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Abstract: Pollen from common ragweed is an important allergen source worldwide and especially in
western and southern Romania. More than 100 million patients suffer from symptoms of respiratory
allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is
a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food
from different unrelated plants capable of inducing severe reactions. The goal of this study was to
produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its
physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells
as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy
regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified
protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The
allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated
in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features.
Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to
that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by
SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was
a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except
for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of
ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those
specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity
in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms.
The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that
none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one
rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6
induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that
Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis
and allergen-specific immunotherapy of ragweed pollen allergy.

Keywords: allergy; common ragweed; nsLTP; Amb a 6; recombinant allergen; ImmunoCAP; basophil
activation test
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1. Introduction

Common ragweed (Ambrosia artemisiifolia) pollen has been identified as an impor-
tant source of allergens in the whole world causing allergy in more than 100 million
patients [1–3]. Ragweed occurs as an endemic weed in certain regions of the world, for
example, in the United States, but it has also been introduced to certain parts of Europe
(e.g., Lyon, France; Hungary; northern Italy; western and southern Romania; Ukraine;
Russia; and Turkey) [4–11]. Furthermore, ragweed plants have spreadto other continents,
including Asia, Australia, Africa, and South America [12]. Ragweed-allergic patients
experience allergic rhinitis and asthma during the pollen season in August–September,
which worsen under certain conditions by increasing allergen or pollen content in the
atmosphere, i.e., storms, urbanization, and pollution [2,13–15]. Currently, eleven ragweed
pollen allergens have been described, among which Amb a 1 and Amb a 11 are classified
as major allergens according to the frequency of IgE recognition [16,17]. Four allergens
belong to known allergen families, profilin Amb a 8, polcalcins Amb a 9 and 10, and
non-specific lipid transfer protein (nsLTP) Amb a 6, which may show varying degrees of
IgE cross-reactivity [16]. Patients sensitized to ragweed pollen were found to have complex
IgE sensitization patterns [18]. Patients tended to report more symptoms when sensitized
to pan-allergens in addition to Amb a 1 [18,19]. Importantly, the allergenic activity of the
individual ragweed allergens needs to be evaluated in more detail because the frequency
of IgE recognition does not take into consideration this important parameter for the clinical
relevance of a given allergen [20–22].

Among the ragweed allergens, nsLTPs are pathogenesis-related proteins belonging
to the prolamin superfamily [23]. The nsLTPs are stabilized by eight cysteine residues
forming a hydrophobic cavity able to bind fatty acids and confer stability to both heat and
proteolytic digestion [23,24]. The structural stability is an important contributor to nsLTP
allergenicity, especially in food allergy, by exposing large allergen fragments to the immune
system, thereby facilitating IgE sensitization via the gastrointestinal tract [25,26].

nsLTPs have been studied initially as major allergens in peach (Pru p 3) and wall
pellitory (Parietaria judaica) (Par j 1 and Par j 2) [27,28]. As major allergens, nsLTPs were
found to trigger a wide range of symptoms, including asthma and anaphylaxis, sometimes
requiring the presence of certain cofactors [27–29]. The mugwort nsLTP Art v 3 has been
extensively studied regarding the role in pollen–food allergy syndrome, due to possible
cross-reactivity with peach Pru p 3 [30], but more recent analyses indicate that there is not
much cross-reactivity between pollen and plant food nsLTPs [31]. No symptoms of food
allergy have been mentioned for patients sensitized to mugwort pollen and Art v 3 [32].
The high ragweed pollen load in Romania and the ability of nsLTPs to trigger severe
symptoms underline the importance of investing the role of Amb a 6 in ragweed pollen
allergy. Two different Amb a 6 isoforms, named Ra6A and Ra6B, were first identified
and isolated from ragweed pollen in 1983 [33]. The two isoforms were immunologically
indistinguishable, had an IgE frequency of 21%, and sensitization was associated with
HLA-DR5 among ragweed pollen-allergic patients [33,34]. The potential cross-reactivity,
allergenicity, and association with clinical features have not been extensively investigated.
Allergen characterization requires the availability of pure, measurable amounts of protein,
facilitated by recombinant protein production [35]. Since one study reported that Amb a
6 was successfully produced in an eukaryotic expression system, Spodoptera frugiperda Sf9
cells were chosen for Amb a 6 expression [36].

The physicochemical features of the purified protein were evaluated and the protein
was then used to test IgE recognition frequency and allergenic activity among clinically
well-characterized ragweed pollen-allergic patients. Thus IgE recognition of Amb a 6 could
be investigated in association with clinical phenotypes of allergy.
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2. Results
2.1. Recombinant Expression, Purification, and Biochemical Characterization of Amb a 6

rAmb a 6 was obtained as a pure protein with a yield of 1 mg of protein from 1 L
of cell culture (2 × 106 cells/mL). When separated by SDS-PAGE under non-reducing
(NR) conditions, rAmb a 6 formed two bands at approximately 13–14 kDa and 27 kDa,
respectively. The bands seem to represent a monomer and dimer, which migrated at a
higher molecular weight than calculated according to the sequence, most likely due to the
alkaline isoelectric point (pI) of rAmb a 6 causing retention in the gel [37,38] (Figure 1a).
Under reducing (R) conditions, the low molecular weight band migrated a bit lower than
under NR conditions (Figure 1a). Most patients’ sera showed weaker or no IgE binding
towards the allergen separated under R conditions, whereas IgE binding towards both
bands was observed after the allergen had been separated under NR conditions (Figure 1b).
The fact that the band corresponding to a possible dimer disappeared or was weaker after
the allergen had been separated under R conditions indicates that the dimer formation was
likely due to intermolecular disulfide bonds.
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calculated molecular weight based on the amino acid sequence determined in the Prot-
param Expasy tool as 10,963.61 Da [39] (Figure 2a). The far UV circular dichroism spec-
trum of rAmb a 6 revealed a predominantly α-helical structure, indicated by the minimum 
between 200 and 210 nm (Figure 2b). The proportion of secondary structures calculated in 
DiChroWeb showed that the protein consisted of 54% α-helix structures, 8% β-sheets, 13% 
turns, and 24% unordered structures. The predominantly α-helical structure appeared 

Figure 1. Overview of recombinant allergen production: (a) SDS-PAGE with the purified rAmb
a 6 separating under non-reducing (NR) and reducing (R) conditions; (b) IgE binding towards rAmb
a 6 (A6) separated under NR and R conditions using serum from five ragweed-allergic patients, one
non-allergic subject (N.C.), and buffer used as control. A molecular weight marker is shown on the
left for both SDS-PAGE and immunoblot.

In MALDI-ToF, the mass of rAmb a 6 was 10,971.9 Da, which corresponds to the
calculated molecular weight based on the amino acid sequence determined in the Protparam
Expasy tool as 10,963.61 Da [39] (Figure 2a). The far UV circular dichroism spectrum
of rAmb a 6 revealed a predominantly α-helical structure, indicated by the minimum
between 200 and 210 nm (Figure 2b). The proportion of secondary structures calculated in
DiChroWeb showed that the protein consisted of 54% α-helix structures, 8% β-sheets, 13%
turns, and 24% unordered structures. The predominantly α-helical structure appeared also
in the 3D model generated in Expasy, in which Amb a 6 consisted of four α-helix chains
(Figure 2b) [40]. The protein sequence also indicated the existence of an N-glycosylation
site in position 38–41 according to the Prosite scan, although the mass spectrometry result
did not show any relevant glycosylation [41].
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Figure 2. Physicochemical characterization of the recombinant allergen Amb a 6 (rAmb a 6):
(a) MALDI-ToF mass spectrum for rAmb a 6. The mass/charge ratio is shown on the x-axis; (b) Far
UV spectrum of rAmb a 6. The mean residue ellipticity θ (deg × cm2/dmol) is shown on the y-axis
and the wavelength (nm) is shown on the x-axis; the 3D model of Amb a 6, excluding the signal
peptide is also shown [40].

The sequence alignment of Amb a 6 with other allergenic nsLTPs (Table S1) showed
that the only conserved amino acids were six cysteine residues (Figure 3a). The phylogenetic
tree of the sequences generated by maximum parsimony showed that Amb a 6, the nsLTP
from sunflower (Hel a), and Parietaria nsLTPs formed a cluster although the sequence
identities of the proteins were very low. Another cluster was formed by the different
isoforms of nsLTPs from different mugwort species. Similarly, the allergenic nsLTPs from
different Rosacea species clustered, and peanut, pea, and mustard nsLTPs formed another
separate cluster (Figure 3b). Amb a 6 had the highest sequence identity with the nsLTP
from sunflower (51%), while sequence identities with the other allergenic nsLTPs were very
low (i.e., below 40%). The lowest sequence identity with Amb a 6 and nsLTPs was recorded
for Tri a 14 from wheat (i.e., 27%) (Table S2).

2.2. IgE Reactivity towards rAmb a 6

The frequency of IgE binding of rAmb a 6 was tested both by IgE ELISA and by
quantitative ImmunoCAP measurements. Out of 150 patients allergic to ragweed pollen,
47 patients (31.3%) were positive in ELISA for IgE against rAmb a 6, while in ImmunoCAP
measurements 45 patients (30%) had sIgE values above 0.35 kUA/L. Out of the 150 patients,
42 were positive in both methods, while 5 were positive only in ELISA and 3 patients
were over the diagnostic threshold in ImmunoCAP. The values for optical density (OD)
in ELISA and specific IgE (sIgE) in ImmunoCAP were significantly correlated (ρ = 0.689,
p < 0.001, n = 150) (Figure 4a). The quantitative ImmunoCAP sIgE levels were used for
further comparisons with ragweed pollen and Amb a 1 sIgE in the Wilcoxon test. The sIgE
levels towards rAmb a 6 were significantly lower than those towards Amb a 1 (p < 0.001)
and towards ragweed pollen (p < 0.001) (Figure 4b). This difference remained when the sIgE
levels were compared among rAmb a 6-positive patients (comparison of rAmb a 6 with
Amb a 1, p < 0.001; with ragweed pollen p < 0.001, n = 45). However, six patients had higher
sIgE levels towards rAmb a 6 than towards the major allergen Amb a 1 (Pat. 67, 89, 103,
105, 126, 127) and two patients had similar sIgE levels towards both allergens (Pat. 63, 75)
(Figure 4c, Table S3).

2.3. Rabbit Antibodies Obtained by Immunization with rAmb a 6 Inhibit Patients’ IgE Binding to
rAmb a 6

The rabbit serum showing the highest IgG reactivity towards rAmb a 6 was tested
regarding its ability to inhibit allergic patients’ IgE binding towards rAmb a 6. The inhi-
bition achieved with rabbit rAmb a 6-specific serum ranged between 37% and 95% with
an average of 74% (Table 1). There was almost no inhibition with rabbit rAmb a 4-specific
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control serum, with the inhibition percentages ranging between 0 and 5% and an average
of 1.9% IgE binding inhibition towards rAmb a 6 (Table 1).
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Figure 4. IgE recognition of rAmb a 6: (a) Correlation between the optical densities (OD) obtained
for rAmb a 6 in IgE ELISA and the specific IgE levels determined by ImmunoCAP for 150 ragweed
pollen-allergic patients; (b) Specific IgE reactivity towards rAmb a 6, Amb a 1, and ragweed pollen
extract for 150 ragweed-allergic patients. In the boxplot, the line shows the median, the box represents
the 25th and 75th percentile, and the whiskers show the minimum and maximum values. Statistically
significant differences are marked as *** p < 0.001; (c) Specific IgE levels towards rAmb a 6 and Amb a
1 for 45 patients reactive towards rAmb a 6 in ImmunoCAP.

Table 1. Inhibition of IgE binding towards rAmb a 6 by rabbit rAmb a 6-specific serum. Rabbit rAmb
a 4-specific serum and pre-immune serum were used as negative controls.

Patient
Number

Coating Using rAmb a 6

rAmb a 6
Inhib. (%)

rAmb a 4
Inhib. (%)Pre-Imm * Imm * Pre-Imm * Imm *

29 0.353 0.082 76.8% 0.352 0.350 0.5%
55 0.328 0.055 83.2% 0.318 0.312 2.0%
59 1.311 0.130 90.1% 1.212 1.161 4.2%
68 0.143 0.089 37.4% 0.139 0.136 1.9%
82 1.903 0.087 95.4% 1.836 1.786 2.8%
85 0.273 0.074 73.1% 0.258 0.252 2.1%
103 3.536 0.175 95.1% 3.308 3.251 1.7%
105 2.175 0.114 94.8% 1.988 1.887 5.1%
114 0.359 0.104 71.1% 0.334 0.351 0%
128 0.149 0.082 44.9% 0.144 0.146 0%
129 0.536 0.109 79.7% 0.529 0.547 0%
148 0.116 0.058 49.9% 0.120 0.117 2.9%

Mean 74.3% 1.9%
* ODs in ELISA after pre-incubation with rabbit pre-immune serum (Pre-imm) and rabbit rAmb a 6 or rAmb
a 4 specific immune serum (Imm).
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2.4. Allergenic Activity of rAmb a 6 and the nsLTP from Parietaria judaica Pollen, Par j 2, and
Association of Amb a 6 Sensitization with Clinical Features

A considerable proportion of rAmb a 6-sensitized patients showed equal to higher
IgE levels specific for rAmb a 6 than for the major ragweed allergen Amb a 1. Therefore,
the allergenic activity of rAmb a 6 was evaluated in basophil activation tests (Figure 5).
A mediator release assay with serum from rAmb a 6-positive patients was performed,
showing lower or comparable sIgE values for rAmb a 6 and Amb a 1 (Table S3). rAmb
a 6 induced up to 100% of β-hexosaminidase release from IgE-loaded cells from one patient
at 100 ng/mL and 10 ng/mL, reaching up to 50% mediator release even at the second lowest
dilution (Pat. 103). The overall Amb a 6 reactivity was comparable with the reactivity
towards nAmb a 1.01 or slightly higher for certain patients, which also showed higher
levels of sIgE in ImmunoCAP (Pat. 89, 103, 105). For one patient, which was positive for
ragweed pollen in ImmunoCAP, but negative for nAmb a 1.01, rAmb a 6 induced mediator
release of around 30% at 1 ng/mL (Pat. 126). The nsLTP from Parietaria judaica pollen,
Par j 2, did not induce mediator release for any of the rAmb a 6-sensitized patients’ sera
tested, demonstrating that rAmb a 6 and Par j 2 do not share IgE epitopes (Figure 5).

Since the cohort of patients included in the study was meticulously characterized
regarding clinical parameters, the IgE reactivity profiles could be associated with clinical
phenotypes. Table S3 contains the results of IgE antibody measurements specific for rAmb
a 6, Amb a 1, and ragweed pollen extract. Information regarding sensitization to allergen
sources other than ragweed pollen and allergic symptoms to other allergen sources is also
included in Table S3. The presence/absence of certain symptoms and reactivity towards
rAmb a 6 were tested in a Fisher exact test. Overall, rhinorrhea was more frequently
reported amongst rAmb a 6-positive patients than amongst those who were negative
(44/45 (97.7%) vs. 86/105 (81.9%), p = 0.008). Wheezing was also reported relatively
more often amongst patients positive towards rAmb a 6 (17/45 (37.7%)) than amongst
those negative towards rAmb a 6 (23/105 (21.9%)). However, the difference did not reach
statistical significance (p = 0.06) (Figure 6a). When clustering the symptoms into symptom
types, asthma-like symptoms in addition to nasal and ocular symptoms were reported
more frequently among patients sensitized to rAmb a 6 (48.9%) than among those negative
towards rAmb a 6 (35.2%) (p = 0.117). A higher proportion of rAmb a 6-negative patients
reported only nasal and ocular symptoms (32.4%) than rAmb a 6-positive patients (22.2%)
(p = 0.210) (Figure 6b). A slightly higher proportion of rAmb a 6-reactive patients reported
more than two symptom types (32/45 (71%)) than among rAmb a 6-negative patients
(65/105 (62%)) (p > 0.05) (Figure 6b). The sIgE levels towards rAmb a 6, Amb a 1, and
ragweed pollen extract were highly correlated (p < 0.01) but did not correlate with the
duration since allergy onset. The overall sIgE levels were the highest towards ragweed
pollen extract, followed by Amb a 1, and then rAmb a 6 (p < 0.01). In ragweed pollen-
monosensitized patients, Amb a 1 sIgE levels did not differ significantly from ragweed
pollen extract sIgE levels (p = 0.071), whereas among rAmb a 6-reactive polysensitized
patients, rAmb a 6 sIgE did not differ significantly from Amb a 1 sIgE levels (p = 0.091)
(Figure 6c).

Patients were asked whether they experienced allergy symptoms to plant foods and the
reactivity towards foods was evaluated by skin prick testing or ImmunoCAP measurements.
Therefore, possible associations between IgE sensitization to rAmb 6 and plant–food allergy
potentially caused by cross-reactive nsLTPs could be investigated (Table S3). Only 1 out of
the 50 Amb a 6-sensitized patients (i.e., Patient 128) (ELISA and/or ImmunoCAP) suffered
from allergy to hazelnuts, whereas the other 3 patients with symptoms of plant food
allergy (i.e., Patients 39, 46, 78) were negative for rAmb a 6. Thus, it was unlikely that IgE
sensitization to Amb a 6 triggered IgE-mediated allergy to nsLTP-containing plant foods in
the tested patients.



Int. J. Mol. Sci. 2024, 25, 6513 8 of 18
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Mediator release assay towards rAmb a 6, nAmb a 1.01, and Par j 2 using serum from 
ragweed-allergic patients. The results are shown as the percentage of total release, bar charts repre-
sent the median release, and the error bars show the 95% confidence interval. The dashed line indi-
cates the degranulation obtained from cells with serum without allergen (cut-off). Allergen concen-
trations (ng/mL) are displayed on the x-axes, with the y-axes showing the percentages of total release 
(%). 

Since the cohort of patients included in the study was meticulously characterized re-
garding clinical parameters, the IgE reactivity profiles could be associated with clinical 
phenotypes. Table S3 contains the results of IgE antibody measurements specific for rAmb 
a 6, Amb a 1, and ragweed pollen extract. Information regarding sensitization to allergen 
sources other than ragweed pollen and allergic symptoms to other allergen sources is also 
included in Table S3. The presence/absence of certain symptoms and reactivity towards 
rAmb a 6 were tested in a Fisher exact test. Overall, rhinorrhea was more frequently re-
ported amongst rAmb a 6-positive patients than amongst those who were negative (44/45 

Figure 5. Mediator release assay towards rAmb a 6, nAmb a 1.01, and Par j 2 using serum from
ragweed-allergic patients. The results are shown as the percentage of total release, bar charts represent
the median release, and the error bars show the 95% confidence interval. The dashed line indicates
the degranulation obtained from cells with serum without allergen (cut-off). Allergen concentrations
(ng/mL) are displayed on the x-axes, with the y-axes showing the percentages of total release (%).
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Figure 6. Lack of clear association between reactivity to rAmb a 6 and the clinical features of ragweed-
allergic patients: (a) Allergy-related symptoms reported by patients positive towards rAmb a 6 in
ImmunoCAP compared to those which were negative in ImmunoCAP. Statistically significant results
are marked as ** p < 0.01; (b) Symptom types reported by patients positive and negative towards
rAmb a 6 in ImmunoCAP; (c) Boxplots showing sIgE levels towards rAmb a 6 in monosensitized,
oligo-, and polysensitized ragweed-allergic patients according to SPT among rAmb a 6-positive and
-negative patients. In the boxplots, the horizontal lines show the median, the box represents the 25th
and 75th percentile, and the whiskers show the minimum and maximum values.

3. Discussion

The ragweed nsLTP Amb a 6 was discovered as an allergen 40 years ago [33]. A
detailed characterization of an allergen for component-resolved diagnosis and personalized
therapeutic approaches requires the availability of a homogenous, pure, and defined
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allergen preparation [35]. The goal of our study was to perform a detailed characterization
of the Amb a 6 allergen regarding its IgE binding frequency and allergenic activity and the
possible association of its immunological characteristics with clinical data obtained in a
representative population of ragweed allergic patients.

For this purpose, recombinant Amb a 6 was produced in a eukaryotic expression
system, i.e., in insect cells. Eukaryotic expression in insect cells was chosen because
previous studies have found for the nsLTP from Parietaria judaica pollen, i.e., Par j 2, that the
insect cell-expressed allergen exhibited a higher IgE reactivity and allergenic activity [42].
Highly pure and folded rAmb a 6 was obtained exhibiting the expected molecular mass
according to its amino acid sequence. The protein contained nine cysteine residues of
which eight seemed to have assembled properly to stabilize the protein which consisted
mainly of α-helical secondary structure as determined by far UV CD analysis. This mostly
α-helical structure with an unstructured C-terminus was described as characteristic of
nsLTPs, confirming the nsLTP structure of the produced protein [10]. It is a limitation of
this study that it did not include the near UV CD analysis of rAmb a 6, since it was difficult
to obtain highly concentrated folded protein and rAmb a 6 contained a hexa-histidine
tag which could influence the near UV CD results. SDS-PAGE demonstrated that rAmb
a 6 consisted of a monomeric form and a dimer. The abundant dimer observed under
non-reducing SDS-PAGE disappeared under reducing conditions and therefore seemed
to be due to the formation of intermolecular disulfide bonds. The separation of rAmb
a 6 by native PAGE was not possible, probably due to the alkaline isoelectric point. A
weaker IgE recognition was found for the dimer in immunoblot. This may be due to the
fact that the dimer band was much weaker on SDS-PAGE, indicating that the dimer occurs
in smaller amounts in the preparation. However, it is also possible that IgE binding sites
were blocked by the dimer formation. Similar findings have been reported for the hazelnut
(Cor a 8) and mustard (Sin a 3) nsLTPs; in both cases, the dimer showed less or no IgE
recognition [43,44]. The IgE recognition frequency of rAmb a 6 among 150 ragweed-allergic
patients was 30% which was in good agreement with IgE reactivity observed for the natural
allergen indicating that the recombinant protein was obtained in an authentic IgE-reactive
form [33]. Based on this IgE recognition frequency, rAmb a 6 cannot be classified as a
major allergen. However, our data indicate that it is an important allergen since Amb a
6-specific IgE levels and the allergenic activity in basophil activation experiments were
high in a considerable number of the IgE-positive patients. The fact that Amb a 6 induced
strong IgE-dependent basophil activation provides additional support for the allergenic
activity of the recombinant allergen. Accordingly, Amb a 6 can be considered an important
component for the molecular diagnosis of ragweed pollen allergy and for the development
of molecular allergen-specific immunotherapy (AIT) formulations for ragweed pollen
allergy. Regarding respiratory allergy, the detailed analysis of the symptoms among rAmb
a 6-positive and -negative patients has not shown a difference regarding association with
a certain symptom, except rhinorrhea. However, a higher proportion of rAmb 6-positive
patients tended to report asthma-like symptoms (71% vs. 59%), especially wheezing which
was more frequently reported. This finding hints towards the clinical relevance of Amb
a 6, highlighting its role in ragweed pollen allergy. Additionally, patients sensitized to
nsLTP more frequently reported more than two symptom types, suggesting that Amb a 6 in
addition to Amb a 1 is important for patients reporting asthma with rhino-conjunctivitis [18].
The levels of sIgE towards Amb a 6 did not differ from Amb a 1 sIgE for polysensitized
nsLTP-reactive patients. This finding is similar to that by Barber et al., claiming that minor
allergens become important in areas with high exposure to certain allergen sources [45].
Thus, the present study underlines the importance of a personalized approach to nsLTP
allergy diagnosis, considering the patients’ exposure and other sensitization in addition to
serum IgE measurements.

nsLTPs from various plants have been described as allergens in pollen and somatic
plant tissues, thus causing respiratory and/or plant food allergy [37,38]. The importance of
IgE cross-reactivity between nsLTPs from pollen and plant food is a matter of discussion.
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Some studies suggest there may be relevant IgE cross-reactivity [30], whereas other studies
and meta-analyses suggest that there is not much relevant IgE cross-reactivity between
pollen and plant food nsLTPs or between different pollen nsLTPs [31]. Data from our
study would rather indicate that Amb a 6 is a genuine and source-specific allergen in
ragweed pollen without relevant IgE cross-reactivity to other nsLTP allergens. First of all,
the multiple sequence alignment of Amb a 6 with other nsLTP allergens showed that Amb a
6 had only a very low sequence identity with other nsLTPs which is below a percentage that
would be expected to yield strong IgE cross-reactivity [46]. Only the nsLTP from Helianthus
had a sequence identity of 51%, whereas the sequence identities to other plant nsLTPs
were all below 40%. Second, Par j 2, the major nsLTP allergen from Parietaria judaica pollen,
did not induce basophil activation in any of the patients responding to rAmb a 6. Finally,
the present study did not find any relevant evidence that the Amb a 6-sensitized patients
suffered from plant food-induced allergy, indicating that Amb a 6 did not contribute to
nsLTP-induced plant food allergy.

Therefore, Amb a 6 can be considered an important allergen molecule for the diagnosis
of ragweed pollen allergy and as a marker allergen for genuine sensitization to ragweed
which may help in the differential diagnosis of plant pollen and plant food polysensitization.
Furthermore, Amb a 6 should be considered as an important molecule for ragweed pollen
AIT. The latter assumption is supported by the fact that antibodies induced in rabbits by
immunization with rAmb a 6 strongly inhibited allergic patients’ IgE binding to rAmb
a 6. However, further studies will be necessary to evaluate the diagnostic usefulness of
Amb a 6 in different populations of nsLTP-sensitized patients as has been studied for other
nsLTPs [47]. In addition, it will be necessary to investigate and compare the IgE recognition
frequency and allergenic activity of Amb a 6 with that of other ragweed pollen allergens to
define the relevant molecules to be included in molecular AIT vaccines for the treatment of
ragweed pollen allergy.

4. Materials and Methods
4.1. Serum from Ragweed-Allergic Patients

Sera were collected from 155 ragweed-allergic patients at an allergy clinical center
in Timişoara, Romania, after informed consent was obtained. The diagnosis of ragweed
pollen allergy was based on a positive skin prick test (SPT), the presence of specific IgE
(sIgE) against ragweed pollen extract or Amb a 1, and an unambiguous recording of allergic
symptoms during the ragweed pollen season. The serum samples were stored at −80 ◦C.

The patients were asked in detail about the symptoms experienced during the ragweed
pollen season by questionnaire. These symptoms were classified based on the case history
as follows: nasal symptoms (nasal obstruction, rhinorrhea, nasal pruritus, sneezing), ocular
symptoms (tearing, ocular pruritus, conjunctiva irritation), asthma-like symptoms (cough,
chest constriction, dyspnea, wheezing), skin symptoms (skin rash, skin pruritus, skin
dryness). Sensitizations to additional allergen sources were evaluated by the recording
of symptoms, SPT, and/or by measurement of serum sIgE. Patients were tested towards
common inhalant allergen sources (ash, birch, hazel, timothy grass, wheat, rye, house
dust mites, cat, dog, Alternaria, Aspergillus, Candida, Cladosporium, Penicillium) and food
allergens (potato, apple, banana, lemon, orange, peanuts, hazelnuts, walnuts, wheat flour,
barley flour, egg white, egg yolk, crustaceans, salmon, trout). Patients were considered
monosensitized if the SPT was positive only towards ragweed pollen, oligosensitized if
positive to at most two allergen sources other than ragweed, and polysensitized if positive
to more than four allergen sources [48].

The usage of sera of ragweed-allergic patients in this project was approved by the
Local Ethics Commission of Scientific Research of the Pius Brînzeu Emergency County Hos-
pital, Timis, oara (Ethical Statement No. 102, 10.01.2017). All experiments were performed
following relevant guidelines and regulations.
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4.2. Recombinant Allergen Production and IgE Immunoblotting

The sequence for Amb a 6 was retrieved from the Allergome database [49] (GenBank
accession number AAB51146.1). A sequence blast was performed to identify similar
allergens [50]. The identified sequences (Table S1) were then used to construct an identity
matrix and a maximum parsimony phylogenetic tree in MEGA [51].

A nucleotide construct codon optimized for Spodoptera frugiperda (Sf 9) (Thermo Fisher
Scientific, Waltham, MA, USA) insect cell expression without the signal peptide (from amino
acids 1 to 25) and including a C-terminal hexa-histidine tag (103 AA, 10 kDa) was designed
using the pTM1 vector via BamHI/SmaI sites (ATG Biosynthetics, Merzhausen, Germany).

The subcloning, baculovirus, and protein production were performed as described
in [52]. The secreted protein was isolated and purified from the supernatant of Sf 9 cells
using a nickel (Ni+-NTA) agarose matrix (Qiagen, Hilden, Germany) according to the
QIAexpressionist handbook [53]. Cells exposed to baculovirus for 96 h were centrifuged
4500× g, 5 min, 4 ◦C. The supernatant was dialyzed overnight against lysis buffer described
in [53]. The matrix was equilibrated with the same buffer and then added to the supernatant
and incubated for 2 h at 4 ◦C on a rocker at 20 rpm. The agarose bound supernatant was then
transferred to a column which was rinsed with wash buffer as described in [53] to remove
other proteins binding with lower affinity to the matrix. Finally, the protein was eluted
using elution buffer containing 250 mM imidazole (Sigma Aldrich, St. Louis, MO, USA).
Aliquots containing the highest allergen concentration according to SDS-PAGE were pooled
and dialyzed to remove the NaCl and imidazole contained in the elution buffer. The
purified protein was stored in 10 mM NaH2PO4, pH 6, final buffer at −20 ◦C.

Immunoblots of the protein running under reducing conditions (using sample buffer with
ß-mercaptoethanol) and non-reducing conditions (sample buffer without ß-mercaptoethanol)
were performed to verify the formation of oligomers and identification of IgE binding
proteins. For blotting, 20 µg of rAmb a 6 (1:1.3 dilution with sample buffer) were separated
on 14% SDS-PAGE and transferred onto a 0.2 µm nitrocellulose blotting membrane (Pro-
tranTM, GE Healthcare Life Science, Chicago, IL, USA) at 150 mA for 1.5 h. The blots were
cut into 0.5 cm strips containing rAmb a 6 and washed/blocked using buffer B (40 mM
Na2HPO4, 0.6 mM NaH2PO4, pH 7.5, 0.5% Tween 20, 0.5% [w/v] Bovine serum albumin
(BSA), 0.05% [w/v] NaN3). IgE binding proteins were detected by incubating the blotted
strips with 1:10 diluted patient sera (labeled a–e) (Table S3) in buffer B. Bound IgE was
detected with mouse anti-human IgE marked with alkaline phosphatase (AKP) (diluted
1:1000 in buffer B) (clone G7-26, BD Biosciences, Pharmingen, San Jose, CA, USA) and visu-
alized after washing with AP buffer (100 mM Tris, 100 mM NaCl, 5 mM MgCl2) followed
by addition of the detection buffer (10 mL AP buffer with 1.65 mg BCIP and 1.65 mg NBT)
for 5 min.

4.3. Physicochemical Characterization

The determination of the mass of the purified proteins was performed by matrix-
assisted laser desorption/ionization time-of-flight (MALDI-ToF) using a Microflex mass
spectrometer (Bruker, Billerica, MA, USA) as previously described in [53].

Circular dichroism (CD) measurements were performed using a JASCO J-810 spec-
tropolarimeter (Tokyo, Japan). The CD spectrum of purified rAmb a 6 was measured at
room temperature at a concentration of 0.1 mg/mL using a rectangular quartz cuvette
with 0.2 cm path length. Far ultraviolet (UV) spectra were recorded in the wavelength
ranges between 190 and 260 nm with a resolution of 0.5 nm at a scan speed of 50 nm/min.
Data from three measurements were averaged. The final spectra were baseline-corrected
and the results were expressed as the mean residue ellipticity θ (deg × cm2/dmol) at a
given wavelength. The secondary structure content of rAmb a 6 was calculated using the
secondary structure estimation program DiChroWeb with the CDSSTR method [53,54].
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4.4. IgE Reactivity towards rAmb a 6

Sera from 150 ragweed-allergic patients (labeled Pat. 1–150) were tested in ELISA
against rAmb a 6. An amount of 0.5 µg of rAmb a 6 or rDer p 2 as a positive control
for the calibration dissolved in PBS (136 mM NaCl, 2.6 mM KCl, 10 mM Na2HPO4,
1.7 mM KH2PO4, pH 7.4) was incubated overnight at 4 ◦C on 96-well MaxiSorp flat bottom
plates (Thermo Fisher Scientific, Waltham, MA, USA). The plates were washed twice with
PBS + 0.05% Tween (PBST) and then blocked with PBST + 3% BSA for 3 h at room tem-
perature. One hundred microliters of 1:5 diluted patient serum in PBST + 0.5% BSA was
added to the plates in duplicate and incubated overnight at 4 ◦C. After washing five times
with PBST, horseradish peroxidase (HRP)-labeled polyclonal goat anti-human IgE (epsilon)
antibody (SeraCare, Milford, MA, USA) diluted 1:2500 in PBST + 0.5% BSA was added at
100 µL/well and incubated for 45 min at 37 ◦C then 45 min at 4 ◦C. After five washes, the
detection substrate was added containing 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS) (Sigma Aldrich, St. Louis, MO, USA) in 60 mM citric
acid, 77 mM Na2HPO4 × 2H2O, and 3 mM H2O2. The absorbance was measured at
405 nm with reference at 490 nm on a microplate reader (Tecan Infinite M200 Pro, Grödig,
Austria) and readings at 25 min were used for further analysis. The cut-off was deter-
mined by using the mean optical density (OD) and the standard deviation of four ragweed
non-allergic patients.

IgE binding in ImmunoCAP was performed by using commercially available Amb
a 1 (w230) and ragweed pollen extract (w1) ImmunoCAPs, whereas rAmb a 6 was first
bound to Streptavidin ImmunoCAP (o212, Thermo Fisher Scientific/Phadia, Uppsala,
Sweden) as described in [19]. Specific IgE levels were measured on the Phadia 100 and
Phadia 250 platform (Thermo Fisher Scientific). Specific IgE levels > 0.35 kUA/L were
considered positive.

4.5. Induction of rAmb a 6-Specific Antibodies in Rabbits

rAmb a 6-specific polyclonal IgG antibodies were obtained by immunizing two White
New Zealand (WNZ) rabbits with three doses of 200 µg of the recombinant allergen, using
Freund’s complete adjuvant once and Freund’s incomplete adjuvant twice [55]. The titer of
the IgG antibodies was determined in ELISA using eight serum dilutions (1:103 to 1:1010) on
96-well MaxiSorp flat bottom plates (Thermo Fisher Scientific, Waltham, MA, USA) coated
with 0.5 µg of rAmb a 6 and incubated overnight at 4 ◦C. The next day, the plates were
washed with PBST and then blocked with PBST + 3% BSA for 2.5 h at room temperature.
One hundred microliters of the eight serum dilutions (1:103 to 1:1010) was then added to
the plates and incubated overnight at 4 ◦C. Afterwards, the plates were washed five times
with PBST, and HRP-labeled donkey anti-rabbit IgG (GE Healthcare, Chicago, IL, USA)
diluted 1:2000 in PBST + 0.5% BSA was added and incubated first for 45 min at 37 ◦C
and then for another 45 min at 4 ◦C. After another five washes with PBST, the substrate
containing ABTS was added. The absorbance was measured as described in Section 4.4.
The rabbit serum showing the highest Amb a 6-specific IgG reactivity (Figure S1) was used
for further experiments.

4.6. Inhibition of Human IgE Binding to rAmb a 6 with Rabbit Amb a 6-Specific Serum and
Detection of Potential Cross-Reactive Allergens

Competition ELISA to test the inhibition of human IgE binding to rAmb a 6 using
rabbit rAmb a 6-specific serum was performed as described previously [53]. In short, plates
were coated with 0.5 µg rAmb a 6 and incubated overnight. Plates were blocked the next
day with PBST + 3% BSA and then incubated with 1:50 diluted rAmb a 6-specific rabbit
serum (rabbit rAmb a 4-specific serum and serum before immunization were used as a
negative controls) in PBST + 0.5% BSA and incubated overnight. The next day, 100 µL of
1:10 diluted patient serum in PBST + 0.5% BSA were added and incubated overnight. The
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detection procedure was identical to the one described in Section 4.4. Percent inhibition
was calculated as follows:

inhibition [%] = (ODpre − ODimm) × 100

where ODpre is the optical density after pre-incubation with the rabbit pre-immune serum
and ODimm is the reactivity obtained after pre-incubation with rabbit immune serum.

4.7. Allergenic Activity of rAmb a 6

A mediator release assay was performed using humanized rat basophil leukemia
cells (huRBL clone RS-ATL8 transfected with α/β/γ subunits of the human high-affinity
IgE receptor (FcεRI)) kindly provided by Prof. Ryosuke Nakamura [56]. Cells were
pre-incubated overnight with patient serum heat-inactivated at 55 ◦C for 25 min [57]
diluted 1:10 in MEM supplemented with 10% heat-inactivated fetal bovine serum (HI FBS),
100 U/mL penicillin–streptomycin, 0.2 mM L-glutamine, 0.2 mg/mL hygromycin B, and
0.2 mg/mL geneticin (Thermo Fisher Scientific). Six different allergen concentrations (1000,
100, 10, 1, 0.1, and 0.01 ng/mL) from rAmb a 6; Par j 2, kindly provided by Prof. Rudolf
Valenta [42]; and natural Amb a 1.01 (nAmb a 1.01) as a benchmark kindly provided by
Dr. Frank Stolz were used to test allergenic activity. The assay was performed with minor
modifications from the previously described assay [58], namely exposure to the allergen
for 1 h at 37 ◦C, 5% CO2. The release of ß-hexosaminidase was detected using 4-Muc
(Sigma Aldrich) detection measured at 360 nm excitation/465 nm emission on a microplate
reader (Varioskan™ LUX, Thermo Fisher Scientific) and degranulation was expressed as
the percentage from total mediator release (cells after addition of 10% Triton-X for cell
disruption). The figures display the percentage of total ß-hexosaminidase release relative
to complete cell lysis using Triton-X as the median with 95% confidence interval (CI) of
triplicate measurements.

4.8. Association with Clinical Symptoms and Statistical Analysis

ELISA ODs and sIgE levels were tested for normal distribution using a Shapiro–Wilk
test. ODs obtained for rAmb a 6 in ELISA were correlated with the values in ImmunoCAP
using Spearman correlation. The association of reactivity (positive–negative) towards
rAmb a 6 with certain symptoms, diagnosis, and sensitization to other allergen sources
was tested using a Fisher exact test. A Mann–Whitney U-test was used to compare sIgE
levels between patients with certain symptom types (nasal, ocular, asthma-like, or skin
symptoms). The IgE levels were also correlated with the duration of allergic disease using
Spearman correlation. The sIgE values were compared in a Friedman test and then pairwise
in a Wilcoxon test first for all patients, then only for those who were rAmb a 6-positive
in ImmunoCAP, and also separately depending on the number of sensitizations. The
differences in sIgE levels for all of the aforementioned allergens were evaluated between
different levels of sensitization (mono-, oligo-, and polysensitized) using a Kruskal–Wallis
test. All statistics were performed using IBM SPSS (IBM, Chicago, IL, USA) and differences
with p ≤ 0.05 were considered significant.

5. Conclusions

The non-specific lipid transfer protein from common ragweed Amb a 6 was suc-
cessfully produced as a recombinant protein in an insect cell expression system. The
recombinant allergen bound IgE in 30% of ragweed pollen-allergic patients included in
this study. Basophil activation experiments revealed that Amb a 6 has a high allergenic
activity and thus seems to be clinically relevant and comparable to Amb a 1 in mediator
release. The results indicate that Amb a 6 is a ragweed pollen-specific allergen without
relevant IgE cross-reactivity to other pollen and plant food nsLTPs. First, the sequence
identity of Amb a 6 to almost all known allergenic plant nsLTPs was below 40%, beyond
a level permitting meaningful cross-reactivity. Second, rAmb a 6 did not cross-react with
the major nsLTP allergen from Parietaria judaica, Par j 2, when tested in basophil activation
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assays. Third, Amb a 6-sensitized patients did not show relevant symptoms of plant-food
allergy. Accordingly, Amb a 6 seems to be a genuine ragweed pollen allergen which is
important for the molecular diagnosis of ragweed pollen allergy. Furthermore, Amb 6 may
be considered an important allergen to be included in molecular AIT vaccines for the
treatment of ragweed pollen allergy.
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