A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Databases
- Articles published in journals indexed in JCR in the last 5 years (January 2019 to February 2024) using the MEDLINE database.
- Articles that included retrospective, prospective, case–control, or cross-sectional studies.
- Searches were carried out by combining the following MESH and free terms: “Epileptogenesis” and “Neuroinflammation”.
- To obtain a more selective search for certain molecules of special interest, we included searches aimed at biomarkers that had previously been reported in narrative reviews on the topic [12,22,31,32,33,34]. Figure 1 shows the specific role of these biomarkers in the hypothesis of the epileptogenesis of neuroinflammatory origin. Specifically, the searches included in this additional search were:
- “High mobility group box 1/HMGB1” AND “Epilepsy”
- “Toll-Like-Receptor 4/TLR-4” AND “Epilepsy”
- “Interleukin-1/IL-1” AND “Epilepsy”
- “Interleukin-6/IL-6” AND “Epilepsy”
- “Transforming growth factor beta/TGF-β” AND “Epilepsy”
- “Tumour necrosis factor-alpha/TNF-α” AND “Epilepsy”
- 5.
- Articles published in English and/or Spanish.
2.2. Exclusion Criteria
- Duplicate articles, editorials, letters to the editor, or narrative reviews.
- Articles that included basic research studies on tissues or animal models (the “human” filter in MEDLINE searches was used).
- Articles focused on acute symptomatic seizures due to infectious, traumatic, vascular or oncological processes.
- Articles focused only on the treatment of epilepsy.
- Articles that analysed biomarkers of epilepsy in the setting of general brain damage.
- Articles focused on autoimmune epilepsy or epilepsy in neurodegenerative diseases.
2.3. Study Selection
2.4. Data Extraction
2.5. Flowchart 2020 PRISMA
3. Results and Discussion
3.1. Overall Results of the Literature Search
- HMGB1: 31 results
- TLR-4: 38 results
- IL-1b: 69 results
- IL-6: 98 results
- TGF-β: 29 results
- TNF-a: 91 results
3.2. Results by Specific Biomarkers
3.2.1. Interleukin 1β (IL-1β)
3.2.2. Interleukin 6 (IL-6)
3.2.3. Interleukin 17 (IL-17)
3.2.4. Other Interleukins
3.2.5. TNF-α
3.2.6. Transforming Growth Factor Beta (TGF-β)
3.2.7. Toll like Receptor 4 (TLR-4)
3.2.8. HMGB1
3.2.9. Chemokines
3.2.10. Soluble TNF-α Receptors
3.3. Discussion
3.3.1. Potential Clinical Practice Applications
3.3.2. Future Lines of Development and Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meizlish, M.L.; Franklin, R.A.; Zhou, X.; Medzhitov, R. Tissue Homeostasis and Inflammation. Annu. Rev. Immunol. 2021, 39, 557–581. [Google Scholar] [CrossRef]
- Cervellati, C.; Trentini, A.; Pecorelli, A.; Valacchi, G. Inflammation in Neurological Disorders: The Thin Boundary between Brain and Periphery. Antioxid. Redox Signal. 2020, 33, 191–210. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, V.; De Rivero Vaccari, J.P.; Keane, R.W. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J. Neuroinflamm. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 2009, 4, 47. [Google Scholar] [CrossRef]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front. Cell Neurosci. 2018, 12, 00114. [Google Scholar] [CrossRef]
- Jiang, J.X.; Fewings, N.; Dervish, S.; Fois, A.F.; Duma, S.R.; Silsby, M.; Bandodkar, S.; Ramanathan, S.; Bleasel, A.; John, B.; et al. Novel Surrogate Markers of CNS Inflammation in CSF in the Diagnosis of Autoimmune Encephalitis. Front. Neurol. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Wesselingh, R.; Butzkueven, H.; Buzzard, K.; Tarlinton, D.; O’Brien, T.J.; Monif, M. Innate Immunity in the Central Nervous System: A Missing Piece of the Autoimmune Encephalitis Puzzle? Front. Immunol. 2019, 10, 1390. [Google Scholar] [CrossRef] [PubMed]
- Garcia Garcia, M.E.; Garcia Morales, I.; Matías Guiu, J. Modelos experimentales en epilepsia. Neurología 2010, 25, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guan, Y.; Li, T. The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy. Curr. Drug Targets 2021, 22, 171–182. [Google Scholar] [CrossRef]
- Matin, N.; Tabatabaie, O.; Falsaperla, R.; Lubrano, R.; Pavone, P.; Mahmood, F.; Gullotta, M.; Serra, A.; Di Mauro, P.; Cocuzza, S.; et al. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum. Vaccin. Immunother. 2015, 11, 2021–2029. [Google Scholar] [CrossRef]
- Aguilar-Castillo, M.J.; Cabezudo-García, P.; Ciano-Petersen, N.L.; García-Martin, G.; Marín-Gracia, M.; Estivill-Torrús, G.; Serrano-Castro, P.J. Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines 2022, 10, 716. [Google Scholar] [CrossRef]
- Marchi, N.; Granata, T.; Janigro, D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014, 37, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Rüegg, S. The pivotal role of immunity and inflammatory processes in epilepsy is increasingly recognized: Introduction. Epilepsia 2011, 52 (Suppl. 3), 1–4. [Google Scholar] [CrossRef]
- Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology 2012, 69, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Villasana-Salazar, B.; Vezzani, A. Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol. Dis. 2023, 178, 106027. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A. Epilepsy and Inflammation in the Brain: Overview and Pathophysiology. Epilepsy Curr. 2014, 14, 3–7. [Google Scholar] [CrossRef]
- Orsini, A.; Foiadelli, T.; Costagliola, G.; Michev, A.; Consolini, R.; Vinci, F.; Peroni, D.; Striano, P.; Savasta, S. The role of inflammatory mediators in epilepsy: Focus on developmental and epileptic encephalopathies and therapeutic implications. Epilepsy Res. 2021, 172, 106588. [Google Scholar] [CrossRef]
- Patterson, K.P.; Brennan, G.P.; Curran, M.; Kinney-Lang, E.; Dubé, C.; Rashid, F.; Ly, C.; Obenaus, A.; Baram, T.Z. Rapid, Coordinate Inflammatory Responses after Experimental Febrile Status Epilepticus: Implications for Epileptogenesis. Eneuro 2015, 2. [Google Scholar] [CrossRef]
- Rana, A.; Musto, A.E. The role of inflammation in the development of epilepsy. J. Neuroinflamm. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Sanz, P.; Rubio, T.; Garcia-Gimeno, M.A. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Re-purposing Drugs. Int. J. Mol. Sci. 2024, 25, 4161. [Google Scholar] [CrossRef] [PubMed]
- Kamali, A.N.; Zian, Z.; Bautista, J.M.; Hamedifar, H.; Hossein-Khannazer, N.; Hosseinzadeh, R.; Yazdani, R.; Azizi, G. The Potential Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Epilepsy Pathogenesis. Endocrine Metab. Immune Disord.—Drug Targets 2021, 21, 1760–1774. [Google Scholar] [CrossRef] [PubMed]
- Khaboushan, A.S.; Yazdanpanah, N.; Rezaei, N. Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol. Neurobiol. 2022, 59, 1724–1743. [Google Scholar] [CrossRef] [PubMed]
- Hulkkonen, J.; Koskikallio, E.; Rainesalo, S.; Keränen, T.; Hurme, M.; Peltola, J. The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients. Epilepsy Res. 2004, 59, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Banote, R.K.; Akel, S.; Zelano, J. Blood biomarkers in epilepsy. Acta Neurol. Scand. 2022, 146, 362–368. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.K.; Cockerell, O.C.; Sander, J.W.A.S.; Shorvon, S.D. The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK. Brain 2000, 123, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Liew, Y.; Retinasamy, T.; Arulsamy, A.; Ali, I.; Jones, N.C.; O’brien, T.J.; Shaikh, M.F. Neuroinflammation: A Common Pathway in Alzheimer’s Disease and Epilepsy. J. Alzheimer’s Dis. 2023, 94, S253–S265. [Google Scholar] [CrossRef] [PubMed]
- Janmohamed, M.; Brodie, M.J.; Kwan, P. Pharmacoresistance—Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology 2019, 168, 107790. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Liu, M.; Wang, H.; Dong, Y.; Ji, T.; Liu, X.; Jiang, Y.; Cai, L.; Wu, Y. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type II. J. Neuroinflamm. 2018, 15, 27. [Google Scholar] [CrossRef]
- Bazhanova, E.D.; Kozlov, A.A.; Litovchenko, A.V. Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain Sci. 2021, 11, 663. [Google Scholar] [CrossRef]
- Chen, Y.; Nagib, M.M.; Yasmen, N.; Sluter, M.N.; Littlejohn, T.L.; Yu, Y.; Jiang, J. Neuroinflammatory mediators in acquired epilepsy: An update. Inflamm. Res. 2023, 72, 683–701. [Google Scholar] [CrossRef]
- Kamaşak, T.; Dilber, B.; Yaman, S.Ö.; Durgut, B.D.; Kurt, T.; Çoban, E.; Arslan, E.A.; Şahin, S.; Karahan, S.C.; Cansu, A. HMGB-1, TLR4, IL-1R1, TNF-α, and IL-1β: Novel epilepsy markers? Epileptic Disord. 2020, 22, 183–193. [Google Scholar] [CrossRef] [PubMed]
- French, J.A.; Cole, A.J.; Faught, E.; Theodore, W.H.; Vezzani, A.; Liow, K.; Halford, J.J.; Armstrong, R.; Szaflarski, J.P.; Hubbard, S.; et al. Safety and Efficacy of Natalizumab as Adjunctive Therapy for People With Drug-Resistant Epilepsy. Neurology 2021, 97, E1757–E1767. [Google Scholar] [CrossRef]
- Vezzani, A.; Maroso, M.; Balosso, S.; Sanchez, M.-A.; Bartfai, T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav. Immun. 2011, 25, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; De Vet, H.C.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef] [PubMed]
- Miller, J. The Scottish Intercollegiate Guidelines Network (SIGN). Br. J. Diabetes Vasc. Dis. 2002, 2, 47–49. [Google Scholar] [CrossRef]
- Kothur, K.; Bandodkar, S.; Wienholt, L.; Chu, S.; Pope, A.; Gill, D.; Dale, R.C. Etiology is the key determinant of neuroinflammation in epilepsy: Elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia 2019, 60, 1678–1688. [Google Scholar] [CrossRef]
- Yue, Z.; Tang, J.; Peng, S.; Cai, X.; Rong, X.; Yang, L. Serum concentration of high-mobility group box 1, Toll-like receptor 4 as bi-omarker in epileptic patients. Epilepsy Res. 2023, 192, 107138. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.Y.; Kim, H.; Lim, B.C.; Hwang, H.; Chae, J.H.; Kim, K.J.; Oh, S.; Kim, E.Y.; Shin, J.S. Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: Potential prognostic biomarkers? BMC Neurol. 2020, 20, 85. [Google Scholar] [CrossRef]
- Saengow, V.E.; Chiangjong, W.; Khongkhatithum, C.; Changtong, C.; Chokchaichamnankit, D.; Weeraphan, C.; Kaewboonruang, P.; Thampratankul, L.; Manuyakorn, W.; Hongeng, S.; et al. Proteomic analysis reveals plasma haptoglobin, interferon-γ, and interleukin-1β as potential biomarkers of pediatric refractory epilepsy. Brain Dev. 2021, 43, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.E.; Sills, G.J.; Jorgensen, A.; Alapirtti, T.; Peltola, J.; Brodie, M.J.; Marson, A.G.; Vezzani, A.; Pirmohamed, M. High-mobility group box 1 as a predictive biomarker for drug-resistant epilepsy: A proof-of-concept study. Epilepsia 2021, 63, E1–E6. [Google Scholar] [CrossRef] [PubMed]
- Kegler, A.; Pascotini, E.T.; Caprara, A.L.F.; Arend, J.; Gabbi, P.; Duarte, M.M.; Royes, L.F.F.; Fighera, M.R. Relationship between seizure type, metabolic profile, and inflammatory markers in blood samples of patients with epilepsy. Epileptic Disord. 2021, 23, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Alvim, M.K.; Morita-Sherman, M.E.; Yasuda, C.L.; Rocha, N.P.; Vieira, E.L.; Pimentel-Silva, L.R.; Henrique Nogueira, M.; Barbosa, R.; Watanabe, N.; Coan, A.C.; et al. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021, 62, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Kan, M.; Song, L.; Zhang, X.; Zhang, J.; Fang, P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. Braz. J. Med. Biol. Res. 2018, 52, e7374. [Google Scholar] [CrossRef]
- Ethemoglu, O.; Calık, M.; Koyuncu, I.; Ethemoglu, K.B.; Göcmen, A.; Güzelcicek, A.; Cadırcı, D. Interleukin-33 and oxidative stress in epilepsy patients. Epilepsy Res. 2021, 176, 106738. [Google Scholar] [CrossRef] [PubMed]
- Panina, Y.S.; Timechko, E.E.; Usoltseva, A.A.; Yakovleva, K.D.; Kantimirova, E.A.; Dmitrenko, D.V. Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Q.; Wang, H.; Du, X.; Lai, Q.; Li, X.; Wang, Y.; Hu, P.; Fan, H. TNF-α: A serological marker for evaluating the severity of hippocampal sclerosis in medial temporal lobe epilepsy? J. Clin. Neurosci. 2024, 123, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Milano, C.; Montali, M.; Barachini, S.; Burzi, I.; Pratesi, F.; Petrozzi, L.; Chico, L.; Morganti, R.; Gambino, G.; Rossi, L.; et al. Increased production of inflammatory cytokines by circulating monocytes in mesial temporal lobe epilepsy: A possible role in drug resistance. J. Neuroimmunol. 2024, 386, 578272. [Google Scholar] [CrossRef]
- Sokolova, T.V.; Zabrodskaya, Y.M.; Litovchenko, A.V.; Paramonova, N.M.; Kasumov, V.R.; Kravtsova, S.V.; Skiteva, E.N.; Sitovskaya, D.A.; Bazhanova, E.D. Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. Int. J. Mol. Sci. 2022, 23, 12561. [Google Scholar] [CrossRef]
- Wang, N.; Liu, H.; Ma, B.; Zhao, T.; Chen, Y.; Yang, Y.; Zhao, P.; Han, X. CSF high-mobility group box 1 is associated with drug-resistance and symptomatic etiology in adult patients with epilepsy. Epilepsy Res. 2021, 177, 106767. [Google Scholar] [CrossRef] [PubMed]
- Mochol, M.; Taubøll, E.; Aukrust, P.; Ueland, T.; Andreassen, O.A.; Svalheim, S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020, 80, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Nass, R.D.; Wagner, M.; Surges, R.; Holdenrieder, S. Time courses of HMGB1 and other inflammatory markers after generalized convulsive seizures. Epilepsy Res. 2020, 162, 106301. [Google Scholar] [CrossRef] [PubMed]
- Gakharia, T.; Bakhtadze, S.; Lim, M.; Khachapuridze, N.; Kapanadze, N. Alterations of Plasma Pro-Inflammatory Cytokine Levels in Children with Refractory Epilepsies. Children 2022, 9, 1506. [Google Scholar] [CrossRef]
- Bronisz, E.; Cudna, A.; Wierzbicka, A.; Kurkowska-Jastrzębska, I. Serum Proteins Associated with Blood–Brain Barrier as Potential Biomarkers for Seizure Prediction. Int. J. Mol. Sci. 2022, 23, 14712. [Google Scholar] [CrossRef] [PubMed]
- Gledhill, J.M.; Brand, E.J.; Pollard, J.R.; St Clair, R.D.; Wallach, T.M.; Crino, P.B. Association of Epileptic and Nonepileptic Seizures and Changes in Circulating Plasma Proteins Linked to Neuroinflammation. Neurology 2021, 96, E1443–E1452. [Google Scholar] [CrossRef] [PubMed]
- Česká, K.; Papež, J.; Ošlejšková, H.; Slabý, O.; Radová, L.; Loja, T.; Libá, Z.; Svěráková, A.; Brázdil, M.; Aulická, Š. CCL2/MCP-1, interleukin-8, and fractalkine/CXC3CL1: Potential biomarkers of epileptogenesis and pharmacoresistance in childhood epilepsy. Eur. J. Paediatr. Neurol. 2023, 46, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zou, Y.; Du, Y.; Luo, J.; Zhang, M.; Yang, W.; Wang, X.; Lü, Y. Altered Cerebrospinal Fluid Concentrations of TGFβ1 in Patients with Drug-Resistant Epilepsy. Neurochem. Res. 2014, 39, 2211–2217. [Google Scholar] [CrossRef] [PubMed]
- Selenica, M.-L.B.; A Alvarez, J.; Nash, K.R.; Lee, D.C.; Cao, C.; Lin, X.; Reid, P.; Mouton, P.R.; Morgan, D.; Gordon, M.N. Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. J. Neuroinflamm. 2013, 10, 856. [Google Scholar] [CrossRef]
- Pachner, A.R. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front. Neurol. 2022, 12, 796378. [Google Scholar] [CrossRef]
- Rhie, S.J.; Jung, E.-Y.; Shim, I. The role of neuroinflammation on pathogenesis of affective disorders. J. Exerc. Rehabil. 2020, 16, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Selassie, A.W.; Wilson, D.A.; Martz, G.U.; Smith, G.G.; Wagner, J.L.; Wannamaker, B.B. Epilepsy beyond seizure: A population-based study of comorbidities. Epilepsy Res. 2014, 108, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Terrone, G.; Balosso, S.; Pauletti, A.; Ravizza, T.; Vezzani, A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019, 167, 107742. [Google Scholar] [CrossRef] [PubMed]
- Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Bianchi, M.E.; Vezzani, A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: The importance of IL-1beta and high-mobility group box 1. J. Intern. Med. 2011, 270, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Ravizza, T.; Terrone, G.; Salamone, A.; Frigerio, F.; Balosso, S.; Antoine, D.J.; Vezzani, A. High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain, Behav. Immun. 2018, 72, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Paudel, Y.N.; Semple, B.D.; Jones, N.C.; Othman, I.; Shaikh, M.F. High mobility group box 1 (HMGB1) as a novel frontier in epilepto-genesis: From pathogenesis to therapeutic approaches. J. Neurochem. 2019, 151, 542–557. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, L.; Liu, X.; Feng, Y.; Pang, Z.; Lin, Y. Hmgb1/cxcl12-mediated immunity and TH17 cells might underlie highly suspected autoimmune epilepsy in elderly individuals. Neuropsychiatr. Dis. Treat. 2020, 16, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, S.; Wales, E.; Zaben, M. The Role of HMGB1 in Traumatic Brain Injury—Bridging the Gap Between the Laboratory and Clinical Studies. Curr. Neurol. Neurosci. Rep. 2021, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, F.; Zhai, F.; Liang, S. Role of HMGB1/TLR4 and IL-1β/IL-1R1 Signaling Pathways in Epilepsy. Front. Neurol. 2022, 13, 904225. [Google Scholar] [CrossRef]
- Yung, S.C.; Farber, J.M. Chemokines, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Ono, S.J.; Nakamura, T.; Miyazaki, D.; Ohbayashi, M.; Dawson, M.; Toda, M. Chemokines: Roles in leukocyte development, trafficking, and effector function. J. Allergy Clin. Immunol. 2003, 111, 1185–1199. [Google Scholar] [CrossRef]
- Arisi, G.M.; Foresti, M.L.; Katki, K.; Shapiro, L.A. Increased CCL2, CCL3, CCL5, and IL-1β cytokine concentration in piriform cortex, hippocampus, and neocortex after pilocarpine-induced seizures. J. Neuroinflamm. 2015, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2015, 96, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Viviani, B.; Bartesaghi, S.; Gardoni, F.; Vezzani, A.; Behrens, M.M.; Bartfai, T.; Binaglia, M.; Corsini, E.; Di Luca, M.; Galli, C.L.; et al. Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases. J. Neurosci. 2003, 23, 8692–8700. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, R.; Zhang, H.; Jiang, C.; Gong, J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin con-centrations in children after seizures. Child’s Nerv. Syst. 2017, 33, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Bauer, S.; Nowak, M.; Norwood, B.; Tackenberg, B.; Rosenow, F.; Knake, S.; Oertel, W.H.; Hamer, H.M. Cytokines and epilepsy. Seizure 2011, 20, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Hurst, S.M.; Wilkinson, T.S.; McLoughlin, R.M.; Jones, S.; Horiuchi, S.; Yamamoto, N.; Rose-John, S.; Fuller, G.M.; Topley, N.; A Jones, S. IL-6 and Its Soluble Receptor Orchestrate a Temporal Switch in the Pattern of Leukocyte Recruitment Seen during Acute Inflammation. Immunity 2001, 14, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Peltola, J.; Palmio, J.; Korhonen, L.; Suhonen, J.; Miettinen, A.; Hurme, M.; Lindholm, D.; Keränen, T. Interleukin-6 and Interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic–clonic seizures. Epilepsy Res. 2000, 41, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Peltola, J.; Hurme, M.; Miettinen, A.; Keränen, T. Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res. 1998, 31, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Alapirtti, T.; Rinta, S.; Hulkkonen, J.; Mäkinen, R.; Keränen, T.; Peltola, J. Interleukin-6, interleukin-1 receptor antagonist and inter-leukin-1beta production in patients with focal epilepsy: A video–EEG study. J. Neurol. Sci. 2009, 280, 94–97. [Google Scholar] [CrossRef]
- Lu, Y.; Xue, T.; Yuan, J.; Li, Y.; Wu, Y.; Xi, Z.; Xiao, Z.; Chen, Y.; Wang, X. Increased expression of TGFβ type I receptor in brain tissues of patients with temporal lobe epilepsy. Clin. Sci. 2009, 117, 17–22. [Google Scholar] [CrossRef]
- Ivens, S.; Kaufer, D.; Flores, L.P.; Bechmann, I.; Zumsteg, D.; Tomkins, O.; Seiffert, E.; Heinemann, U.; Friedman, A. TGF-β receptor-mediated albumin uptake into astro-cytes is involved in neocortical epileptogenesis. Brain 2007, 130, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, E.K.J.; Boer, G.J. Alzheimer’s Disease: A Suitable Case for Treatment with Precision Medicine? Med. Princ. Pract. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Dobrin, N.; Brehar, F.M.; Popa, C.; Covache-Busuioc, R.A.; Glavan, L.A.; Costin, H.P.; Bratu, B.G.; Corlatescu, A.D.; Popa, A.A.; et al. From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. Int. J. Mol. Sci. 2023, 24, 16119. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.M.; Kalnins, R.M.; Mitchell, L.A.; Fabinyi, G.C.; Briellmann, R.S.; Berkovic, S.F. Temporal lobectomy: Long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain 2004, 127 Pt 9, 2018–2030. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Castro, P.J.; Rodríguez-Uranga, J.J.; Cabezudo-García, P.; García-Martín, G.; Romero-Godoy, J.; Estivill-Torrús, G.; Ciano-Petersen, N.L.; Oliver, B.; Ortega-Pinazo, J.; López-Moreno, Y.; et al. Cenobamate and Clobazam Combination as Personalized Medicine in Autoimmune-Associated Epilepsy With Anti-Gad65 Antibodies. Neurol.—Neuroimmunol. Neuroinflamm. 2023, 10, e200151. [Google Scholar] [CrossRef] [PubMed]
- Moloney, P.B.; Cavalleri, G.L.; Delanty, N. Epilepsy in the mTORopathies: Opportunities for precision medicine. Brain Commun. 2021, 3, fcab222. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, G.; Depietri, G.; Michev, A.; Riva, A.; Foiadelli, T.; Savasta, S.; Bonuccelli, A.; Peroni, D.; Consolini, R.; Marseglia, G.L.; et al. Targeting Inflammatory Mediators in Epilepsy: A Systematic Review of Its Molecular Basis and Clinical Applications. Front. Neurol. 2022, 13, 741244. [Google Scholar] [CrossRef]
- Lagarde, S.; Villeneuve, N.; Trébuchon, A.; Kaphan, E.; Lepine, A.; McGonigal, A.; Roubertie, A.; Barthez, M.J.; Trommsdorff, V.; Lefranc, J.; et al. Anti–tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: An open pilot study. Epilepsia 2016, 57, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, S.; Boucraut, J.; Bartolomei, F. Medical treatment of Rasmussen’s Encephalitis: A systematic review. Rev. Neurol. 2022, 178, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Paudel, Y.N.; Khan, S.U.; Othman, I.; Shaikh, M.F. Naturally Occurring HMGB1 Inhibitor, Glycyrrhizin, Modulates Chronic Seizures-Induced Memory Dysfunction in Zebrafish Model. ACS Chem. Neurosci. 2021, 12, 3288–3302. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, L.; Zhang, B.; Gao, F.; Yang, C.M. Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects in rats after lithium-pilocarpine-induced status epilepticus. J. Pharm. Pharmacol. 2019, 71, 390–399. [Google Scholar]
- Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 2017, 36, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Jamilloux, Y.; El Jammal, T.; Vuitton, L.; Gerfaud-Valentin, M.; Kerever, S.; Sève, P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2019, 18, 102390. [Google Scholar] [CrossRef] [PubMed]
- Bascuñana, P.; Möhle, L.; Brackhan, M.; Pahnke, J. Fingolimod as a Treatment in Neurologic Disorders Beyond Multiple Sclerosis. Drugs R&D 2020, 20, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Q.; Huang, H.; Zhang, J.; Wang, J.; Chen, Y.; Peng, Y.; Zhang, H.; Zeng, J.; Feng, Z.; et al. Inhibition of p38 MAPK regulates epileptic severity by decreasing expression levels of A1R and ENT1. Mol. Med. Rep. 2020, 22, 5348–5357. [Google Scholar] [CrossRef]
- Jimenez-Pacheco, A.; Diaz-Hernandez, M.; Arribas-Blázquez, M.; Sanz-Rodriguez, A.; Olivos-Oré, L.A.; Artalejo, A.R.; Alves, M.; Letavic, M.; Miras-Portugal, M.T.; Conroy, R.M.; et al. Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. J. Neurosci. 2016, 36, 5920–5932. [Google Scholar] [CrossRef]
Reference | Biomarkers Studied | Sample Type | Type of Study | Results | N | Level of Evidence |
---|---|---|---|---|---|---|
Kothur et al. [38] | IL-1ra, GM-CSF, IL-1β, TNF-α, IL-2,IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, IFN-γ, CCL2/MCP-1, CCL5/RANTES, CXCL1/GRO, CXCL10/IP-10,CCL3/MIP-1a, CCL4/MIP-1b, IL-12 (p40), IL-12 (p70), IFN-α, G-CSF, CCL11/eotaxin. IL-21, IL-23, CXCL13/BCA-1, CCL17/TARC, CCL21/6Ckine, CXCL12/SDF-1. CXCL9/MIG, CXCL11/I-TAC, and CCL19/MIP-3b | CSF | Case–control | TNF-α and CCL19 levels were mildly elevated in chronic epilepsy. | 6 Patients with FIRES-related disorders vs. 8 Febrile status epilepticus vs. 8 Afebrile status epilepticus vs. 21 patients with chronic epilepsy | 2+ |
Yue et al. [39] | HMGB1 y TLR4 | Serum | Case–control | HMGB1 y TLR4 levels were elevated in chronic epilepsy | 72 epilepsy patients with epilepsy vs. 43 healthy controls | 2+ |
Choi et al. [40] | α-synuclein, IFN-β, IFN-γ, IL-1β, IL-6, IL-10, and TNF-α | Serum | Case–control | IL-1β levels were correlated only with the numbers of ASMs used, suggesting DRE. | 115 children with epilepsy vs. 10 demyelinating disorders of the CNS vs. 146 healthy controls. | 2+ |
Saengow et al. [41] | gamma (IFN-c), IL-1β, and TNF-a | Serum | Case–control | IL-1β levels weredecreased in patients with DRE. IFN-c levels were increased in patients with DRE. | 65 patients with DRE vs. 6 healthy controls | 2- |
Walker et al. [42] | HMGB1 | Serum | Case–control | HMGB1 levels were elevated in DRE | 65 patients with DRE vs. 74 healthy controls | 2+ |
Kamaşak et al. [32] | HMGB-1, TLR-4, IL-1R1, TNF-a, and IL-1β | Serum | Case–control | HMGB-1, TLR4, TNF-α, and IL-1β levels were increased in the severe epilepsy group (similar to DRE) | 28 children with DRE vs. 29 children with controlled epilepsy vs. 27 healthy controls | 2+ |
Aline et al. [43] | TNF-a, Caspase, and Lipid factors | Serum | Case–control | No significant differences | 43 epileptic patients vs. 41 healthy controls | 2+ |
Alvim et al. [44] | IL-1, IL-2, IL-4, IL-6, IL-10, IL-17, IFNγ, TNF-α, soluble TNF receptor 1 (sTNFr1), sTNFr2, BDNF, neurotrophic factor 3 (NT3), NT4/5, ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF). | Serum | Case–control | BDNF, NT3, NGF, and sTNFr2 levels were elevated in patients with epilepsy IL-2, IL-4, IL-6, IL-10, IL-17, IFNγ, TNFα, and CNTF levels were decreased in patients with epilepsy | 446 patients with epilepsy vs. 166 healthy controls. | 2+ |
Minchen et al. [45] | HMGB1 and TLR4 | Serum | Case–control | HMGB1 and TLR4 levels were higher in patients with epilepsy and with DRE | 51 patients with DRE vs. 54 patients with responsive epilepsy vs. 100 healthy controls | 2+ |
Ethemoglu et al. [46] | IL-33 | Serum | Case–control | IL-33 levels were elevated in patients with DRE and responsive epilepsy | 21 patients with DRE vs. 39 patients with responsive epilepsy vs. 35 healthy controls | 2+ |
Panina et al. [47] | BDNF, TNF-a, HMGB1, and NTRK2 | Serum | Case–control | BDNF, TNF-a, and HMGB1 levels were decreased in patients with TLE. | 49 patients with drug-resistant TLE vs. 117 patients with responsive TLE vs. 203 healthy controls. | 2+ |
Wang et al. [48] | IL-1β, IL-5, IL-6, IL-8, IL-17, IFN-γ, and TNF-α | Serum | Prospective, population-based study | TNF-α levels were elevated in patients with medial TLE (mTLE)-with hippocampal sclerosis (HS) vs. rest of patients TNF-α levels were elevated in patients in the mTLE without HS vs. healthy control group. | 30 patients with mTLE with HS vs. 41 patients with mTLE without HS vs. 20 healthy controls | 2++ |
Milano et al. [49] | IL-6, TNF-α, IL-33, IL-8, CCL2, IL-13, IL-1β, IFN-γ, IL-1Ra, CCL3, IL-4, CCL4, IL-5, IL-1α, IL-17 A, IL-18, IL-33r, IL-1RII, and IL-1RI | Serum | Case–control | CCL2, CCL3, and IL-8 levels were elevated in patients with mTLE | 25 patients with drug-resistant mTLE vs. 21 patients with drug-responsive mTLE vs. 25 healthy controls | 2+ |
Sokolova et al. [50] | IL-1RA, interferon IFN-, IL-10 IL-2, IL-8, IL-7, TNF-α, IL-4, and sCD40L | Serum | Case–control | IL-2 and IL-8 levels were decreased in DRE patients. TNF-α, IL-4, and sCD40L levels were increased in DRE | 6 DRE patients vs. 5 healthy controls. | 2− |
Wang et al. [51] | HMGB1 | CSF and Serum | Case–control | CSF HMGB1 levels were elevated in patients with DRE. CSF HMGB1 levels were elevated in patients with symptomatic etiology. CSF HMGB1 at one-year follow-up in patients with active epilepsy. CSF HMGB1 levels were positively associated with seizure frequency. | 27 patients with DRE vs. 56 patients with newly diagnosed epilepsy vs. 22 controls with other non-inflammatory neurological disorders | 2− |
Mochol et al. [52] | IL-18; Interleukine 18 binding protenin (IL-18BP) | Serum | Case–control | IL-18 and IL-18BP levels were increased in patients with epilepsy | 119 patients with epilepsy vs. 80 healthy controls | 2+ |
Nass et al. [53] | c-reactive protein (CRP), HMGB1, S100, RAGE, ICAM1, and MMP9 | Serum | Case Series | HMGB1and S100 levels were increased in postictal period | 28 patients with epilepsy with generalised seizures. | 3 |
Gakharia et al. [54] | CCL2, CCL4, CCL11, and PGE2 | Serum | Case–control | CCL11 and PGE2 levels were increased in patients with DRE. | 20 patients with DRE vs. 20 patients with responsive epilepsy vs. 16 healthy controls. | 2+ |
Bronisz et al. [55] | MMP-9, MMP-2, CCL-2, S100B, TIMP-1, TIMP-2, ICAM-1, TSP-2, and P-selectin | Serum | Case series | MMP-2, MMP-9, and CCL-2 levels were related to seizure number in 1, 3, 6, and 12 months of observation. | 49 patients with epilepsy. | 3 |
Gledhill et al. [56] | CRP, calbindin, cytokeratin-8, eotaxin, eotaxin-2, eotaxin-3, granulocyte-macrophage colony-stimulating factor, ICAM-1, IFN–γ, IL-1β, IL-1α, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12/IL-23 p40, IL-12 p70, IL-13, IL-15, IL-16, IL-17, IFN-γ-inducible protein 10, macrophage colony-stimulating factor (M-CSF), monocyte chemoattractant protein (MCP)–1, MCP-2, MCP-4, macrophage-derived chemokine, macrophage migration inhibitory factor, macrophage inflammatory protein (MIP)–1β, MIP-1α, MIP-5, matrix metalloproteinase (MMP)–1, MMP-3, MMP-9, Nectin-4, Osteoactivin, osteonectin, P-cadherin, serum amyloid protein A, stem cell factor (SCF), thymus and activation regulated chemokine, TNF–α, TNF-β, TNF–r1, TNF–r2 (R2), TNF–related apoptosis-inducing ligand (TRAIL), vascular cell adhesion molecule 1, and vascular endothelial growth factor A | Serum | Case–control | TRAIL, ICAM-1, MCP-2, and TNF-r1 levels were increased in patients with epilepsy within 24 h after seizure | 137 patients with epilepsy vs. 29 healthy controls. | 2+ |
Česká et al. [57] | IL-6, IL-8, IL-10, IL-18, CXCL10/IP-10, CCL2/MCP-1, BLC, TNF-α, C-X3-X, and fractalquine (CXC3CL1) | CSF and Serum | Case–control | CSF CCL2/MCP-1 levels were increased in patients with DRE Serum Fractalkine/CXC3CL1 levels were elevated in patients with DRE | 26 patients with epilepsy (22 DRE, 4 non-DRE) vs. 9 healthy controls. | 2− |
Biomarkers | Number of Studies with Positive Results | Sample | Quality of the Evidence | Conclusions of the Studies |
---|---|---|---|---|
HMGB1 | 6 case–control studies | Serum and CSF | 2+ | Possible biomarker of DRE. Possible biomarker of seizure frequency. Temporal relationship with generalised tonic-clonic seizures. |
TNF-α | 2 case–control studies and 1 prospective population-based study | Serum and CSF | 2+ | Possible biomarker of DRE. |
TLR-4 | 3 case–control studies | Serum | 2+ | Possible biomarker of DRE. Possible biomarker of seizure frequency. |
rTNFr2 | 1 case–control study | Serum | 2− | Possible biomarker of seizure frequency. |
CCL2/MCP-1 | 1 case–control study | Serum and CSF | 2− | Possible biomarker of DRE |
IL-33 | 1 case–control study | Serum | 2− | Possible biomarker of epilepsy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Castillo, M.J.; Cabezudo-García, P.; García-Martín, G.; Lopez-Moreno, Y.; Estivill-Torrús, G.; Ciano-Petersen, N.L.; Oliver-Martos, B.; Narváez-Pelaez, M.; Serrano-Castro, P.J. A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis. Int. J. Mol. Sci. 2024, 25, 6488. https://doi.org/10.3390/ijms25126488
Aguilar-Castillo MJ, Cabezudo-García P, García-Martín G, Lopez-Moreno Y, Estivill-Torrús G, Ciano-Petersen NL, Oliver-Martos B, Narváez-Pelaez M, Serrano-Castro PJ. A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis. International Journal of Molecular Sciences. 2024; 25(12):6488. https://doi.org/10.3390/ijms25126488
Chicago/Turabian StyleAguilar-Castillo, Maria Jose, Pablo Cabezudo-García, Guillermina García-Martín, Yolanda Lopez-Moreno, Guillermo Estivill-Torrús, Nicolas Lundahl Ciano-Petersen, Begoña Oliver-Martos, Manuel Narváez-Pelaez, and Pedro Jesús Serrano-Castro. 2024. "A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis" International Journal of Molecular Sciences 25, no. 12: 6488. https://doi.org/10.3390/ijms25126488
APA StyleAguilar-Castillo, M. J., Cabezudo-García, P., García-Martín, G., Lopez-Moreno, Y., Estivill-Torrús, G., Ciano-Petersen, N. L., Oliver-Martos, B., Narváez-Pelaez, M., & Serrano-Castro, P. J. (2024). A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis. International Journal of Molecular Sciences, 25(12), 6488. https://doi.org/10.3390/ijms25126488