can promote the degradation of 
oestrogen, thus increasing the reabsorption of free oestrogen and improving the level of 
oestrogen in circulation [206,207]. Distinct bacterial ß-glucuronidase genes from the 
human gut microbiome have been reported [208,209]. The well-characterized gus gene is 
commonly found in gut bacteria here, as the BG gene has been reported by metagenomic 
analysis [209]. The BG gene is represented in the bacterial phyla Bacteroidetes and 
Firmicutes. On the other side, gus is more common in Firmicutes [210]. 

Multiple bacterial genera in the gut microbiome can produce β-glucuronidase, 
including Bacteroides, Bifidobacterium, Escherichia coli, and Lactobacillus [211]. It has been 
reported that EM patients have a faecal increase in Escherichia coli [190,192]. Collectively, 
all these studies confirmed that the gut microbiome could lead to an increase in circulating 
oestrogen levels, which could induce a high-oestrogen environment for EM progression 
[212]. Of course, further research is needed to discover the factors that stimulate the 
production of β-glucuronidase by specific gut microbiomes in EM pathogenesis, as well 
as the relationship between the gut microbiome and the female upper reproductive tract 
microbiome and whether they collaboratively operate to cause the disease. 

6. Microbiome, Inflammation, and Oxidative Stress as Modulators of CPP Associated 
with Endometriosis 

As previously reported, endometriosis is characterised by changes to the microbiome 
architecture in the gut, female reproductive tract, and peritoneal fluid. It is not yet clear 
whether these changes are the cause of EM or consequences [213]. However, the 
microbiome plays a central role in the modulation of the inflammatory, immune, and 
oxidative processes of endometriosis [28] (Figure 2). 

 
Figure 2. The influence of oxidative stress, microbiome, and inflammation on CPP in endometriosis 
and their impact on related psychological disorders. ROS: reactive oxidative species; GABA: 
gamma-aminobutyric acid; SCFA: short-chain fatty acid; HPO: hypothalamus–pituitary–ovarian 
axis; LH: luteinising hormone; FSH: follicle-stimulating hormone; CRH: corticotropin-releasing 
hormone; HPA: hypothalamus–pituitary–adrenal axis; TNFα: tumour necrosis factor-α; IL-1β: 
interleukin 1β; CCL-2: C-C motif chemokine ligand 2; CXCL-1: chemokine ligand 1. ↓ reduction; ↑ 
increase. 

In healthy conditions, the gut microbiome contributes to the regulation and 
maintenance of the mucus thickness, transepithelial barrier function, and immunological 
response of the epithelium [174]. On the other hand, dysbiotic gut bacteria frequently 
cause an increase in both local and systemic inflammation by affecting the intestinal 

Figure 2. The influence of oxidative stress, microbiome, and inflammation on CPP in endometriosis
and their impact on related psychological disorders. ROS: reactive oxidative species; GABA: gamma-
aminobutyric acid; SCFA: short-chain fatty acid; HPO: hypothalamus–pituitary–ovarian axis; LH:
luteinising hormone; FSH: follicle-stimulating hormone; CRH: corticotropin-releasing hormone; HPA:
hypothalamus–pituitary–adrenal axis; TNFα: tumour necrosis factor-α; IL-1β: interleukin 1β; CCL-2:
C-C motif chemokine ligand 2; CXCL-1: chemokine ligand 1. ↓ reduction; ↑ increase.

In healthy conditions, the gut microbiome contributes to the regulation and main-
tenance of the mucus thickness, transepithelial barrier function, and immunological re-
sponse of the epithelium [174]. On the other hand, dysbiotic gut bacteria frequently cause
an increase in both local and systemic inflammation by affecting the intestinal protective
mucus layer and directly interacting with enterocytes [214]. Additionally, dysbiosis can
cause intestinal barrier disruption and immunological dysfunction, which can result in the
transmigration of the gut bacteria [174]. Moreover, microbial dysbiosis and infections in
the female genital tract have the potential to trigger genetic and epigenetic events. These
conditions may contribute to elevated oxidative stress, characterized by an increase in
ROS and alterations in immune responses, which may influence EM development [215].
Therefore, gut dysbiosis, which occurs in endometriosis, contributes to higher levels of
systemic inflammation but also to infertility [216].

In addition, EM-associated CPP and the gut microbiome seem to be related. A recent
study showed that patients with CPP exhibited less diversity in their gut microbiome than the
control group [217]. Moreover, the female reproductive tract’s microbiome also appears to be
involved. Notably, the cervicovaginal microbiome’s ascent to the upper female reproductive
system and gut–vagina axis (GVA) may contribute to the dysbiosis spread from the gut to the
cervicovaginal microbiome, as well as inflammation, which could contribute to endometriosis,
infertility, CPP, and symptoms related to these illnesses [218,219].

Direct and indirect processes allow the gastrointestinal tract to communicate with the
central nervous system in both directions. This complex interaction is referred to as the
gut–brain axis (GBA) [220]. It has been reported that gut bacterial products can change the
host’s brain activity when they contact with host receptors through the action of neuroactive
compounds, such as serotonin, GABA, glutamate, and SCFA [220–222]. This interaction
can affect neuronal transmission, pain creation, inflammation, or hormone release [223].

Regarding the relationship between microbiome and pain, microorganisms that influ-
ence brain activities could increase nociceptive transmission, thus mediating CPP. In detail,
the microbiome influences the synthesis of compounds that affect multiple neurons both
centrally and peripherally, moderating the nociceptive pain. Furthermore, neuroimmune
activation that may be controlled by the microbiome appears to be the cause of neuro-
pathic pain, which frequently results from nerve-damaging trauma and gradually leads to
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central sensitization of chronic pain [219]. Finally, the gut microbiome affects microglial
function, but it also regulates other cells, such as monocytes, astrocytes, endothelial cells,
microglia, macrophages, pericytes, and T cells, leading to the release of proinflammatory
chemokines/cytokines (CCL2, CXCL-1IL-1β, IFN-γ, and TNFα) [223]. These elements
act on synaptic neurotransmission by increasing glutamate levels and lowering GABA
(gamma-aminobutyric acid) levels, but they also affect serotonin and SCFA levels, thus
leading to central sensitization and hyperalgesia [224,225].

Furthermore, these metabolites move into the brain and bind to neural receptors. This
bond directly activates cerebral and hypothalamus neurons, including GnRH neurons,
modulating GnRH secretion from the hypothalamus [226]. Since GnRH neurons have
been observed to innervate outside of the blood–brain barrier (BBB), it is possible that
neuroactive substances can interact with GnRH neurons without passing through the
BBB [227]. GnRH acts on the pituitary gland, causing the release of luteinising hormone
(LH) and follicle-stimulating hormone (FSH) into circulation, which stimulates oestrogen
secretion and follicular development in the ovaries [228]. Gut dysbiosis may dysregulate
the hypothalamus–pituitary–ovarian axis (HPO) and consequently, LH and FSH produc-
tion, contributing to central and visceral pain generation [219,226]. Consequently, LH
dysregulation can affect oestrogen production, leading to cervicovaginal dysbiosis and
increasing the risk for oestrogen-related disorders, including endometriosis, infertility,
and CPP.

Finally, gut dysbiosis can also dysregulate the hypothalamus–pituitary–adrenal axis
(HPA), increasing the secretion of corticotropin-releasing hormone (CRH) and consequently,
cortisol. Therefore, higher cortisol levels can contribute to systemic inflammation and
lower pain tolerance, leading to CPP [219]. So, dysregulation of HPA axis signalling may
contribute to mood disorder, depression, and anxiety, which are frequently associated with
elevated cortisol levels and inflammatory mediators that cause a protracted inflammatory
state [229].

7. Microbiome-Mediated Inflammation and Its Link with Endometriosis-Related
Psychological Disorders

The link between the microbiome and psychological disorders is becoming clearer [230].
As previously stated, the gut microbiome can influence brain activity through serotonin,
glutamate, GABA, and SCFA, as well as by modulating noradrenergic and dopaminergic
neurotransmission, thereby impacting neuropsychological aspects [231]. However, numer-
ous studies have pointed to inflammation, a counterpart of the microbiome, as a crucial
element in the aetiology of anxiety and depressive disorders. Moreover, inflammation and
oxidative stress are connected in complex ways to impaired neuroplasticity and thus to the
development of bipolar [232] and psychiatric disorders, including depression [233] and
psychosis [234]. At least some of these proinflammatory changes have also been observed
in EM patients [2].

In fact, several studies have demonstrated that patients with anxiety or depression,
despite being otherwise healthy, exhibit higher levels of acute phase proteins and proin-
flammatory cytokines [235–237]. Similarly, the immunity dysregulation observed in mental
health problems may be influenced by alterations in the gut microbiome and the subsequent
cascade of proinflammatory and oxidative responses.

Through signals across the BBB and immune cells leaking into the brain, peripheral
inflammation may be linked to brain function [235]. Additionally, bacterial metabolites
and lipopolysaccharide infiltration may activate innate resistance receptors, leading to
CNS inflammation. It is believed that longer-term activation of this system interferes with
the HPA axis’ ability to downregulate hormone levels, which results in persistently high
cortisol levels in the blood and, as such, in anxiety and depression [238].

The contribution of microbiome-mediated inflammation to anxiety and depression is
suggested by the increase in inflammation-associated microbial members and the decline
in species that generate anti-inflammatory metabolic products [239], such as species that
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secrete anti-inflammatory SCFAs, including Faecalibacterium, Coprococcus, and Clostridium
XIVa species that can produce butyrate [238] and Megamonas producing acetate and propi-
onate [240]. Reduced SCFA-producing species and its products may be a factor in immune
system dysregulation [239]. Indeed, as previously mentioned, lower butyrate levels have
also been linked to greater intestinal permeability [241]. As a result, microbial metabolites
and endotoxins such as lipopolysaccharides can translocate into the bloodstream, affecting
organs throughout the body [242]. Moreover, gram-negative bacteria can enter the blood-
stream when intestinal permeability is increased by high amounts of circulating cortisol
and inflammatory mediators, which may lead to chronic CNS inflammation and contribute
to CPP [243,244]. Therefore, this evidence suggests that the microbiome may play a role in
EM, CPP development, and related psychological comorbidities.

8. Regulating the Microbiome, Inflammation, and Oxidative Stress through Diet:
A Strategy for Managing CPP and EM-Associated Psychological Disorders

The hypothesis that appropriate nutritional interventions can influence EM progres-
sion is based on observations that diet and nutritional supplements can impact various
molecular processes, such as oestrogen activity, prostaglandin metabolism, and inflamma-
tion [1], as well as microbiome composition and function [245]. For example, both diet- and
nutrition-related changes in the gut microbiome architecture influence inflammation and
the GBA, which, in turn, may then affect endometriosis-associated symptoms, including
CPP. Consequently, this effect may act on psychological manifestations such as anxiety and
depression, either indirectly through regulating the underlying processes of CPP or directly
through the modulation of the GBA and HPA axis [239].

8.1. Dietary Intervention in Endometriosis

Currently, diverse dietary strategies are suggested for mitigating EM-associated symp-
toms and pain, though only a limited number of low-quality studies have explored their
effectiveness. Overall, regardless of the specific type of dietary intervention advised, an
enhancement in symptomatology tends to be observed. In a small Swedish study compris-
ing twelve individuals with endometriosis, participants reported enhanced well-being and
reduced symptoms following dietary and lifestyle changes, underscoring the substantial
diet impact on their health [246]. The study highlights the efficacy of personalized di-
etary interventions in addressing EM symptoms, emphasizing the crucial role of involving
patients in treatment decisions for optimal outcomes [246].

In addition, diets high in soluble fibre that boost a microbiome rich in butyrate-
producing species have been linked to decreased levels of both proinflammatory cytokines
and anxiety manifestations [247]. Women with EM responded to the low fermentable
oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet, which
is used as therapy for IBS patients [248]. In detail, FODMAPs are short-chain carbohy-
drates (mainly found in grains, fruits, and vegetables) that are easily fermented by the
microbiome and are not properly absorbed in the small intestine. These carbohydrates
have an osmotic effect and determine gas production that contributes to abdominal dis-
tention. Because of this, patients with visceral hypersensitivity (present in both IBS and
endometriosis patients) experience pain and bloating. Women with endometriosis and
IBS who avoided FODMAPs reported less pain. However, it remains unclear whether this
pain relief specifically targeted endometriosis-related symptoms [248]. The low-FODMAP
diet, comprising three stages—restriction, reintroduction, and personalization—has been
suggested as a safe long-term approach under the guidance and support of a clinical di-
etitian [249]. Moreover, in pre-clinical investigations, the low-FODMAP diet changed the
gut microbiome, which decreased the amount of gram-negative bacteria lipopolysaccha-
ride (LPS) in the faeces [250]. Furthermore, Akkermansia muciniphila and Actinobacteria
exhibited significant decreases compared to a high-FODMAP diet. Consequently, adopting
a low-FODMAP diet may contribute to decreasing gut mucosal inflammation, promoting
the repair of barrier function, and ultimately alleviating visceral pain [250].
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On the other side, plant-based nutrition appears to be linked to an anti-inflammatory
profile. Vegetal foods, which are rich in polyphenols, have the potential to reduce in-
flammation when converted into bioactive chemicals. Furthermore, individuals following
a plant-based diet display heightened levels of anti-inflammatory substances in their gut
microbiome compared to those following an omnivorous diet [251]. In a randomized
crossover trial with women experiencing dysmenorrhea, the implementation of a low-
fat vegetarian diet demonstrated an increase in plasma sex-hormone-binding globulin
expected to lower oestrogenic activity. Additionally, this dietary approach has proven effec-
tive in reducing pain intensity and duration and managing premenstrual signs compared
to an omnivorous diet [252].

Furthermore, meat consumption has been associated with an increased EM risk [253].
Red meat may elevate proinflammatory markers and contribute to higher levels of oestra-
diol and estrone sulphate, potentially leading to increased steroid levels, inflammation,
and EM onset [253,254].

Moreover, the Mediterranean diet (MD) offers numerous benefits in the treatment
of gynaecological conditions and serves as a preventive measure against various non-
communicable diseases, including cancer and cardiovascular disease [255,256]. According
to a single-arm study, adopting a diet rich in fresh products, whole grains, soy, fish with
fat, white meat, and extra virgin olive oil while reducing intake of red meat, sugary
drinks, animal fats, and sweets resulted in improved overall well-being for EM patients.
Additionally, this dietary approach was associated with a decrease in pain, dyspareunia,
dysmenorrhea, and dyschezia [257]. Interestingly, extra virgin olive oil, a cornerstone of
the MD that is rich in oleocanthal, shares a structural similarity with the drug ibuprofen.
Both substances exhibit the ability to inhibit the enzyme cyclooxygenase. Furthermore, the
enhanced fibre content of this diet contributes to a positive impact on digestion (eupeptic
effect), while magnesium-rich diets may potentially delay the increase in intracellular
calcium levels, thereby hastening uterine relaxation [258].

The MD is well known for its antioxidant and anti-inflammatory effects, which may
contribute to a decrease in EM-associated pain [85]. Cirillo et al. demonstrated MD efficacy
in alleviating pain associated with dyspareunia, non-menstrual pelvic pain, dysuria, and
dyschezia. Additionally, their study highlighted a positive correlation between lipid
peroxidation and the severity of non-menstrual pelvic pain and dysuria measured by
the VAS, as well as a significant negative correlation between ORAC and the severity
of non-menstrual pain and dyschezia [85]. Mier-Cabrera et al. compared antioxidant
intake between women with and without endometriosis and evaluated the impact of
a high-antioxidant diet (HAD) on oxidative stress markers. EM patients exhibited lower
intake of vitamins A, C, E, zinc, and copper compared to their counterparts without the
condition [259]. The HAD intervention, featuring elevated levels of vitamins A, C, and
E, resulted in increased antioxidant markers and decreased oxidative stress markers in
EM women. These data suggest the potential benefits of dietary interventions rich in
antioxidants for managing oxidative stress in endometriosis [259].

Furthermore, a gluten-free diet may alleviate pain by inhibiting gluten-mediated
immunomodulation and the inflammatory response, affecting the cytokines’ profile. In
a retrospective study on a gluten-free diet, 75% of EM patients reported significant im-
provement in their pain problems [260]. An additional work investigated the impact of
a low-nickel diet, considering the high prevalence of nickel allergic contact mucositis in EM
patients. The authors documented a significant decrease in gastrointestinal, extra-intestinal,
and gynaecological symptoms [261].

Finally, EM women show a higher prevalence of food restrictions, primarily due
to allergies, intolerances, and, most notably, gastrointestinal symptoms, in comparison
to controls [262].

Tailored nutritional interventions administered by trained dietitians have the potential
to alleviate disease burden and enhance quality of life for EM patients; surely, further
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research is essential to establish evidence-based dietary recommendations for effective
EM management.

8.2. Nutritional Supplementation

Various studies evaluated the effect of nutritional supplementation on microbiome,
inflammation, oxidative stress, and associated pain. Regarding probiotic supplementation,
there are limited studies on its impact on EM physical and psychological symptomatology.
Specifically, two mouse models examined the impact of oral supplementation with Lacto-
bacillus gasseri, revealing its potential to prevent EM development and progression. The
mechanism proposed involved immunostimulatory action through NK cells’ activation
and a decrease in the growth of ectopic endometriotic lesions [263,264]. Furthermore, the
administration of Lactobacillus gasseri OLL2809 appeared to be effective in pain treatment.
Indeed, it has been reported that the intensity of pain during the menstrual period, mea-
sured through the VAS and the verbal rating scale (VRS) of dysmenorrhea, was significantly
improved in treated EM patients when compared to the placebo group [265]. Additionally,
the supplementation of Lactobacillus sp. may have had some positive effects on EM patients’
related pain when compared to the control group [266].

Nonetheless, additional research is required to evaluate the specific role of probiotics
and prebiotics in addressing dysbiosis, thereby bolstering the rationale for incorporating
microbiome-based therapies in EM management.

Dietary supplementation has been suggested as a novel approach to alleviate pain-
associated symptoms [267,268]. A study on EM patients evaluated a 3-month treatment
with a blend of quercetin, curcumin, parthenium, nicotinamide, 5-methyltetrahydrofolate,
and omega-3 and omega-6. Using a Visual Analog Scale (VAS), the authors noted a sig-
nificant reduction in symptoms among the EM-treated patients compared to the control
group [268]. Sesti et al. demonstrated that postoperative dietary supplementation, en-
compassing vitamins, mineral salts, VSL3 lactic ferments, omega-3, and omega-6, along
with postoperative hormonal suppression therapy, proved more effective than surgery
coupled with a placebo in relieving pain associated with stage III–IV endometriosis and
improving overall quality of life [267]. Moreover, it is well accepted that polyunsaturated
fatty acids (PUFAs) like omega-3 and omega-6 have a therapeutic anti-inflammatory effect
on a variety of disorders, such as cardiovascular disease and metabolic syndrome [269].
Currently, the evidence of the beneficial effects of PUFAs on endometriosis is growing,
and it has been reported that women with higher omega-3 PUFA intake have a lower EM
risk [270,271]. Additionally, studies on a murine model have shown that mice with high
amounts of endogenous omega-3 PUFAs have decreased IL-6 levels. Additionally, when
donor tissue was transplanted into a host environment abundant in PUFAs, there was an
observed decrease in the growth of endometriosis-like lesions.

Omega-3 PUFAs can also influence the immunological, angiogenic, and proliferative
factors involved in early EM development [272,273]. Several studies reported that omega-3
could reduce dysmenorrhea symptoms [274,275]. Furthermore, women with dysmenorrhea
who had high omega-3/omega-6 ratios reported less pain [275]. Finally, in three clinical
trials, palmitoylethanolamine (endogenous fatty acid amide) and transpolydatin (natural
glucoside of resveratrol) were administered to EM patients. These studies reported that the
VAS score of the intervention group for EM-related pain was lower than the VAS score of
the control group [276–278].

Furthermore, EM prevention and treatment may benefit from adequate vitamin D
intake; indeed, low vitamin D levels were linked to a higher probability of EM diagnosis
and more severe symptoms [279]. In a 12-week, randomized, placebo-controlled study,
EM patients treated with vitamin D every two weeks showed a decrease in their self-
reported level of pelvic pain. Additionally, vitamin D was linked to diminished levels of
high-sensitivity C-reactive protein, as well as increased levels of total antioxidant capacity,
suggesting that it may have both an antioxidant and anti-inflammatory effect [280]. On
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the other hand, Almassinokiani et al. showed that vitamin D is not effective in EM-related
pain treatment [281].

Recently, it has been demonstrated that the use of antioxidant vitamin supplementation
is generally effective in reducing EM-related pain and inflammatory markers [282].

The effects of diet and dietary supplementation on endometriosis-related pain, mi-
crobiome, inflammation, and oxidative stress are documented in Table 1, as reported in
various studies.

Table 1. Dietary interventions for the management of endometriosis-related pain.

Type of Dietary Intervention Outcomes Reference

Dietary protocols

FODMAP diet ↓ pain Moore et al., 2017 [248]

FODMAP diet

↓ Akkermancia Muciniphila
↓ Actinobacteria

↓ gut mucosal inflammation
↑ barrier function

↓ pain

Zhou et al., 2018 [250]

Low-fat vegetarian diet
↓ sex hormone binding protein
↓ pain intensity and duration

↓ premenstrual signs
Barnard et al., 2000 [252]

Mediterranean diet
↓ pain, dyspareunia, dysmenorrhea,

dyschezia
↑ overall well-being

Ott et al., 2012 [257]
Cirillo et al., 2023 [85]

Antioxidant diet ↑ antioxidant markers
↓ oxidative stress markers Mier-Cabrera et al., 2009 [259]

Gluten-free diet ↓ inflammation
↓ pain Marziali et al., 2012 [260]

Low-nickel diet
↓ pain, dyspareunia, dysmenorrhea

↓ GI symptoms
↓ extraintestinal symptoms

Borghini et al., 2020 [261]

Dietary supplementation

Lactobacillus gasseri
↓ endometriosis progression and

development
↓ pain

Itoh et al., 2011 [263]; Uchida et al., 2013 [264]
Itoh et al., 2011 [265]

Lactobacillus sp. ↓ pain Khodaverdi et al., 2019 [266]

Vitamins, mineral salts, VSL3 lactic
ferments, omega-3, and omega-6

↓ pain
↑ quality of life Sesti et al., 2007 [267]

Quercetin, curcumin, parthenium,
nicotinamide, 5-methyltetrahydrofolate,

and omega-3 and omega-6

↓ pain, dyspareunia, dysmenorrhea
↓ headache, muscle aches

↓ cystitis
↓ irritable colon

Signorile et al., 2018 [268]

Omega-3 ↓ pain
↓ dysmenorrhea Rahbar et al., 2012 [274]

Palmitoylethanolamine
Transpolydatin ↓ pain

Cobellis et al., 2011 [276]
Giugliano et al., 2013 [277]
Indraccolo et al., 2010 [278]

Vitamin D

↓ pain
↓ PCR

↓ inflammation
↑ antioxidant capacity

Mehdizadehkashi et al., 2021 [280]

Vitamin D No significant effects on pain Almassinokiani et al., 2016 [281]

9. Conclusions and Future Directions

To conclude, there is a complex relationship among endometriosis, pain, and psy-
chological comorbidities such as stress, anxiety, neurological disorders, and depression.
In truth, psychological symptoms usually coexist with physical ones, with CPP serving
as a key mediator between endometriosis and these comorbidities. In addition, as the
EM disease is characterized by chronic inflammation, it is crucial to delve into the role
of the main modulators of inflammation, such as the microbiome (and its metabolites)
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and oxidative stress, in regulating CPP as well as psychological comorbidities. Recent
evidence suggests that the microbiome influences pain modulation in both the peripheral
nervous system and the CNS. Therefore, in the context of the existing literature, we propose
that regulating bacterial flora via dietary adjustments and probiotics/prebiotics or similar
interventions could offer a new therapeutic avenue for addressing CPP and psychological
disorders. However, it is critical to note that while the research in this field is promis-
ing, it is still in its early stages. The previous studies have several limitations, including
heterogeneous study designs, small sample sizes, absence of control groups, and a lack
of prospective research. More comprehensive and consistent clinical trials are needed to
establish the safety and especially the efficacy of such interventions. Elucidation of the
interplay among the microbiome, inflammation, and oxidative stress in endometriosis will
be useful for limiting pain and improving the quality of life and mental health of patients.
The new findings will be relevant and encouraging for the gynaecological community in
the development of clinical and nutritional intervention protocols to maintain and support
the mental well-being of patients.
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