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Abstract: Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This
review explores the mechanisms that help to explain this rarity, including unique SKM architecture
and function, which prohibits the development of new cancer as well as negates potential metastasis to
SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect.
Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix
stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development.
SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms
help account for the rarity of SKM cancer.
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1. Introduction

Skeletal muscle (SKM) comprises approximately 40–50% of body weight, depending
on leanness [1–3]; nonetheless, primary SKM cancer is extremely rare [4–7], especially
when organ mass is considered (Table 1). When rare primary tumors occur in SKM,
they most often derive from soft tissues during growth in childhood (particularly early
childhood [age ≤10 years]) and include rhabdomyosarcoma and rhabdomyoma [8]. Rhab-
domyosarcoma is recognized by light and electron microscopy as a tumor harboring cells
that resemble myoblasts [9,10]. Despite the similarity with myoblasts, it is unclear whether
rhabdomyosarcoma arises from myoblasts [11]; nonetheless, myoblasts likely undergo high
proliferation during early childhood and adolescence to support SKM growth [12] and
therefore could be the origin of the tumor. From 1975 to 1999, the incidence rate of rhab-
domyosarcoma in the U.S. was 4.5/1 million for individuals aged <20 years [13], which is
similar to the rate of 4.9/1 million in Sweden in 2016 for individuals aged <15 years [14]; the
rate is lower in reported Asian populations [15], perhaps suggesting a genetic contribution.
In the U.S., SKM cancers account for ~3.5% of pediatric cancers [16].

In adults, the incidence rate of rhabdomyosarcoma is estimated to be ~9.6/10 million.
This rate was derived by multiplying the soft tissue cancer incidence rate of 3.2/100,000 [17]
by 3%, which is the fraction of soft tissue sarcomas that rhabdomyosarcoma comprises [18]—
the actual number is likely much lower, as the incidence rate is not age-specific, and
thus inclusion of the pediatric population may skew the results higher; moreover, one
website [19] lists the soft tissue sarcoma-to-rhabdomyosarcoma fraction in adults at 1%—if
this is accurate, the incidence rate would be at least three times lower. Moreover, when
the organ mass is considered (incidence rate per 100,000 per g of tissue), rhabdomyosar-
coma manifests by far the lowest values among all cancers, at just 0.005%, 0.18%, 0.03%,
0.01%, and 0.0002% of the values for breast, brain, kidney, pancreas, and prostate cancers,
respectively (Table 1). Heart cancer has the second-lowest value but still manifests a 24-fold
greater incidence rate per tissue mass compared to that of rhabdomyosarcoma.
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Table 1. Comparison of incidence rates of cancer by organ and organ mass.

Cancer Type
Incidence Rate per
100,000 Individuals

[Reference]

Incidence Rate
Relative to

Breast Cancer a

Mean Organ Mass (g)
[Reference]

Incidence Rate per
Tissue Mass (per

100,000 per g Tissue) b

Incidence Rate per
Tissue Mass Relative to

Breast Cancer a

Number of Times More
Common Than SKM

Cancer Relative to
Tissue Mass c

Notes

Urinary bladder 5.6 [20] 0.120 37 [21,22] 0.151 1.56 30,545
Mean organ mass was obtained

by averaging the values for
men and women.

Bone 0.9 [23] 0.019 3465 [24,25] 2.6 × 10−4 2.7 × 10−3 53 Reported bone mass was multiplied by
0.33, the organic mass fraction.

Brain 3.5 [20] 0.075 1294 [26–28] 2.7 × 10−3 0.028 548
Mean organ mass was obtained by
averaging the values for men and

women from two reports each.

Breast 46.8 [20] 1 484 [29] 0.097 1 19,581
Organ mass indicates mean values for
women only, although a high variation

is present.

Colorectal 17.8 [20] 0.380 1818 [30] 9.8 × 10−3 0.101 1982
Incidence rate was derived by adding
the rates of colon and rectal cancers,

which were reported separately.

Gallbladder 1.2 [20] 0.026 16.4 [31,32] 0.073 0.757 14,817

Heart 0.034 [33] 7.3 × 10−4 288 [34,35] 1.2 × 10−4 1.2 × 10−3 24
Mean organ mass was obtained

by averaging the values for
men and women.

Kidney 4.4 [20] 0.094 287 [27,28] 0.015 0.159 3110
Mean organ mass was obtained

by averaging the values for
men and women.

Leukocyte 13.7 [20] 0.292 1200 [36] 0.011 0.118 2303

Incidence rate was derived by adding
the rates of Hodgkin lymphoma,

non-Hodgkin lymphoma, multiple
myeloma, and leukemia, which were

reported separately. Organ mass
includes the total mass of

all immune cells.

Liver 8.6 [20] 0.184 1425 [27,28] 6.0 × 10−3 0.062 1223
Mean organ mass was obtained

by averaging the values for
men and women.

Lung 23.6 [20] 0.504 370 [27,28] 0.064 0.660 12,925
Mean organ mass was obtained

by averaging the values for
men and women.
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Table 1. Cont.

Cancer Type
Incidence Rate per
100,000 Individuals

[Reference]

Incidence Rate
Relative to

Breast Cancer a

Mean Organ Mass (g)
[Reference]

Incidence Rate per
Tissue Mass (per

100,000 per g Tissue) b

Incidence Rate per
Tissue Mass Relative to

Breast Cancer a

Number of Times More
Common Than SKM

Cancer Relative to
Tissue Mass c

Notes

Ovary 6.7 [20] 0.143 6.3 [37] 1.06 11.0 215,357

Mean organ mass was derived by
multiplying the reported mean
ovarian volume (6.3 mL) by the

ovarian tissue density (1.00 g/mL).

Pancreas 4.7 [20] 0.100 91.8 [38] 0.051 0.529 10,368

Prostate 29.4 [20] 0.628 11 [39] 2.67 27.6 541,227

SKM 0.096 0.002 19,440 [40] 4.9 × 10−6 5.1 × 10−5 1

Incidence rate was calculated as
explained in Section 1. Mean organ

mass was derived by multiplying 0.44
(the approximate lower end of SKM

mass as a fraction of total body
mass [1]) by mean body mass (women

and men averaged) [40].

Skin 13.6 [20] 0.291 3250 [41] 4.2 × 10−3 0.043 847

Incidence rate for skin cancer was
derived by adding the rates of

melanoma and non-melanoma, which
were reported separately.

Stomach 9.2 [20] 0.197 142 [42] 0.065 0.671 13,129
Mean organ mass was obtained

by averaging the values for
men and women.

Testes 1.7 [20] 0.036 36.6 [43] 0.046 0.480 9401
Organ mass data were obtained in a
population of men aged 41–50 years

from northwest India.

Thyroid 9.1 [20] 0.194 16 [44] 0.553 5.72 112,021
Mean organ mass was obtained by

averaging the values for women aged
20–69 years and men aged 30–69 years.

Uterus 22.5 [20] 0.481 515 [45] 0.044 0.452 8849

Incidence rate for uterine cancers was
derived by adding the rates of cervix
uteri and corpus uteri cancers, which

were reported separately.

Abbreviations: SKM, skeletal muscle. Footnotes: a As breast cancer is the most frequent cancer type, it is used as a reference. b Calculated by dividing the incidence rate by the organ
mass. c Calculated by dividing the incidence rate per tissue mass by that of SKM.
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Secondary SKM cancer is also rare. For instance, in a 2015 single-institution retrospec-
tive study [4], SKM metastases were present in 31/1805 (1.7%) patients with cancer who
underwent F-fluorodeoxyglucose positron emission tomography or computed tomography.
The frequency of SKM metastasis varied by primary tumor site, ranging from 2.8% in lung
cancer to 6.9% in melanoma. Isolated SKM metastases were uncommon (6.5%), and most
were accompanied by other metastatic sites. Moreover, using computed tomography, a
2010 study detected SKM metastases in just 61/5170 (1.2%) patients with metastasized
cancer [46]; metastases were most commonly associated with primary tumors of the geni-
tals (24.6%), gastrointestinal tract (21.3%), urinary system (16.4%), and melanocytes (13.1%).
Another study reported that SKM metastasis occurred in <1% of patients with kidney
cancer [47]. In addition, a 2012 study [5] confirmed the rarity of SKM metastases in patients
with lung cancer (1.6%), with most metastases occurring in trunk muscles, suggesting
that SKM metastases likely arise from adjacent tumors. In patients with breast cancer,
SKM metastasis typically suggests a higher-stage cancer [7], and in patients with non-
small cell lung cancer and other metastatic carcinomas, SKM metastasis predicts a poor
prognosis [48,49]. This may be because SKM metastases tend to appear late during the
course of metastatic cancer [50], indicating that the disease is already widespread before it
infiltrates SKM. As posited by LaBan et al. [51], SKM “is in fact a hostile environment for
tumor emboli”.

The reasons underlying the relative rarity of primary and secondary SKM cancers
remain obscure, but their infrequent occurrence may be due to characteristics unique to
SKM architecture and function, the SKM microenvironment, and SKM-derived secretions
such as myokines, some of which exhibit anti-tumorigenic properties. (Note that for the
purposes of this review, “tumorigenic” refers to all attributes and steps involved in tumor
development, progression, and metastasis.) This review examines and summarizes these
postulated potential mechanisms, including the speculative involvement of specific SKM
myofiber types. Improved understanding regarding these mechanisms could lead to the
development of novel therapeutic approaches exploiting the anti-tumorigenic properties
of SKM.

2. Epidemiological and Mechanistic Studies

A higher SKM mass, often measured using the SKM index, is correlated with improved
prognosis in patients with cancers of various origins, including biliary tract, brain, breast,
esophageal, gastric, liver, small-cell lung, ovarian, pancreatic, urothelial, and pediatric
malignant solid cancers [52–59]. For example, a 2010 meta-analysis demonstrated that lower
muscle mass was associated with an all-cause mortality hazard ratio of 1.44 in patients with
solid cancers [60], although the effect is likely at least partially due to better resistance to
chemotherapy-induced dysfunction supported by increased SKM mass. Nevertheless, a
higher SKM index can intrinsically improve cancer outcomes [56,61].

Moreover, regular muscle contractile activity (i.e., exercise) helps to prevent cancer
as well as enhance cancer treatment and improve patient prognosis [62–65]. For example,
regular exercise or physical activity mitigates the risk of breast, bladder, brain, bone,
colorectal, endometrial, esophageal, gastric, kidney, lung, and other cancers, often via
humoral factors [62,63,66–86]. However, these epidemiological data only explain how
muscular activity per se can impact other cancers rather than explaining the rarity of SKM
cancers. Notwithstanding, insights gained from mechanistic studies examining this effect
may also offer understanding regarding the rarity of SKM cancers. For instance, many
of the proposed mechanisms outlined below, such as altered cytokines, anti-tumorigenic
secretions, and shear stress, may be magnified in the local SKM microenvironment.
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3. Local Mechanisms Alleviating Cancer in Skeletal Muscle

Mechanisms that may inhibit primary and secondary cancers in SKM include the
unique characteristics and architecture of SKM, immune-related factors, the properties of
the SKM microenvironment, and local myokine concentrations. These mechanisms are
illustrated in Figures 1 and 2.
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Figure 1. Innate characteristics of skeletal muscle tissue that prevent primary and secondary
cancer. The diagram shows mechanisms that occur within the skeletal myofiber, the ECM, and the
blood supply. Skeletal muscle ECM comprises the endomysium, which encases individual skeletal
myofibers; the perimysium, which encloses bundles of myofibers (fascicles); and the epimysium,
which surrounds an entire muscle. Although the figure shows the blood supply separately for clear
illustrative purposes, the blood supply is found within each ECM component. The mechanisms work
by directly inhibiting the formation of 1◦ cancer, causing apoptosis of existing MCC or otherwise
interfering with tumor progression, blocking adherence of MCCs to the ECM, or preventing the
spread of MCC to skeletal muscle. See the text for detailed mechanisms. Although the mechanisms
in the ECM are shown at the perimysium-epimysium interface or superficial to the epimysium, they
may occur anywhere within the ECM. Figure created using Biorender.com. Abbreviations: large X,
prevention of formation of 1◦ CCs or prevention of movement of MCCs; 1◦, primary; 2◦, secondary;
CC, cancer cell; DMCC, dying metastatic cancer cell; ECM, extracellular matrix; fx, function; MBR,
metabolic rate; MCC, metastatic cancer cell; ROS, reactive oxygen species.
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Figure 2. Contractile activity-dependent mechanisms that prevent cancer in skeletal muscle. The
diagram shows contractile activity-dependent mechanisms that occur within the skeletal myofiber, the
ECM, and the blood supply. SKM ECM comprises the endomysium, which encases individual skeletal
myofibers; the perimysium, which encloses bundles of myofibers (fascicles); and the epimysium,
which surrounds an entire muscle. Although the figure shows the blood supply separately for clear
illustrative purposes, the blood supply is found within each ECM component. The mechanisms work
by directly inhibiting the formation of 1◦ cancer, causing apoptosis of existing MCC or otherwise
interfering with tumor progression, blocking adherence of MCCs to the ECM or the endothelium,
or dislodging AMCCs attached to the ECM or endothelium. See the text for detailed mechanisms.
Although the mechanisms in the ECM are shown at the perimysium-epimysium interface, they
may occur anywhere within the ECM. Figure created using Biorender.com. Abbreviations: large X,
prevention of formation of 1◦ CCs; 1◦ CC, primary cancer cell; AMCC, adherent metastatic cancer cell;
CT, connective tissue; DMCC, dying metastatic cancer cell; ECM, extracellular matrix; fx, function;
IGF-1, insulin-like growth factor-1; MCC, metastatic cancer cell; prod’n, production; ROS, reactive
oxygen species; SKM, skeletal muscle.

3.1. Skeletal Muscle Characteristics and Architecture
3.1.1. Amitotic Nature of Skeletal Myofibers

Terminally differentiated SKM myofibers are generally considered to be amitotic [87].
Although some evidence indicates the existence of DNA endoreplication without cell
division in murine SKM [88], the development of tumors from amitotic tissue is uncom-
mon [89,90]. For instance, in the nervous system, tumors arising from amitotic neurons
are rare, with most tumors arising from glial cells [91]. Similarly, despite the unclear ori-
gin of primary SKM cancers, the most common forms, such as rhabdomyosarcoma and
rhabdomyoma, appear to arise from cells such as myoblasts rather than from mature SKM
myofibers [11]. Accordingly, the amitotic nature of SKM helps to explain the scarcity of
primary cancer in SKM.
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3.1.2. Physical Barrier

The dense and organized structure of SKM provides a physical barrier that can impede
the invasion and spread of cancer cells, thus helping to limit SKM metastases. For instance,
SKM is composed of parallel myofibers that run the entire length of the muscle. Individual
SKM myofibers are enveloped by a basement membrane, which is covered superficially by
the endomysium, a collagen-rich connective tissue. Endomysium-covered SKM myofibers
are bundled into fascicles that are surrounded by the perimysium, which is thicker than
the endomysium. All fascicles in an individual SKM are encased by the epimysium, which
is thicker than the perimysium. The collagen fibers of the endomysium, perimysium, and
epimysium merge at the myotendinous junction and with the collagen fibers of the ten-
don [1,92]. This arrangement of interconnected SKM connective tissue provides a physical
barrier to the migration and invasion of tumor cells from neighboring tissues. However,
when metastases do occur in SKM, most are found between these different connective
tissue layers [93–95]; accordingly, it has also been postulated that these connective tissues
may serve as a guide for invading cells [96].

3.1.3. Mechanical Forces

SKM undergoes frequent contraction and relaxation, which generates mechanical
forces that could disrupt the adhesion and survival of cancer cells. Because the contractile
myofilaments are physically connected to the extracellular matrix (ECM) via numerous
proteins, the mechanical forces initiated by cross-bridge cycling and subsequent sarcomere
shortening are transferred to the surrounding connective tissues, thus helping to trans-
fer force more efficiently to tendons [97,98], creating shear forces within the contracting
muscle [99], and therefore interfering with the ability of tumor cells to adhere to the ECM
surface. The mechanical forces may also dislodge cancer cells that may have adhered to
the intramuscular endothelium, thus preventing extravasation and infiltration of SKM [51].
Primary heart cancer is also rare (incidence rate, 34/100 million) [33]; secondary heart
cancer is approximately 20- to 40-fold more common than primary heart cancer, with an
incidence rate of ~8.5–17/100,000 [100]. The low incidence of heart cancer may also be
related to the continuous, cyclic mechanical forces exerted by autorhythmic contractions
of cardiomyocytes; this may be even more inhibitory to cancer development than occurs
in SKM.

3.1.4. Low Resting Metabolic Rate

Although energy metabolism in SKM can increase up to 100-fold during contractile
activity [101], resting SKM has a low metabolic rate [102]. As SKM is typically in a resting
state, this low metabolic rate may limit the occurrence of SKM cancers. This mechanism is
explained by the Warburg effect, which describes the link between higher glycolysis and
lactate production in cancer cells, despite oxygen availability [103]. This helps to describe
the inverse association of cancer risk and outcomes with whole-body basal metabolic
rates [104], although it could also be applied to individual organs [104]; thus, organs with
higher metabolic rates may be at higher risk of cancer, whereas organs with lower metabolic
rates may be at lower risk.

As tissue metabolism drives local blood flow and perfusion [105], an increased risk of
cancer in organs with a higher metabolic rate may be related to increased glucose delivery.
The risk may also result from increased tissue production of reactive oxygen species (ROS)
as a byproduct of greater energy metabolism [106]: ROS can induce oncogenic damage to
DNA and thus increase the risk of cancer in the local tissue [107]; ROS may also diffuse
to tumoral cells and foster the epithelial-mesenchymal transition, which is a critical step
driving tumor invasion and metastatic potential [108,109].

Indeed, in a comparison of organ-specific metabolic rates, resting SKM exhibited a
rate of 13 kcal/kg/d, which is only 3.0–6.5% of the rate for heart, kidney, brain, and liver
(440, 440, 240, and 200 kcal/kg/d, respectively) [102]. The incidence rate of kidney, brain,
and liver cancer is 4.4–15.2, 3.5–5.7, and 8.5–8.6/100,000 persons, respectively [17,20]. In
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contrast, as reported in Section 1, the incidence rate of rhabdomyosarcoma in childhood is
4.5–4.9/1 million [13,14] and in adults is ~9.6/10 million; therefore, in adults, the incidence
rate of rhabdomyosarcoma is only 2.2%, 2.7%, and 1.1% compared to that of kidney, brain,
and liver cancers, respectively—these differences are even more pronounced when the
incidence rate is expressed relative to tissue mass (listed in Table 1), with the value for
rhabdomyosarcoma (incidence rate per 100,000 per g tissue mass) representing just 0.04%,
0.36%, and 0.48% of the values for kidney, brain, and liver cancers, respectively. Although
further research is required to examine this phenomenon, with the exception of the heart
(see Section 3.1.3), these numbers correspond to the differences in metabolic rates between
resting SKM and other organs. This body of evidence indicates that the low metabolic rate
of resting SKM may be one factor inhibiting cancer growth.

3.1.5. Rich Blood Supply

Compared to most other tissues, SKM is highly vascularized and capillarized [110],
and vasodilatory capacity can increase 100-fold [111] and perhaps as high as 800-fold [51].
Based on Poiseuille’s law, this indicates that SKM blood flow has the capacity to increase
1,000,000-fold (1004) or higher, which is far in excess of the 50- to 100-fold increase in SKM
energy metabolism that occurs during contractile activity [101]. Vascular density, diameter,
and capillary density are further increased with exercise training via angiogenesis [112].
The concomitant increased volume and velocity of blood flow in SKM during contractile
activity, as well as the high intravascular shear forces, impede the ability of circulating
tumor cells to extravasate to SKM and may disrupt the attachment of tumor cells to the
intramuscular endothelium [51].

3.2. Immune-Related Factors
3.2.1. Localized Immune Response

SKM contains resident immune cells, such as macrophages and lymphocytes [113].
Functionally, these immune cells are involved in the repair of damaged SKM [114]; however,
they can also mount a localized immune response against cancer cells, limiting their ability
to develop in or metastasize to SKM by preventing or limiting their proliferation [115]. Fur-
thermore, the high vascularization and capillary density of SKM described in Section 3.1.5
result in a high ability to deliver anti-tumorigenic immune cells to SKM and the local
microenvironment, further facilitating local anti-tumorigenic activity.

3.2.2. Effect of Contractile Activity

In addition, SKM contractile activity initiates the conversion of pro-inflammatory M1
macrophages to anti-inflammatory M2 macrophages, resulting in reduced secretion of pro-
angiogenic factors that support tumor growth. SKM contractile activity also prevents the
conversion of anti-tumorigenic N1 neutrophils to pro-angiogenic N2 neutrophils that accel-
erate metastasis [65,116]. In a murine model of pancreatic cancer, the number and cytotoxic
activity of CD8+ T-lymphocytes (cytotoxic T-cells) are also increased with SKM contractile
activity, as is their accumulation in tumoral tissue [117–119]. Furthermore, SKM contractile
activity mobilizes natural killer cells [120] and enhances intra-tumoral blood flow, thus
increasing the delivery of anti-cancer immune cells to the tumor [119]. Furthermore, owing
to increased metabolic activity during SKM contractile activity [121], SKM temperature
increases [122,123]; this higher temperature may augment recruitment of natural killer cells
and thus help to prevent cancer development or metastasis [124–126], potentially in an
interleukin (IL)-6-dependent manner [124,125]. These changes in immune cell conversions
and the number and activity of anti-tumorigenic immune cells may occur at a higher rate
in local SKM, thus limiting the ability of tumors to grow in the SKM environment.

3.3. Skeletal Muscle Microenvironment

Whereas numerous studies have examined how SKM contractile activity can affect
the tumor microenvironment in general [64,127–130], it is less clear how the specific SKM



Int. J. Mol. Sci. 2024, 25, 6480 9 of 28

microenvironment may impact potential local tumorigenesis or infiltrating metastatic tu-
mor cells. The possibilities of a physical barrier imposed by connective tissues and the
shear stress in the connective tissues during muscle contraction comprise two compo-
nents of the SKM microenvironment that may restrict tumorigenesis and are described
in Sections 3.1.2 and 3.1.3, respectively. In addition, other features of the SKM microenvi-
ronment related to cancer risk include ECM stiffness, pH, and oxygen tension. Myokine
secretion, which may also be considered part of the microenvironment, is considered in
Section 3.4.

3.3.1. Extracellular Matrix Stiffness

One key feature of the tissue microenvironment that may affect cancer risk, progres-
sion, and metastasis is the ECM, including ECM stiffness [131]. This is a separate and
distinct feature from the ECM stiffness of the tumor microenvironment, which changes and
adapts over the course of tumor progression [132,133]. Although the influence of tissue
ECM stiffness remains controversial [131], evidence indicates that cancerous cells from
some origins preferentially adhere to and grow on ECM that exhibits less stiffness [134–136].
For instance, ovarian tumor cells preferentially invaded tissues with a lower degree of ECM
stiffness [134]. Moreover, the formation of spheroid tumors was lower in three-dimensional
fibrin gels with less stiffness [135]. Furthermore, when undifferentiated melanoma tumor-
repopulating cells were grown on a fibrin gel with less stiffness, specific histone methylation
occurred that limited colony growth [136]. Resting SKM exhibits >3-fold greater ECM
stiffness compared to that of breast or dermal tissue [96], but the stiffness can increase
20-fold during tetanic contraction in an unloaded muscle [137]; stiffness likely increases
even further in a loaded, fully contracted SKM. This high stiffness may prohibit the ability
of metastasized cells to adhere to the SKM ECM and thus help to account for the rarity of
SKM cancers.

3.3.2. Lactic Acid and pH

Owing to the dependence on anaerobic glycolysis in tumors as explained by the
Warburg effect [103], SKM-derived lactic acid at exercise intensities above the lactate
threshold may disrupt cancer metabolism by further raising intracellular lactic acid in
tumor cells, manifesting end-product inhibition, and thus consequently hindering tumor
adhesion and tumor angiogenesis that are essential for tumor growth [51,138,139]. In
addition to a direct inhibitory influence on metabolism, this effect may be partly mediated
via suppressed expression of estrogen-related receptor-α [139].

Furthermore, systemic pH may decline with SKM contractile activity, particularly of
an anaerobic nature, largely due to the accumulation of lactic acid [140]. Tumors tend to
thrive in a lower pH environment, which contributes to tumor cell proliferation, migration,
and invasion, as well as to intra-tumoral angiogenesis [141,142]. However, in creating
this acidic extracellular pH, the cancer cells generate an alkaline intracellular pH, despite
the higher lactate production [143]. SKM contractile activity-induced lactic acidosis may
intracellularly acidify the cancer cells and thus disrupt tumor progression [144].

3.3.3. Oxygen Tension

Hypoxia during early tumor development is an essential driver of intra-tumoral an-
giogenesis, which subsequently permits further growth and is essential for metastasis [145].
SKM contractile activity promotes increased intra-tumoral blood flow and oxygen level,
thus interfering with intra-tumoral hypoxia [119,146] and consequently limiting tumor
progression by interrupting energy metabolism.

3.3.4. Oxidative Stress

ROS produced by increased SKM contractile activity may induce oxidative stress in
tumor cells that have infiltrated SKM. Although ROS can be pro-tumorigenic, excess ROS
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results in oxidative stress, which interferes with the balance of oxidation and reduction and
impairs tumor cell proliferation [147].

3.3.5. Lipophilic Ligands of the Lipocalin Protein Family

Lipocalins are a protein family that serve as protease inhibitors during the cell
cycle [148–150]. The role of lipocalins in cancer is controversial [149]; however, they bind
to a wide variety of lipophilic ligands that regulate lipocalin activity [151]; these lipophilic
ligands are present in SKM and display local anti-tumorigenic activity [152].

3.4. Myokines

Myokines are SKM-secreted humoral factors, and their discovery, beginning with
IL-6 in 2000 [153], has defined SKM as an important endocrine organ [154,155] that
engages in extensive and complex cross-talk with other organs, including cancerous
tissues [64,130,155,156]. Over 600 myokines may be secreted [157], many of which are in-
creased by SKM contractile activity [155,158]. Some myokines exert anti-tumorigenicity by
limiting tumor cell growth, stimulating apoptosis, and inhibiting the epithelial-mesenchymal
transition, migration, and invasion of cancer cells [64,65,78,130,156]; myokines may also
positively modulate the anti-cancer immune response [130,159–161].

In addition to their endocrine function, many myokines also act in an autocrine and
paracrine manner [158,162]. As the myokine concentration in the SKM microenvironment
may be greater than in the circulation, the myokine-driven anti-tumorigenic effect may
be greater in SKM and therefore contribute to the scarcity of SKM cancers. Oncostatin-M,
irisin, secreted protein acidic and rich in cysteine (SPARC), decorin, brain-derived neu-
rotrophic factor (BDNF), IL-6, IL-7, IL-10, and IL-15 are among the myokines manifesting
anti-tumorigenic activity, and circulating levels of most of these increase with SKM con-
tractile activity [130,156]. While myokines may also exert anti-tumorigenic influence via
anti-inflammatory actions [163] or by counteracting systemic insulin resistance, hyperin-
sulinemia, and hyperlipidemia [164–167] via actions on other organs, this section of the
review focuses on the effects of myokines on cancer cells [78], either directly or by means
of immunological effects.

3.4.1. Oncostatin-M

Multiple studies illustrate the anti-tumorigenic properties of oncostatin-M [72,156,168],
which is a member of the IL-6 cytokine family [169]. For instance, oncostatin-M substan-
tially inhibited the proliferation of mammary cancer cells [68,170], increasing caspase
(a pro-apoptotic enzyme [171]) activity and apoptosis [68]. Furthermore, oncostatin-M
decreased proliferation, migration, and invasion (and thus the epithelial-mesenchymal tran-
sition) of lung adenocarcinoma cells by activating STAT1, which increased E-cadherin
expression [172]. As E-cadherin is a cell adhesion molecule and can act as a tumor
suppressor [173], this suggests that oncostatin-M-mediated upregulation of E-cadherin
may help to limit cancer metastasis. Notably, decreased E-cadherin expression is linked
to a poor prognosis in patients with breast cancer [174]. In addition, in glioblastoma cells,
oncostatin-M inhibited proliferation and increased expression of the cell cycle inhibitors
p21 and p27kip1, with concomitantly decreased expression of Skp2, Cks1, and cyclin A [175],
which help drive the cell cycle and are thus proto-oncogenic. Patients with prostate can-
cer exhibited increased serum oncostatin-M, but no changes occurred in other myokines;
exercise-conditioned serum from these patients inhibited the growth of prostate cancer
cells [80]. One mechanism by which oncostatin-M may inhibit tumor growth is by pro-
moting the conversion of pro-inflammatory M1 macrophages to anti-inflammatory M2
macrophages and increasing neutrophil recruitment [176]. However, controversy exists
regarding whether oncostatin-M may also exert pro-tumorigenic effects that depend on the
specific tumor microenvironment [156].
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3.4.2. Irisin

Numerous lines of evidence also illustrate the anti-tumorigenic properties of irisin [156].
In mammary and lung cancer cells, irisin hindered proliferation and the epithelial-
mesenchymal transition [67,177], but it did not affect the proliferation of mammary control
cells [67]. Furthermore, in gastric carcinoma cells, irisin treatment or overexpression in-
hibited migration and invasion but did not affect proliferation [178]. Moreover, in ovarian
cancer cells, irisin antagonized hypoxic cell signaling induced by hypoxia-inducible factor-
1α [77], suggesting that irisin may interfere with the tumor response to hypoxia. In two of
three ovarian cancer cell lines, it also reduced the expression of vascular endothelial growth
factor (VEGF), which is essential for intra-tumoral angiogenesis [179]. Additionally, in pan-
creatic cancer cells, irisin inhibited proliferation, migration, and the epithelial-mesenchymal
transition and induced cell cycle arrest at G1. It also upregulated E-cadherin protein ex-
pression and activated the AMPK-mTOR pathway [85]. Finally, in a mouse model of
glioblastoma, irisin administration resulted in increased p21 expression in conjunction with
cell cycle arrest at the G2/metaphase transition, inhibited invasion via upregulation of
tissue factor pathway inhibitor-2, and reduced in vivo tumor size in mice by >85% [72],
thus demonstrating the strong anti-tumorigenicity of this myokine.

3.4.3. Secreted Protein: Acidic and Rich in Cysteine

SPARC, also referred to as osteonectin, induced apoptosis in ovarian cancer cells [180],
mitigated proliferation of prostate cancer cells [181], inhibited proliferation and promoted
apoptosis of implanted lung carcinoma and T-lymphoma cells in vivo in mice [182], and
reduced tumor growth but accelerated invasion in the brain in a murine glioma model [183].
Additionally, SPARC overexpression in implanted gastric cancer cells interfered with the
epithelial-mesenchymal transition and decreased cell viability and migratory ability; fur-
ther, SPARC overexpression also inhibited VEGF expression [184,185]. Moreover, in a
mouse model of colorectal cancer, wild-type control mice, but not SPARC knockout mice,
demonstrated an exercise-induced reduction in the development of aberrant crypt foci (a
hallmark of colorectal cancer [186]) and increased tumor apoptosis, indicating the essential
involvement of SPARC in these anti-tumorigenic events. Furthermore, SPARC adminis-
tration greatly attenuated tumorigenesis in the colon of SPARC knockout mice [70]. In
addition, when lung carcinoma, T-lymphoma cells, or prostate cancer cells were subcuta-
neously injected in SPARC knockout mice, tumor growth was enhanced [181,182]. Tumor
histology demonstrated altered ECM structure and decreased macrophage infiltration [182],
suggesting that SPARC mediates interactions of tumor cells with the ECM. When SPARC
knockout mice were crossed with TRAMP mice (a model of prostate adenocarcinoma),
the genetic presence of SPARC resulted in a lower degree of tumor cell proliferation [181].
Mechanistically, SPARC inhibited tumor apoptosis in colorectal cancer via inhibition of Bcl-
2, which is anti-apoptotic, as well as by upregulating autophagy [187]; SPARC also induced
cell cycle arrest in medulloblastoma cells at the G2/metaphase transition via upregulation
of p21 [188] and in prostate cancer by promoting expression of p21 and p27kip1 [181]; and
finally, SPARC blocked intra-tumoral angiogenesis in pancreatic ductal carcinoma cells via
direct binding to VEGF and platelet-derived growth factor [189]. However, as is the case
with oncostatin-M, some evidence also suggests that SPARC may possess pro-tumorigenic
activity [156].

3.4.4. Decorin

Decorin overexpression in several culture models of cancer (colon, mammary, and
squamous carcinoma) inhibited proliferation and promoted apoptosis [190–193], and
decorin treatment of mammary cancer cells or an orthotopic mammary carcinoma model
(either directly or via an adenoviral vector) reduced tumor growth by 70% and substan-
tially curbed metastasis [193]. In addition, decorin treatment of endothelial cells reduced
the angiogenic potential by downregulating VEGF [194]. Decorin knockout mice demon-
strated intestinal tumorigenesis, with suppressed expression of p21 and p27kip1 [195].
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Furthermore, in decorin knockout mice, colon cancer xenografts exhibited greater tumor
weight and reduced E-cadherin expression in intestinal epithelial cells [190,195], whereas
increasing decorin expression in colon cancer cells concomitantly upregulated E-cadherin
expression [190]. Decorin may further act by downregulating the androgen receptor-
phosphatidylinositol 3-kinase-Akt signaling pathway [196], the pro-tumorigenic miRNA
miR-21 [197,198], transforming growth factor-β1 [198,199], cyclin D1 [199], and endothelial
growth factor receptor activity [196,199,200], as well as by increasing p21 [199,200] and
p53 [199].

3.4.5. Brain-Derived Neurotrophic Factor

BDNF is most highly expressed in the brain [201], and the potential anti-tumorigenic
role of SKM-derived BDNF remains elusive [156]. Although SKM-specific BDNF expression
(both mRNA and protein) increases with exercise in mice [202] and humans, post-exercise
plasma levels in humans remain unchanged [203]. This suggests that BDNF in SKM may act
in an autocrine or paracrine manner. Evidence that BDNF exerts anti-tumorigenic activity
includes the following: First, infusion of BDNF into a glioma-bearing mouse brain sup-
pressed tumor growth and migration via a truncated TrkB.T1 receptor-dependent mecha-
nism; it also suppressed intra-tumoral macrophage infiltration [204]. Second, hypothalamic
BDNF overexpression in mice increased the number of CD8+ T-lymphocytes; this increase
was essential for the anti-tumorigenic effect in an orthotropic model of melanoma [205].
Finally, hypothalamic BDNF overexpression in mice decreased melanoma tumor weight
by about 80%, whereas blockade of hypothalamic BDNF expression via RNA interfer-
ence mitigated the anti-tumorigenic intervention of environmental enrichment, which
included a voluntary running wheel; this suggests that BDNF was responsible for the
anti-tumorigenic effect [206]. Accordingly, SKM muscle-derived BDNF may act locally to
inhibit tumor growth.

3.4.6. Interleukin-6

IL-6 was the first myokine discovered [153] and is perhaps the most studied. The
source of IL-6 appears to be important, with post-exercise increases in IL-6 exhibiting
multiple anti-tumorigenic effects [78,207,208]. SKM is a primary source of exercise-induced
increases in IL-6, although it has a short clearance rate [209]. Substantial evidence supports
the anti-tumorigenic potential of SKM-derived IL-6, including its role in the SKM contrac-
tile activity-induced mitigation of cancer risk. For instance, anti-IL-6 antibodies at least
partly eliminated the exercise-induced tumor suppression observed in mice [161]. More-
over, IL-6 inhibited proliferation of prostate cancer cells [210], colorectal cancer cells [211],
and mammary cancer cells [212]; however, treatment protocols can alter the results [130].
In mammary cancer cells, IL-6 decreased proliferation via regulation of matrix metallo-
proteinases [212], thus IL-6 may directly regulate the tumor microenvironment; it also
exhibits anti-tumorigenicity by increasing natural killer cell activity and intra-tumoral
infiltration; these lymphocyte-mediated responses are necessary, but not sufficient, for
anti-tumorigenicity [161], suggesting that other exercise-related humoral or additional
factors are also involved.

3.4.7. Interleukin-7

Strength training increased the expression of IL-7 mRNA in resting SKM [213]; IL-7
expression also increased following a single soccer match [214]. IL-7 demonstrates anti-
tumorigenic potential [215,216], potentially through immunomodulation. IL-7 plays a
role in the development and homeostasis of T- and B-lymphocytes as well as the im-
mune response of natural killer cells and dendritic cells. Additionally, IL-7 promotes T-
and B-lymphocyte precursor survival and proliferation, including the survival of both
memory and naïve T-lymphocytes, and it contributes to the homeostasis of peripheral
T-lymphocytes [217]. Nonetheless, the anti-tumorigenic role of SKM-derived IL-7 remains
to be fully explored.
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3.4.8. Interleukin-10

IL-10 may also mediate anti-tumorigenic activity via immunomodulation by upregu-
lating the number of anti-cancer immune cells and enhancing their cytotoxic activity [78]. In
a mouse model of lymphoma, tumor growth was substantially reduced and memory CD8+
T-lymphocytes were increased in mice that were injected with IL-10 immediately following
a booster vaccine relative to mice that were not inoculated and received no IL-10 [218]. Evi-
dence also shows that IL-10 can inhibit angiogenesis, as indicated by a study employing a
mouse model of melanoma, in which melanoma cells that expressed IL-10 via a transfected
viral vector exhibited an attenuation of tumor growth and metastasis. When the melanoma
cells lacking IL-10 expression were admixed with the transfected cells, tumor growth and
metastasis remained diminished [219], confirming that the anti-tumorigenic activity was
IL-10-dependent. The implanted tumors showed abated neovascularization, indicating
that IL-10 may also exert anti-tumorigenicity by inhibiting intra-tumoral angiogenesis. This
idea is further supported by IL-10-driven suppression of VEGF, tumor necrosis factor-α,
and matrix metalloproteinase-9 expression [219].

3.4.9. Interleukin-15

IL-15 regulates immune function by modulating natural killer cells and T-lymphocytes
via stimulation of proliferation, differentiation, and maturation [159,160,220–223]. In a
mouse model of luminal B mammary adenocarcinoma, fluorescently labeled IL-15 localized
with CD8+ T-lymphocytes and natural killer cells found in the tumor and in the lymph
nodes in the local lymphatic drainage [224]. Similar effects were also observed in a mouse
model of metastatic triple-negative breast cancer (an aggressive, hormone-insensitive
carcinoma [225]) treated with heterodimeric IL-15, which lowered the number of tumor cells
in the blood and initiated a decline in tumor colonization of the lungs [226]. Additionally, IL-
15 infusion into a glioma-bearing mouse brain suppressed tumor growth, which depended
on intensified intra-tumoral infiltration of natural killer cells [204], and in a mouse model
of pancreatic cancer, IL-15 limited tumor growth and improved survival; further, low-
intensity treadmill exercise increased the number of circulating CD8+ T-lymphocytes as
well as intra-tumoral infiltration; the observed effects depended on IL-15 [117].

Moreover, in 11 patients with CD52+ T-lymphocyte malignancies, 6 weeks of subcuta-
neous injection with human IL-15 resulted in increased serum levels of CD8+ lymphocytes
and natural killer cells, as well as enhanced antibody-dependent cytotoxic activity of natural
killer cells. Clinically, when IL-15 injection was administered in conjunction with alem-
tuzumab, two patients demonstrated a complete response, and two patients demonstrated
a partial response [227]. In addition, exercise-induced IL-15 expression was associated
with prolonged survival in patients with lung adenocarcinoma, colon adenocarcinoma,
colorectal adenocarcinoma, esophageal carcinoma, skin cutaneous melanoma, uterine
carcinosacrcoma, and rectal adenocarcinoma; survival outcomes also corresponded to
intra-tumoral immune cell infiltration [228].

3.5. Insulin-like Growth Factor-1 and Associated Binding Proteins

Insulin-like growth factor (IGF-1) is a growth factor primarily secreted by the liver in re-
sponse to growth hormone stimulation [229,230]. SKM is a secondary source of IGF-1 [230].
IGF-1 is found in slightly different forms that exhibit specific functions [231], and ap-
proximately 98% of circulating IGF-1 is bound to various binding proteins (IGFBP) [232].
SKM-derived IGF-1 is generally thought to manifest autocrine and paracrine effects in SKM
growth and repair [231].

3.5.1. Role of Insulin-like Growth Factor-1 and Binding Proteins in Cancer

The role of IGF-1 and its associated binding proteins in cancer has not been fully
elucidated, particularly the role of SKM-derived IGF-1 and IGFBPs. Circulating IGF-1 [231]
and IGFBP-2 [233] are typically considered to be pro-tumorigenic; IGF-1 exhibits pro-
proliferative and anti-apoptotic properties [234–237], while IGFBP-2 enhances cancer cell
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survival, proliferation, invasion, and migration, as well as intra-tumoral angiogenesis [233].
In contrast, IGFBP-1 [238] and -3 [239–241] are generally considered to be anti-tumorigenic,
although IGFBP-1 also displays some pro-tumorigenic effects [238]. IGFBP-1 mitigated
invasion and metastasis in hepatocellular carcinoma [242], attenuated intra-tumoral angio-
genesis in lymphoma [238], invoked a decrease in breast cancer cell proliferation [243–245],
and induced apoptosis in prostate cancer cells [246]. Transfection of lung cancer cells with
IGFBP-3 inhibited spheroid growth as well as growth of cells seeded in an ECM-based gel,
and IGFBP-3 treatment of lung cancer cells stimulated apoptosis both in vitro and in vivo
in mice [239], as well as inhibiting proliferation of non-small cell lung cancer cells [240]; it
may act by preventing and even reversing the epithelial-mesenchymal transition [241].

3.5.2. Association of Insulin-like Growth Factor-1 and Binding Proteins with Cancer

The association of circulating levels of IGF-1, IGFBPs, and insulin also supports
their roles in cancer but is not always consistent with the molecular data. For instance,
high serum IGF-1 and IGFBP-3 levels raise the risk of numerous cancers [238,247–250];
however, in a meta-analysis, IGFBP-3 decreased the risk of lung cancer [250]. Lower
IGFBP-1 levels are generally, but not always, associated with poor outcomes in multiple
cancers [238]. In contrast, higher IGFBP-2 indicates a poor prognosis [251,252]. Moreover,
insulin, which is structurally similar to IGF-1, is also related to cancer risk and outcomes,
with hyperinsulinemia linked to a greater risk of cancer and cancer-related death [253–255].

3.5.3. Derivation of Insulin-like Growth Factor-1 and Binding Proteins from Skeletal Muscle

Decreased levels of insulin and IGF-1 are associated with exercise and may contribute
to the decreased risk of cancer with exercise [167,256]. Although the liver is the primary
source of circulating IGF-1, SKM may also be a significant source [230], especially fol-
lowing intense exercise [257]; however, directional changes in circulating IGF-1 levels
following SKM contractile activity remain controversial. Regardless, evidence indicates
that exercise may reduce IGF-1 levels. For example, in healthy men, low-intensity exercise
modestly decreased IGF-1 and IGFBP-1 [258], while IGF-1 and IGFBP-3 declined follow-
ing a 100-km walking race [259]. Moreover, 6 months of a moderate-intensity program
in postmenopausal women resulted in lower IGF-1 and IGFBP-3 levels as well as lower
insulin levels [260]. Serum IGF-1 levels were also attenuated in older participants following
a 12-week progressive resistance exercise regimen [261]. A long-term exercise program
(4–6 sessions/week for a mean of 14 years) also resulted in decreased circulating IGF-1
levels [262]. Furthermore, a mixed-exercise routine in adolescent men decreased circulating
IGF-1 and IGFBP-2 levels [263]. Finally, 7 days of exercise combined with a prescribed diet
in young men decreased SKM-derived plasma IGF-1 levels during the last 2 days [264].
Nevertheless, a disparity of results exists among studies utilizing different exercise pro-
grams [265–269]; this may indicate that SKM contractile activity-induced changes in IGF-1
and IGFBP levels may depend on factors such as age, pre-program fitness level, hormonal
status, diet, sex, and the length, type, and intensity of the exercise intervention.

3.6. Studies Using Exercise-Conditioned Serum
3.6.1. Animal Studies

Incubation of cancer cells in the presence of serum following acute exercise or exercise
training decreases proliferation. According to one review [64], one important aspect
collectively conveyed by these studies is that exercise-conditioned media impairs the ability
of the cancer cells to seed properly and to form colonies. In one animal study, when
mammary cancer cells were incubated in serum collected following 60 min of swimming
exercise in mice, cell proliferation decreased by approximately half and was accompanied by
a concomitant increase in caspase activity. Subsequent experiments revealed that increased
SKM secretion of oncostatin-M was responsible for the inhibition [68].



Int. J. Mol. Sci. 2024, 25, 6480 15 of 28

3.6.2. Human Studies

Numerous human studies also demonstrate the anti-tumorigenic effect of post-exercise
serum on colorectal, prostate, breast, and pancreatic cancer cells. For instance, in colorectal
cancer cells treated with serum collected from men with a high risk for colorectal cancer,
proliferation modestly decreased, but was accompanied by a much larger rise in a marker
of DNA damage. These results were mirrored when the cells were treated with IL-6, which
was elevated in the post-exercise serum [211]. In addition, serum collected from survivors
of colorectal cancer immediately following high-intensity exercise inhibited colorectal
cancer cell proliferation [270].

Similarly, serum collected from men with metastatic cancer-resistant prostate cancer
impaired the proliferation of prostate cancer cells. The serum contained increased levels of
oncostatin-M and SPARC [79]. Moreover, prostate cancer cells displayed an approximately
one-third inhibition of proliferation when treated with serum from healthy men collected
following 60 min of bicycle activity, and injection of pooled serum into severe combined
deficiency mice delayed tumor onset. Following a multiplex assay for serum growth factors,
the authors determined that increased IGFBP-1 and decreased epidermal growth factor
were candidates for the observed effect [271].

In another study, serum was collected from breast cancer survivors following a 2-h
exercise session; both hormone-sensitive mammary cancer cells and hormone-insensitive
triple-negative breast cancer cells treated with the serum exhibited decreased viability [272].
In contrast, serum collected from breast cancer survivors or a healthy control group follow-
ing a 6-month exercise intervention showed no effect on mammary cell viability compared
with serum collected pre-intervention, despite a higher level of IL-6 [272]. In addition,
injection of exercise-conditioned serum into NMRI-Foxn1nu immunodeficient mice blunted
tumor cell viability and development; however, the responsible factors were epinephrine
and norepinephrine [273], which are not derived from SKM.

In a unique study [84], serum was collected from patients with stage III/IV pancreatic
cancer following repeated electrical stimulation of different SKMs over 12 weeks. When a
pancreatic adenocarcinoma cell line was treated with the serum, it inhibited proliferation
and promoted apoptosis. The serum was enriched in the myokines C-C motif chemokine
ligand-4, C-X-C motif ligand-1, and IL-10; treatment of two different pancreatic cancer cell
lines with a combination of the three myokines impaired migratory capacity and increased
cell death by ~40–60%, as measured using DNA fragmentation. Notably, oncostatin-M
increased SKM expression of C-X-C motif ligand-1 [176], which functions as a chemokine
that attracts neutrophils [274]. These results illustrate that SKM contractile activity per se,
rather than exercise, is sufficient to generate increases in anti-tumorigenic myokines.

3.7. Potential Fiber Type-Specific Effects

In general, skeletal myofibers are defined as type I and type II, depending on the type of
myosin heavy chain expressed. Type I myofibers are optimized for fatigue resistance using
aerobic metabolism and generally have a smaller cross-sectional area per fiber, whereas
type II myofibers, with IIa and IIb subtypes, are generally more optimized for power and
non-aerobic metabolism, including the phosphagen system and anaerobic glycolysis [275].
Myofiber type-specific myokine secretion has been reported [276–278], but whether a
preponderance of type I or type II myofibers affects cancer risk is unknown. However, it is
interesting to speculate that an abundance of either type I or type II myofibers may reduce
cancer risk, and genetic models may help to provide evidence concerning this hypothesis.
Numerous factors drive the expression of myofiber type [279]; here, only three models are
provided for illustrative purposes.

3.7.1. Effect of Type I Myofibers

In murine models, global overexpression of the transcriptional coactivator peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α) drives abundant development of
type I myofibers with increased mitochondrial density and capillarization [280]; in mice
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with SKM-specific expression of PGC-1α, circulating inflammatory markers decreased, and
many deleterious age-related changes were ameliorated [281,282]. Notably, the anti-tumor
molecule oncostatin-M, which is secreted by SKM, demonstrated an 8.3-fold elevation in
the serum of mice with transgenic SKM-specific overexpression of PGC-1α [282]. This
raises the possibility that a higher abundance of type I myofibers may be associated with
decreased cancer risk; studies using genetic deletion of forkhead box O-1 (FOXO1) further
support this possibility. FOXO1 knockout mice exhibited a decline in type I myofiber phe-
notype, as indicated by gene expression [283]. In addition, a PAX3-FOXO1 fusion protein
hampered the differentiation of rhabdomyosarcoma cells [284], supporting a potential
anti-tumorigenic connection among FOXO1, type I myofiber phenotype, and cancer.

3.7.2. Effect of Type II Myofibers

In addition to its suppressive effect on type I myofibers, SKM-specific ablation of
FOXO1 also increased the type II myofiber phenotype [285]; as mentioned in Section 3.7.1,
rhabdomyosarcoma proliferation is inhibited by a PAX3-FOXO1 fusion protein [284]; ac-
cordingly, a decreased amount of type II myofibers was associated with a pro-tumorigenic
effect, raising the possibility that the reverse may also be true. This prospect is further
supported by evidence from male mice with SKM-specific deletions of Akt1/2, wherein the
mice exhibit a decrease in type II myofibers. When these mice were exposed to a high-fat
diet, they demonstrated earlier death due to a higher incidence of tumors [286]. While the
data regarding the effect of myofiber type on cancer remain sparse and inconclusive, they
support the hypothesis of an anti-tumorigenic effect by both an abundance of type I and
type II myofibers.

4. Conclusions

SKM cancers are rare. This rarity may be due to (A) unique structural and cellular
characteristics of SKM tissue, as follows: (1) SKM myofibers are amitotic; (2) SKM is
organized in a manner that provides a physical barrier to potential invading cells; (3) SKM
experiences frequent mechanical forces that may make it more difficult for invading cells to
adhere to the tissue surfaces and may dislodge adherent cells; (4) SKM exhibits a low resting
metabolic rate that is inversely connected to cancer risk; and (5) SKM demonstrates high
vascularization and capillarization that can experience greatly increased blood flow and
velocity, as well as high shear forces, which may make it difficult for invading cells to adhere
to the intra-vascular endothelium and may dislodge adherent cells. (B) Immune-related
factors may also contribute to the rarity of SKM, with an enhanced local anti-tumorigenic
immune response that can be further escalated with SKM contractile activity. (C) Properties
of the SKM microenvironment may also inhibit tumorigenesis or tumor invasion; these
properties include (1) high stiffness of the SKM ECM, (2) higher lactic acid concentration and
lower pH produced by anaerobic metabolism during SKM contractile activity that exceeds
the lactate threshold, (3) higher oxygen tension imparted by SKM contractile activity,
(4) SKM-induced increases in intra-tumoral oxidative stress, and (5) secretion of anti-
tumorigenic lipophilic ligands. (D) A number of myokines in the SKM microenvironment
may also decrease the likelihood of SKM cancers. The myokines oncostatin-M, irisin,
SPARC, decorin, BDNF, and IL-6, -7, -10, and -15 exhibit anti-tumorigenic activity. (E) SKM
contractile activity-induced decreases in IGF-1, IGFBP-2, and insulin levels and increased
IGFBP-1 and -3 levels may also help to limit cancer development in SKM. (F) Furthermore,
many of the anti-tumorigenic effects of SKM contractile activity have been demonstrated
using conditioned media treatment of cultured cancer cells. (G) Finally, an abundance of
type I or type II myofibers may display anti-tumorigenic manifestations.

Nonetheless, despite the inferential evidence supporting the role of these mechanisms
in preventing SKM cancer, empirical evidence is lacking. To the author’s knowledge, none
of these potential mechanisms has been directly tested. This is likely because research
efforts are typically focused on understanding the mechanisms of common cancers rather
than on understanding why a particular cancer is rare. In addition, some of these mecha-
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nisms may be difficult to confirm. Accordingly, the mechanisms proposed herein remain
entirely hypothetical. Improved understanding will require studies with the primary aim of
understanding how these mechanisms help to prevent SKM cancer. Moreover, individually,
the relative contribution of each of these postulated mechanisms is unknown and remains
a topic for further research, including how these factors may change depending on the
frequency and type of SKM muscular contractile activity. However, collectively, these
mechanisms help to explain why SKM, an organ comprising approximately one-half of
body mass, exhibits the lowest rate of cancer per mass of any organ and avoids the cancer
that is more prevalent in other organs. A better understanding of these mechanisms may
be useful to identify improved prevention and treatment for cancer, including the role of
regular SKM contractile activity in the form of exercise.
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