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Abstract: The morphological architecture of inflorescence influences seed production. The regulatory
mechanisms underlying alfalfa (Medicago sativa) inflorescence elongation remain unclear. Therefore,
in this study, we conducted a comparative analysis of the transcriptome, proteome, and metabolome
of two extreme materials at three developmental stages to explore the mechanisms underlying
inflorescence elongation in alfalfa. We observed the developmental processes of long and short
inflorescences and found that the elongation capacity of alfalfa with long inflorescence was stronger
than that of alfalfa with short inflorescences. Furthermore, integrative analysis of the transcriptome
and proteome indicated that the phenylpropanoid biosynthesis pathway was closely correlated with
the structural formation of the inflorescence. Additionally, we identified key genes and proteins
associated with lignin biosynthesis based on the differential expressed genes and proteins (DEGs
and DEPs) involved in phenylpropanoid biosynthesis. Moreover, targeted hormone metabolome
analysis revealed that IAA, GA, and CK play an important role in the peduncle elongation of alfalfa
inflorescences. Based on omics analysis, we detected key genes and proteins related to plant hormone
biosynthesis and signal transduction. From the WGCNA and WPCNA results, we furthermore
screened 28 candidate genes and six key proteins that were correlated with lignin biosynthesis, plant
hormone biosynthesis, and signaling pathways. In addition, 19 crucial transcription factors were
discovered using correlation analysis that might play a role in regulating candidate genes. This study
provides insight into the molecular mechanism of inflorescence elongation in alfalfa and establishes a
theoretical foundation for improving alfalfa seed production.
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1. Introduction

The inflorescence architecture of flowering plants displays great diversity in nature
and includes racemes, spikes, and capitates, which determine flower growth and seed
production [1,2]. This is an effective way to investigate the potential mechanisms of
inflorescence development to improve the seed yield of plants and crops [3–5]. Many
small flowers emerge on the inflorescence peduncle, and the elongation capacity of the
inflorescence peduncle affects raceme length and eventually influences flower and seed
development [6]. Alfalfa (Medicago sativa) is an important forage, food, and Chinese herbal
medicine planted worldwide [7]. The inflorescence architecture of alfalfa is a typical raceme,
and its inflorescence length is a crucial factor affecting seed production [8]. The length of
the inflorescence is the structural basis for the growth of more florets, and the number of
florets is positively correlated with the seed yield of alfalfa [9]. The insufficient production
of alfalfa seeds has limited the long-term development of the alfalfa industry. Breeders
select a long-spike alfalfa cultivar based on the length of the inflorescence to increase
the seed output of alfalfa, which provides an important germplasm resource for alfalfa.
However, the molecular mechanisms underlying alfalfa inflorescence elongation have
rarely been reported.
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Lignin is an important component of plant secondary cell walls and is distributed in
the cell walls of both supportive and conductive tissues [10]. Lignin hardens the cell wall
by forming interwoven webs, allowing for the xylem to remain highly rigid; this allows for
lignin to carry the weight of aerial structures [11]. Lignin is an essential metabolite for the
development of vascular tissues; many studies have demonstrated that the accumulation
and distribution of lignin affect the elongation and growth of plant organs [12,13]. Addition-
ally, lignin precursors are produced by the phenylpropanoid biosynthesis pathway; some
crucial enzymes are involved in the synthesis of lignin, including PAL (L-phenylalanine
ammonia-lyase), C4H (cinnamate 4-hydroxylase), 4CL (4-coumarate: CoA ligase) HCT (hy-
droxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase), CCoAOMT (caffeoyl-CoA
O-methyltransferase), CCR (cinnamoyl-CoA reductase), CAD (cinnamyl alcohol dehy-
drogenase), F5H (ferulate 5-hydroxylase), COMT (caffeic acid/5-hydroxyconiferaldehyde
3-O-methyltransferase), and POX/LAC (peroxidase/laccase) [14,15]. In alfalfa, the inflo-
rescent peduncle is the carrier for floret development that continuously synthesizes lignin
during peduncle growth. Therefore, investigating lignin biosynthesis in the peduncle may
reveal the molecular mechanisms of inflorescence elongation in alfalfa.

Plant hormones play an important role in regulating lignin biosynthesis, organic mat-
ter accumulation, and other physiological activities and eventually influence the growth
and development of plant tissues and organs [16–18]. Auxins (IAA) are frequently as-
sociated with stem elongation and root development and can promote or inhibit api-
cal dominance [19,20]. Gibberellin (GA), one of the plant hormones necessary for plant
growth, plays a role in stem development, plant flowering, seed germination, and other
metabolisms [21,22]. CK can induce cell division and elongation and promote tissue dif-
ferentiation, and the interaction between cytokinins and auxins plays a critical role in
regulating xylem development [23,24]. Moreover, other phytohormones, such as abscisic
acid (ABA), jasmonate (JA), salicylic acid (SA), and ethylene (ETH), are closely connected
with participating in plant growth and development [25–27].

Multi-omics techniques have been widely applied to understand the mechanisms
underlying inflorescence growth and development [28,29]. For example, Weng et al. in-
vestigated the transcriptional profiling between the two major inflorescence ecotypes in
Panicum hallii based on the global transcriptome analysis; the result suggested the underly-
ing effect of cytokinin signaling in heterochronic changes and provided some novel insights
into the transcriptome of inflorescence divergence in Panicum hallii [30]. Moreover, previous
study has profiled differentially expressed genes (DEGs) at three developmental stages
of flower growth and compared them with those from vegetative seedling tissue using
RNA-sequencing analysis, which confirmed that key genetic regulators, plant hormones,
and cell-cycle genes were involved in barley inflorescence development [31]. In this study,
we conducted transcriptomic, proteomic, and targeted phytohormone metabolomic analy-
ses at three stages of inflorescence development, contrasting the two extreme materials to
elucidate the regulatory mechanisms of inflorescence elongation in alfalfa.

2. Results
2.1. Distinct Phenotypes of Long and Short Inflorescences between Two Extreme Materials
in Alfalfa

In the present study, inflorescence development between long and short inflorescences
was investigated in alfalfa. We classified the developmental process of the inflorescence into
six stages, namely, inflorescence growth, including early budding stage ‘a’, full budding
stage ‘b’, early flowering stage ‘c’, flowering stage 1 ‘d’, flowering stage 2 ‘e’, and full
flowering stage ‘f’ (Figure 1A). As shown in Figure 1B, long inflorescence continuously
elongated throughout the growth period; the length extended from 0.7 cm of ‘a’ to 6.2 cm
of ‘f’. It displayed that the length difference was not prominent in the short inflorescence;
the length extended from 0.4 cm of ‘a’ to 1.6 cm of ‘f’ (Figure 1B). The results revealed that
long inflorescences had a stronger ability for peduncle elongation than short inflorescences
in alfalfa, which provided adequate space for more florets to grow and perform photo-
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synthesis. Notably, the inflorescence underwent pollination and fruiting when it reached
full flowering, and the inflorescence peduncle almost stopped elongating and reached
its maximum length. Based on these results, we speculated that the lack of ability for
elongation during inflorescence development and most of the small flower buds blooming
in a short amount of time were the major reasons for the structural formation of the short
inflorescence. Conversely, the length of the long inflorescence continuously increased
during inflorescence development; the florets gradually bloomed from the base, and the
inflorescence peduncle elongated sustainably. The growth strategy of short inflorescences
even led to the death of flower buds and florets owing to insufficient space, time, and
nutrition for development, whereas the growth strategy of long inflorescences was able to
support the growth and development of all florets and produce more seeds.
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2.2. Genetic and Proteomic Analysis of Two Extreme Materials at the Three Developmental Stages

To precisely elucidate the potential molecular mechanism of inflorescence elongation
in alfalfa, we conducted a comparative transcriptome in two extreme materials at three
developmental stages: the full budding stage of long and short inflorescences (L1 and
S1), early flowering stage of long and short inflorescences (L2 and S2), and full flowering
stage of long and short inflorescences (L3 and S3); the inflorescences were removed from
the florets and the remaining inflorescence peduncles were used as experimental material
(Figure 2). We detected a total of 127.56 Gb of clean data after removing low-quality reads,
with more than 6 Gb of clean reads per library. The percentage of Q30 bases was, on
average, 92%. No less than 73% of the clean reads from 18 samples could be mapped to
the reference genome; this was indicative of the high quality of the transcriptome dataset
(Table S2). Principal component analysis (PCA) showed an obvious separation among
the six samples, and the contribution rates of PC1 and PC2 were 24.52% and 15.99%,
respectively (Figure 3A), suggesting that significant differences between the six samples
and the experiment could be reliable. For simplicity, we hereafter refer to the comparison
of L1 vs. S1 as L1_S1, L2 vs. S2 as L2_S2, L3 vs. S3 as L3_S3, L2 vs. L1 as L2_L1, L3 vs. L2
as L3_L2, L3 vs. L1 as L3_L1, S2 vs. S1 as S2_S1, S3 vs. S2 as S3_S2, and S3 vs. S1 as S3_S1.



Int. J. Mol. Sci. 2024, 25, 6497 4 of 22

Among groups, 1666 DEGs in L1_S1, 3993 in L2_S2, and 4232 in L3_S3 were identified at an
FDR of < 0.05 and |log2Fold Change| ≥ 1 (Figure 3B). Additionally, we selected 11 key
genes to perform qRT-PCR to determine the accuracy and reliability of the transcriptome
datasets. The relative expression levels of these genes were similar to the RNA-Seq results,
indicating that the RNA-Seq data could be trusted in this study (Figure S1).
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Proteomic analysis was used to identify protein differences between the two extreme
materials at three developmental stages. Similarly, PCA revealed that the proteomes were
significantly separated among the six samples (Figure 3C), indicating that the proteome
datasets could be trusted. We obtained and quantified 11,570 proteins from six samples.
Among these proteins, we detected 638, 1235, and 1298 DEPs in L1_S1, L2_S2, and L3_S3,
respectively (Figure 3D).

2.3. Enrichment Analysis of Integrative Genes and Proteins in Two Extreme Materials at the Three
Developmental Stages

We conducted comprehensive transcriptome and proteome analyses to elucidate the
underlying mechanisms of inflorescence elongation. GO term analysis indicated that genes
and proteins commonly participated in three predominant categories: biological processes;
cellular components; and molecular functions. Among them, some essential GO terms
were discovered to be correlated with inflorescence growth and development, including
phenylpropanoid biosynthetic process, lignin biosynthetic process, plant-type cell wall,
lignin catabolic process, plant-type secondary cell wall biogenesis, phloem development,
flavonoid biosynthetic process, and other terms (Figure S2). Additionally, KEGG enrich-
ment revealed that a large number of differentially regulated genes and proteins were
enriched in the top 20 pathways associated with plant organ elongation and development
in L1_S1, L2_S2, and L3_S3, such as phenylpropanoid biosynthesis, flavonoid biosynthesis,
starch and sucrose metabolism, nitrogen metabolism, plant hormone signal transduction,
and hormone biosynthesis-related pathways (Figure 4A–C), which might be closely related
to inflorescence elongation.
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2.4. Integrated Analysis of Genes and Proteins Associated with Lignin Biosynthesis

The phenylpropanoid biosynthesis pathway produces lignin as an end product in
vascular plants and is closely correlated with the growth of plant stems, roots, inflorescence
peduncles, and other prop tissues. From the integrative profiles of the transcriptome and
proteome, we found that phenylpropanoid biosynthesis was a crucial pathway related to the
structural formation of the inflorescence. Furthermore, 24 DEGs and 24 DEPs, 49 DEGs and
29 DEPs, and 81 DEGs and 53 DEPs were detected in L1_S1, L2_S2, and L3_S3, respectively.
To screen key genes and proteins related to the structural formation of long inflorescences,
we established a lignin biosynthesis pathway (Figure 5). Furthermore, we detected that
many genes and proteins were commonly upregulated in the lignin biosynthesis of key
enzymes in the three comparison groups, including POX/LAC in L1_S1; 4CL, COMT,
CAD, and POX/LAC in L2_S2; and PAL, 4CL, CCoAOMT, CCR, CAD, F5H, COMT, and
POX/LAC in L3_S3 (Table S3), which might be crucial genes and proteins involved in lignin
accumulation in long inflorescences.

2.5. Targeted Phytohormone Metabolome of Two Extreme Materials at the
Three Developmental Stages

Plant hormones play critical roles in the development of tissues and organs [25],
including auxins (IAA), cytokinin (CK), abscisic acid (ABA), jasmonate (Ja), salicylic acid
(SA), gibberellin (GA), ethylene (ETH), strigolactone (SL), and melatonin (MLT). Based
on the integrative results of transcriptome and proteome analyses, we found that plant
hormone signal transduction and hormone biosynthesis-related pathways were closely
associated with inflorescence elongation. To clarify the accumulation of plant hormones
in all samples, we performed a targeted phytohormone metabolome analysis of the two
extreme materials at three developmental stages. The heatmap is shown in Figure 6A, and
9, 13, 20, 14, 26, 36, 3, 18, and 25 DAMs were identified in L1_S1, L2_S2, L3_S3, L2_L1,
L3_L2, L3_L1, S2_S1, S3_S2, and S3_S1, respectively (Figure 6B–D).
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Compared with three developmental stages of long and short inflorescence, we iden-
tified one (indole-3-acetic acid, Log2 fold-change value = 1.18) and two (indole-3-acetic
acid, Log2 fold-change value = Inf; indole-3-acetyl-L-tryptophan, Log2 fold-change value
= 2.44) auxins that were significantly up-accumulated in L1_S1 and L2_S2, respectively.
Quantitative analysis showed that a high content of indole-3-acetic acid (IAA) was main-
tained in both L1 (473.66 ng/mL) and L2 (328.06 ng/mL). These results suggest that IAA
may play an essential role in inflorescence elongation. Moreover, we found that two GAs
(GA9, Log2 fold-change value = 1.11; GA53, Log2 fold-change value = 2.10) and one GA
(GA9, Log2 fold-change value = Inf) were prominently up-accumulated in L2_S2 and L3_S3,
respectively. Based on the morphological characteristics of inflorescences and the func-
tion of GAs, we speculated that GA9 and GA53 might be closely related to inflorescence
elongation, expansion of the peduncle diameter, and floret blooming. Additionally, some
up-accumulated CKs were detected in L1_S1 (BAPR, Log2 fold-change value = Inf; cZRMP,
Log2 fold-change value = 2.01) and L2_S2 (tZ9G, Log2 fold-change value = Inf; iPRMP,
Log2 fold-change value = 1.54; iP7G, Log2 fold-change value = Inf); these CKs might play
an essential role in inflorescence growth at the full budding and early flowering stages.
In addition, differential accumulations of Jas and SA were detected in L1_S1, L2_S2, and
L3_S3, which may be involved in the growth and development of inflorescences.

Notably, most phytohormones were significantly down-accumulated in L3_L2, L3_L1,
S3_S2, and S3_S1 (Table S4). The results suggested that the metabolic activity of the
inflorescence peduncle at the full flowering stage was significantly weaker than that at the
full budding and early flowering stages, which was consistent with the developmental
regularity in which the inflorescence peduncle stopped elongating and mainly played a
role in structural support and nutrient transport.
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2.6. Integrated Analysis of Genes, Proteins, and Metabolites Related to Plant Hormone Biosynthesis

Based on the results above, we conclude that IAA, GA, and CK are closely correlated
with inflorescence elongation at the full budding and early flowering stages. To further
investigate the underlying mechanism of plant hormone biosynthesis in L1_S1 and L2_S2,
we conducted an integrative analysis of the transcriptome, proteome, and metabolome
of long and short inflorescences. KEGG enrichment analysis showed that some differen-
tially regulated genes, expressed proteins, and accumulated metabolites were enriched
in pathways related to plant hormone biosynthesis in L1_S1 and L2_S2, including trypto-
phan metabolism (ko00380), diterpenoid biosynthesis (ko00904), and zeatin biosynthesis
(ko00908) (Figure 7A,B).
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(novel.12346, Log2 fold-change value = 2.65) were commonly upregulated in L1_S1, and we
identified that the content of indole-3-acetic acid was higher in L1 than in S1 (Figure 8A),
suggesting that the gene novel.12346 might be transcribed and translated into protein
A0A072TU58, and eventually, indole-3-acetic acid was synthesized.
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In diterpenoid biosynthesis (ko00904), integrative analysis showed that one KAO
(ent-kaurenoic acid monooxygenase) protein (A0A072V5K8, Log2 fold-change value = 0.72)
and two KAO genes (MsG0580024673.01, Log2 fold-change value = 1.22; MsG0580024666.01,
Log2 fold-change value = 1.61) were commonly upregulated in L2 compared to S2 (Figure 8B),
suggesting that they participated in the synthesis of GA53 and GA9. In addition, two GA2ox
(gibberellin 2beta-dioxygenase) proteins (G7IJL7, Log2 fold-change value = 0.65; G7K254,
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Log2 fold-change value = 1.13) and one GA2ox gene (MsG0580029209.01, Log2 fold-change
value = 1.01) were upregulated in L2_S2 (Figure 8B), which might be closely correlated
with the accumulation of other GAs in L2.

In addition, we detected some differentially expressed genes and proteins related to
IAA, GA, and CK biosynthesis in the transcriptome and proteome, respectively, such as
YUCCA, TAA1, GA20ox, IPT, and other enzymes that might also participate in regulating
inflorescence growth.

2.7. Integrated Analysis of Genes, Proteins, and Metabolites Related to Plant Hormone
Signal Transduction

Moreover, we identified many DEGs and DEPs involved in plant hormone signal trans-
duction between long and short inflorescences, which were mainly enriched in IAA, CK,
GA, and BR signaling pathways. As shown in Figure 9, we examined the IAA, CK, GA, and
BR signaling pathways. In plant hormone signal transduction among three comparisons,
indole-3-acetic acid was a unique differential metabolite detected in L1_S1 and L2_S2. Pre-
vious studies have revealed that the auxin signaling pathway was closely related to plant
growth and organ elongations [19]. In general, we discovered that many DEGs involved in
plant hormone signal transduction were enriched in the auxin signaling pathway, and most
DEGs involved in the auxin signaling pathway were upregulated in long inflorescences
rather than in short inflorescences, according to transcriptome datasets. Therefore, we
identified that auxin signaling played a more essential role than other signal transduction
pathways in regulating the elongation of inflorescences. By further investigating the path-
ways of auxin signaling pathway based on the transcriptome, proteome, and metabolome,
we identified a total of 18, 23, and 17 upregulated DEGs, 2, 3, and 3 upregulated DEP,
and 1, 1, and 0 upregulated DAMs in L1_S1, L2_S2, and L3_S3, respectively. Commonly
upregulated genes and proteins were identified in the three comparison groups: AUX1;
AUX/IAA; and SAUR (Figure 9). These results suggest that IAA induces the expression
of genes involved in the auxin signaling pathway and further induces the expression of
downstream genes associated with inflorescence peduncle elongation.

In addition, we found that some DEGs and DEPs were enriched in the CK, GA, and
BR signaling pathways between long and short inflorescences (Figure 9). For example,
encoding DELLA genes and proteins were commonly downregulated in L2_S2 (Figure 9),
which might also affect inflorescence elongation.

2.8. Weighted Gene and Protein Co-Expression Network Analysis

To further search for candidate genes highly correlated with inflorescence elongation,
we performed weighted gene co-expression network analysis (WGCNA). As a result,
a dynamic hierarchical tree cut showed that 19 modules with similar gene expression
patterns were detected by WGCNA, which are defined using different colors (Figure 10A).
Furthermore, we screened several modules that were highly correlated with each sample
from the WGCNA results (R > 0.3) (Figure 10B). Concerning L1, a blue module was selected.
For L2, a black module was selected. For L3, purple and green modules were selected. For
S1, a turquoise module was selected. For S2, no module was selected. For S3, a brown
module was selected.

Based on morphological studies of the alfalfa raceme, we confirmed that the gene
expression of the inflorescence peduncle at the full budding and early flowering stages
played a more critical role in affecting the growth and development of the inflorescence
peduncle than that at the full flowering stage. Eigengene expression analysis of the blue
and black modules is shown in Figure 10C, indicating that patterns were closely correlated
with the full budding and early flowering stages, respectively. Therefore, genes in the
blue and black modules can be speculated to be associated with inflorescence elongation.
Among the genes belonging to the blue and black groups, we identified 28 genes that
were related to lignin biosynthesis, IAA and GA biosynthesis, and IAA signaling pathway
(Table S5), which might be candidate genes involved in inflorescence development.
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Similarly, WPCNA (weighted protein co-expression network analysis) results indicated
that 11 modules had similar protein expression patterns, and yellow and purple modules
(1308 and 76 proteins, respectively) were recognized as crucial modules associated with the
elongation of the inflorescence peduncle (Figure S3). From these two modules, we screened
a total of six proteins involved in lignin and GA biosynthesis, including POX/LAC (G7IC23,
G7JJ71, and G7LDV0), CAD (G7JFC2), KAO (G7IJL7), and GA2ox (G7K254) (Table S6) that
might be key proteins associated with inflorescence peduncle elongation.
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2.9. Transcription Factors Analysis

Transcription factors (TFs) play essential roles in regulating the expression of structural
and regulatory genes. In this study, a total of 2796 TFs were identified among genes and
classified into 92 TFs families, including AP2/ERF-ERF (195), FAR1 (153), MADS-M-type
(142), MYB (141), bHLH (129), NAC (123), Others (116), MYB-related (115), B3 (115), and
WRKY (101) (Figure 11A). Among the TFs families, some TFs might play a crucial role in
the growth and elongation of the inflorescence peduncle. Subsequently, we screened the
differentially expressed TF genes in the blue and black modules to identify the critical TFs
that regulated candidate genes. In L1_S1 and L2_S2, 24 differentially expressed TFs were
identified in two modules (FPKM > 2). Furthermore, we performed a correlation analysis
between these TFs and 28 candidate genes (|r| > 0.7, p < 0.05). Nineteen TFs were positively
correlated with 16 structural genes ((Figure 11B and Table 1). In the lignin biosynthesis
pathway, we identified 13 TFs that were positively related to five structural genes, including
MYB (four), bHLH (two), and NAC (one). In the plant hormone biosynthesis and signal
transduction, we identified 17 TFs that were positively associated with 11 candidate genes,
including MYB (seven), bHLH (four), NAC (two), GRAS (one), and HB (one). These TFs
may play an important role in regulating structural and regulatory genes and eventually
prompt the elongation of the inflorescence peduncle.
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Table 1. The identified transcription factors in the blue and black modules.

Gene ID Module NR TF-Family

MsG0180005104.01 blue transcription factor bHLH30 bHLH
MsG0180005162.01 blue transcription factor bHLH30 bHLH
MsG0280011275.01 blue dehydration-responsive element-binding protein 3 AP2/ERF-ERF
MsG0380015775.01 blue LOB domain-containing protein 25 LOB
MsG0380017605.01 blue transcription factor MYB3R-1 MYB
MsG0480018564.01 blue receptor protein kinase-like protein ZAR1 S1Fa-like
MsG0480022142.01 blue homeobox-leucine zipper protein HOX3 HB-other
MsG0580025575.01 blue transcription factor bHLH93 isoform X1 bHLH
MsG0580028352.01 blue zinc finger protein CONSTANS-LIKE 9 C2C2-CO-like
MsG0780036307.01 blue transcription factor MYB16 MYB
MsG0780038789.01 blue probable WRKY transcription factor 49 WRKY
MsG0880042918.01 blue transcription factor MYC1 bHLH
MsG0880046208.01 blue scarecrow-like protein 28 GRAS
MsG0180004743.01 black transcription factor MYB61 isoform X1 MYB
MsG0180005910.01 black zinc finger CCCH domain-containing protein 15 C3H
MsG0280010649.01 black transcription factor MYB14 MYB-related
MsG0280010788.01 black NAC domain-containing protein 73 NAC
MsG0380016673.01 black hypothetical protein DVH24_022336 NAC
MsG0380017030.01 black transcription factor bHLH94 bHLH
MsG0480022074.01 black myb transcription factor MYB
MsG0780041430.01 black transcription factor MYB61 MYB
MsG0780041452.01 black transcription factor MYB61 MYB
MsG0780041453.01 black transcription factor PIF3 isoform X1 bHLH
MsG0780041768.01 black ethylene-responsive transcription factor ERF023 AP2/ERF-ERF
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3. Discussion

The architecture of plant inflorescence determines flower and seed growth and devel-
opment, and length is an essential character influencing the morphological structure of
alfalfa inflorescences, which is also closely correlated with seed production of alfalfa [8].
To clarify the potential mechanism of alfalfa inflorescence elongation, phenylpropanoid
biosynthesis was selected as a critical pathway between the two extreme materials by ana-
lyzing the integrative transcriptomic and proteomic results. Combined with the targeted
phytohormone metabolome, we identified key genes, proteins, and metabolites associated
with plant hormone biosynthesis and signal transduction based on omics analysis.

The phenylpropanoid pathway is important for lignin synthesis and is closely as-
sociated with the elongation of plant organs [32]. In this study, we found that many
differentially expressed genes and proteins were enriched in the phenylpropanoid pathway
between long and short inflorescences, which suggested that lignin biosynthesis played
an essential role in inflorescence structure formation. PAL, C4H, and 4CL are upstream
enzymes in the phenylpropanoid biosynthesis pathway, and their expression levels in
plants significantly affect lignin accumulation [33,34]. HCT, F5H, COMT, and CCoAOMT
affect the synthesis of lignin monomers, and the inhibition of these enzymes significantly
reduces the accumulation of lignin [35,36]. Downstream lignin biosynthesis determines the
synthesis of different lignins, which are associated with four enzymes, including CCR, CAD,
and POD/LAC [37–39]. In the present study, we screened many commonly upregulated
genes and proteins related to enzymes involved in lignin biosynthesis in L1_S1, L2_S2,
and L3_S3, including PAL, 4CL, CCR, CAD, CCoAOMT, F5H, COMT, and POD/LAC. High
expression levels of these genes or proteins may contribute to the synthesis of related
enzymes, thereby increasing lignin accumulation in long inflorescences.

Phant hormones are pivotal for the growth of the inflorescence peduncle. The auxin
indole-3-acetic acid (IAA) is a crucial promoter of plant tissue growth. Previous studies have
shown that IAA played a crucial role in promoting stem and root elongation. Consistent
with our findings, we found that the IAA content of the full budding and flowering stages
was significantly upregulated in long inflorescences compared to short inflorescences,
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suggesting that IAA might be a key phytohormone contributing to the elongation of alfalfa
inflorescences. Pollmann discovered that amidase plays a role in catalyzing the conversion
of IAM to IAA in Arabidopsis thaliana [40]. In this study, we identified that one gene and
one protein, amid, were commonly upregulated in L1_S1, suggesting that amidases might
play an important role in IAA accumulation in long inflorescences. Subsequently, IAA
acts on related receptors and prompts the expression of auxin response genes, eventually
resulting in its biological effects. AUX1 plays a critical role in auxin transport. A previous
report demonstrated that AtAUX1 mutations led to tAUX1 mutations, attenuating auxin
trafficking in Arabidopsis seedlings and altering IAA distribution in young leaf and root
tissues [41]. Aux/IAA, an important functional gene, participates in plant growth and
development by regulating the downstream genes of the auxin signaling pathway [42].
SAUR gene family can respond early in auxin induction; overexpression of AtSAUR63
elongated the hypocotyls and stamen filament of the transgenic plants in Arabidopsis [43].
In this study, we discovered that most DEGs and DEPs maintained higher expression levels
in long inflorescences than in short inflorescences. In addition, we further identified that
many genes and proteins encoding AUX1, Aux/IAA, and SAUR were commonly up- or
down-regulated in L1_S1, L2_S2, and L3_S3, revealing that AUX1, Aux/IAA, and SAUR
might play an essential role in regulating the elongation of long inflorescences.

Gibberellins facilitate cell wall extension, stem development, and tissue growth [44].
The targeted phytohormone metabolome showed that the concentrations of GA9 and GA53
were significantly higher in L2 than in S2, suggesting that GA9 and GA53 might be involved
in the elongation and growth of inflorescences at the early flowering stage. KAO is an
upstream enzyme of the GA biosynthesis pathway. In the present study, we identified
that two KAO genes and one KAO protein maintained higher expression in L2 than in S2,
which might be involved in the accumulation of GA and contribute to the growth and
elongation of inflorescences at the early flowering stage. Most studies have demonstrated
that DELLA proteins inhibited plant growth by binding to transcription factors related to
the regulation of plant growth [45–47]. In this study, we discovered that DELLA proteins
were downregulated in L1_S1 and L2_S2, and DELLA genes maintained low expression
levels in L2 compared to S2. The results revealed that DELLA proteins might play a negative
role in the elongation and development of alfalfa inflorescences.

Additionally, some pathways were connected to plant growth and development based
on an integrated analysis of the transcriptome and proteome, such as starch and sucrose
metabolism, nitrogen metabolism, and flavonoid biosynthesis [48–51]. These results show
that these pathways might also be involved in the structural formation of inflorescences.
Previous studies revealed that MYB, NAC, and bHLH TFs participated in the regulation
of lignin biosynthesis [52,53]. In this study, we identified that four MYB, two bHLH,
and one NAC TFs were positively correlated with candidate genes associated with lignin
biosynthesis based on a correlation analysis, revealing that these TFs might play an essential
role in regulating structural genes related to lignin accumulation.

4. Materials and Methods
4.1. Plant Materials

Alfalfa (Medicago sativa) samples with long and short inflorescences were cultivated at
the Grassland Institute of the Chinese Academy of Agricultural Sciences in Hohhot (40◦58′

N, 111◦78′ E). All samples were collected when the alfalfa reached the blooming stage, as
we could obtain all samples during this period. We selected three alfalfas with long inflo-
rescence and nine alfalfas with short inflorescence as candidate materials; inflorescences
were collected based on the developmental stages and inflorescence lengths (1.5–2.0 cm for
the full budding stage of long inflorescence ‘L1’, 3.5–4.0 cm for the early flowering stage
of long inflorescence ‘L2’, 6.0–6.5 cm for the full flowering stage of long inflorescence ‘L3’,
0.8 to 1.2 cm for the full budding stage of short inflorescence ‘S1’, 1.2–1.5 cm for the early
flowering stage of short inflorescence ‘S2’, and 1.5–2 cm for the full flowering stage of short
inflorescence ‘S3’). We removed all flowers and retained the inflorescence peduncle from
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the first floret, from the base to the top. Three biological replicates were obtained for the six
samples, and the inflorescence peduncle for each replicate was heavier than 3.0 g.

4.2. Transcriptome Sequencing and Data Analysis

The total RNA of the inflorescence peduncle (L1, L2, L3, S1, S2, and S3) was ex-
tracted by ethanol precipitation and CTAB-PBIOZOL. RNA purity and integrity were
analyzed using an Agilent 2100 Bioanalyzer and a Qubit 2.0 Fluorometer. Eighteen
cDNA libraries were sequenced using an Illumina Sequencing 6000 platform. After the
low-quality sequences were removed, clean reads were assembled using fastp software
(fastp v0.19.4). All non-redundant transcripts were mapped using the Medicago sativa
reference genome (https://figshare.com/articles/dataset/Medicago_sativa_genome_and_
annotation_files/12623960 (accessed on 10 August 2023)). DESeq2 software (DESeq2 v3.19)
was used to determine the differential expression profiles among the samples. Subsequently,
we obtained notably differential genes with a false discovery rate (FDR < 0.01) and fold
change (FC ≥ 2). Enrichment analysis was conducted based on a hypergeometric test, with
pathway-based hypergeometric distribution checking for Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) term-based profiles. Finally, a weighted gene
co-expression network analysis (WGCNA) was performed using the varFilter function
in the R genefilter package. The correlation network diagram was conducted by using
R version 3.5.1.

4.3. Proteomic Analysis

Proteins were extracted from the samples using acetone precipitation. Protein samples
extracted from the inflorescence peduncle were incubated in L3 buffer (0.15 M, pH 8.0)
containing 1% SDS, 100 mMTris-HCl, 7 M urea, 2 M thiourea, 1 mM PMSF, and 2 mM
EDTA and ultrasonically cracked on ice for 10 min. After the protein solution was obtained
by centrifuging the supernatant, we added 4× volume of frozen acetone into the protein
solution, precipitated at −20 ◦C overnight, and centrifuged at 4 ◦C to obtain the precipitate.
After obtaining the precipitate, we washed it with cold acetone, dissolved it in 8 M urea,
and measured protein concentration. Equal amounts of protein from each sample were
subjected to tryptic digestion. Then, we used tryptic to digest equal content of proteins
from each sample, added 8 M urea to 200 µL to the supernatants, reduced with 10 mM
DTT for 45 min at 37 ◦C, and alkylated with 50 mM iodoacetamide (IAM) for 15 min in
a dark room at 20 ◦C. The protein precipitate was air-dried and resuspended in 200 µL
of 25 mM ammonium bicarbonate solution and 3 µL of trypsin (Promega) and digested
overnight at 37 ◦C after adding 4× volume of chilled acetone, precipitated at −20 ◦C for
2 h and centrifuged. Subsequently, we desalted for peptides, dried and concentrated, using
a C18 cartridge, vacuum concentration meter, and vacuum centrifugation, respectively, and
eventually re-dissolved in 0.1% (v/v) formic acid.

4.4. Hormone Analysis

The LC-MS/MS analysis was conducted using a Q Exactive HF-X mass spectrom-
eter combined with an Easy-nLC 1000 system (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA). LC–MS/MS was performed as previously described by Zhu et al. (2022) [5].
The protein sequences obtained above were blasted in the specified tax ID of the nr database
using the BLASTP algorithm, with the principle that proteins with the same or similar
amino acid sequences share similar functions. Annotations from the mapped protein hits,
mainly GO terms (including Biological Process, Cellular Component, and Molecular Func-
tion) and KEGG pathway information, were transferred to the original submitted proteins.

Quantification of endogenous auxins, cytokinins (CKs), abscisic acid (ABA), jas-
monates (Jas), salicylic acid (SA), gibberellin (Gas), ethylene (ETH), strigolactones (SLs), and
melatonin (MLT) was performed by Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China)
using an LC–MS/MS. The samples (15 mg) were dissolved in 1 mL of methanol/water/
formic acid (15:4:1, v/v/v) and frozen in liquid nitrogen. Ten microlitres of the internal
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standard mixed solution (100 ng/mL) was added to the extract as internal standard (IS) for
quantification. Subsequently, the supernatant was transferred to clean plastic microtubes
after the liquid was vortexed (10 min), centrifugated (12,000 r/min, 5 min, and 4 ◦C), fol-
lowed by evaporation to dryness and dissolved in 100 µL 80% methanol (v/v) and filtered
for further LC-MS/MS analysis. The UPLC and ESI-MS/MS conditions were described
by Niu et al. [54]. The detected metabolites were annotated using the KEGG compound
database (http://www.kegg.jp/kegg/compound/ (accessed on 12 August 2023)).

4.5. qRT-PCR Analysis

The RNA-Seq results were confirmed by using quantitative real-time PCR. The
primers were designed using Primer3 (https://primer3.ut.ee/ (accessed on 8 January 2024)).
Primers used are listed in Supplementary Table S1. The actin gene (MsG0380015289.01)
was selected as the reference gene in this study because of its high and steady expres-
sion levels in all samples based on transcriptome data. All results were obtained from
three repetitions.

5. Conclusions

In this study, the regulatory mechanisms of inflorescence elongation in alfalfa were
investigated using transcriptome, proteome, and targeted phytohormone metabolome anal-
yses. Specifically, we analyzed the developmental processes of long and short inflorescences
in alfalfa and used the three developmental stages of two inflorescences as experimental
materials. Compared to short inflorescences, we found that IAA, GA, and CK played crucial
roles in regulating peduncle elongation according to the metabolome results. Additionally,
based on omics analyses, we detected candidate genes and proteins correlated with lignin
biosynthesis, GA biosynthesis, auxin biosynthesis, and signaling pathways. Moreover, TFs
related to lignin biosynthesis, GA biosynthesis, auxin biosynthesis, and signaling pathways
were identified using correlation analysis. The results of this study highlight the devel-
opmental processes and the potential mechanisms underlying inflorescence elongation in
alfalfa and provide a theoretical foundation for germplasm innovation.
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