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Abstract: G-protein coupled receptors (GPCRs) are transmembrane proteins that transmit signals from
the extracellular environment to the inside of the cells. Their ability to adopt various conformational
states, which influence their function, makes them crucial in pharmacoproteomic studies. While
many drugs target specific GPCR states to exert their effects—thereby regulating the protein’s
activity—unraveling the activation pathway remains challenging due to the multitude of intermediate
transformations occurring throughout this process, and intrinsically influencing the dynamics of
the receptors. In this context, computational modeling, particularly molecular dynamics (MD)
simulations, may offer valuable insights into the dynamics and energetics of GPCR transformations,
especially when combined with machine learning (ML) methods and techniques for achieving model
interpretability for knowledge generation. The current study builds upon previous work in which
the layer relevance propagation (LRP) technique was employed to interpret the predictions in a
multi-class classification problem concerning the conformational states of the β2-adrenergic (β2AR)
receptor from MD simulations. Here, we address the challenges posed by class imbalance and extend
previous analyses by evaluating the robustness and stability of deep learning (DL)-based predictions
under different imbalance mitigation techniques. By meticulously evaluating explainability and
imbalance strategies, we aim to produce reliable and robust insights.

Keywords: imbalanced data; explainable artificial intelligence; imbalance classification metrics; deep
learning; G protein-coupled receptors; molecular dynamics

1. Introduction

G protein-coupled receptors (GPCRs) have, for decades, been the target of intensive
research due to their ability to interact with a broad range of chemical partners—from
hormones to neurotransmitters [1,2]. Protein receptors such as GPCRs are composed
of amino acids whose sequence and arrangement dictate their structural and functional
properties. Among these, adrenergic receptors (ARs) offer crucial insights into receptor
activation and signaling pathways. Signaling refers to a sequence of structural changes
that facilitate the transduction of signals from outside the cell to the cell’s interior [3–5].
This process is critical for allowing cells to perceive and appropriately respond to their
environment, spanning a broad range of processes, from adaptive responses to disease
associations [6,7].

Beta-adrenergic receptors (β-ARs)—a class of GPCR—are of particular significance.
They are widely expressed in human cells and extensively studied due to their critical roles
in mediating responses to epinephrine and norepinephrine [8]. These neurotransmitters
also function as hormones, activating β-ARs to regulate a variety of physiological responses.
This interaction has been pivotal in developing targeted therapies for managing conditions
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such as hypertension, heart failure, arrhythmias, and asthma, thereby profoundly impact-
ing our ability to treat complex diseases [9]. To date, three subtypes of β-AR have been
identified in various tissues: β1-, β2-, and β3-ARs. Each subtype exhibits unique effects
influenced by their specific tissue distribution and the particular signaling pathways they
activate [10–12]. For example, β1-ARs are primarily involved in cardiac function, influ-
encing heart rate and contractility, while β3-ARs play a role in fat metabolism. This study,
however, focuses on the β2 receptor, which is primarily located in smooth muscle tissues
such as the lungs, playing a crucial role in breathing and managing airflow. Additionally,
β2-ARs are found in the vascular system and other tissues like the liver and skeletal muscle,
where they regulate blood flow and facilitate metabolism. Given their strategic distribution
across vital systems, β2 receptors are particularly significant as targets for drugs used in
treating respiratory diseases, cardiovascular conditions, and other related disorders [13,14].

A defining characteristic of all GPCR families is their alpha-helical structure, which
consists of seven transmembrane helices (7TM) that traverse the cell membrane [2]. These
helices are interconnected by intracellular and extracellular loops, with the N-terminus
oriented toward the extracellular space and the C-terminus located in the cytosol, defining
the beginning and end of the structure. In addition of their specific configuration, all
GPCRs share a common signaling mechanism. Upon ligand binding—such as hormones,
neurotransmitters, or sensory stimuli—the GPCR undergoes a conformational change that
facilitates interaction with the G protein complex, composed of three protein subunits: Gα,
Gβ, and Gγ. This interaction triggers the exchange of GDP (guanosine diphosphate) for
GTP (guanosine triphosphate) on the Gα subunit, thereby activating it. GDP is a low-energy
molecule that, when replaced by the high-energy GTP, activates the Gα subunit. Once
activated, Gα-GTP dissociates from the Gβ and Gγ subunits, which then initiate distinct
signaling pathways [15–18].

GPCRs are highly dynamic entities that undergo intricate conformational changes, even
in the absence of external stimuli [19]. These receptors transit through multiple conforma-
tional states, impacting their activation, downstream signaling, and ultimately, the cellular
responses they control [20–22]. The recognition of structural motifs, which are recognizable
and frequently conserved patterns within these receptors, is key to understanding these
conformational transitions. Identifying the residues that constitute relevant motifs can offer
insights into the receptor’s function and its potential interactions with other molecules,
significantly impacting our understanding of human health and disease. Deciphering
these nuances is crucial knowledge for developing more precise and effective therapeutic
drugs [17,23]. As such, the vast conformational landscape that GPCRs traverse during their
activation pathway remains a primary focus of current research, highlighting the dynamic
nature of these receptors.

Our understanding of the conformational dynamics of GPCRs and their influence on
transition pathways has been historically limited by gaps in experimental and computa-
tional knowledge [24]. However, this gap has significantly narrowed thanks to advances in
experimental techniques that have enhanced our ability to capture the intricate dynamics
of GPCR activation and regulation [25,26]. Initially, X-ray crystallography was pivotal in
shaping our understanding of the structural details of GPCRs, offering precise snapshots of
receptor conformations at high resolution that were invaluable for studying complex pro-
cesses such as the ligand-mediated signaling pathways [27]. Subsequently, Cryo-Electron
Microscopy (cryo-EM) enabled the visualization of GPCRs in environments closer to their
natural physiological state, thus boosting our ability to capture a broader array of confor-
mational states [28]. This technique has proven particularly valuable for identifying stable
conformations previously inaccessible with X-ray crystallography, thereby enhancing our
understanding of the structural landscape of GPCRs. Despite these advances, the dynamic
nature of GPCR activation, involving rapid and transient conformational changes, remained
elusive until the application of molecular dynamics (MD) simulations. These simulations
have been pivotal in providing a dynamic view of the motions of atoms and molecules in
real time, offering deep insights into the stability, flexibility, and functional dynamics of
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GPCRs across timescales from milliseconds to seconds [29]. This detailed information has
been crucial for understanding the complex landscape of activation pathways, from ligand
binding to G-protein coupling [30,31]. MD simulations effectively fill the gaps left by static
imaging techniques, yielding insights that were previously unattainable [16,32].

Nevertheless, computational simulations inherently pose challenges due to the vast
amounts of data they generate—ranging from terabytes to petabytes [33]. The task of
effectively analyzing this wealth of information to generate valuable insights into the
mechanisms of complex and dynamic systems such as GPCRs is particularly challenging.
In this context, the synergy of MD with ML becomes crucial [34–36]. By integrating
the high-resolution temporal and spatial data from MD simulations with the advanced
pattern recognition and predictive capabilities of ML, researchers can not only process and
analyze large datasets more effectively, but also uncover and predict complex molecular
interactions and their biological implications with unprecedented accuracy. For instance,
supervised deep learning models have been proposed for classifying ligand-determined
GPCR conformational properties [37], and further insights about protein–ligand complexes
from MD simulation trajectories have also been revealed in [38–40]. The applications of ML
and deep learning methods to the analysis of MD simulations are diverse and continually
expanding [41,42].

In our previous work, we leveraged MD simulations data originally generated on
the Google Exacycle platform, as reported by Kohlhoff et al. [43]. Our aim was to uncover
relevant motifs associated with specific conformational—active, inactive, and intermediate—
as these states are critical to understanding receptor functionality in pharmacological con-
texts [44]. The pharmacological relevance of these states lies in their potential to reveal
interaction points for drug binding, influencing receptor behavior and therapeutic out-
comes [2,45]. Active states are typically associated with agonist binding that promotes
favorable cellular responses, making them prime targets for drugs aiming to enhance
receptor activity [46]. In contrast, inactive states often bind antagonists that inhibit receptor
signaling, useful for conditions where receptor suppression is desired. The intermediate
states are particularly interesting as they may represent a balance between activation and
inhibition, offering nuanced control over receptor signaling pathways [47].

We addressed a supervised problem using deep learning-based models in which ex-
planations from the model predictions becomes critical; it not only validates predictions but
also deepens our understanding of structural motifs—related to particular residues—that
drive conformational changes in the receptor. Particularly, the concept of Explainable Arti-
ficial Intelligence (XAI) has gained increased attention in recent years due to its potential to
demystify model reasoning, build trust, enhance transparency, and make AI systems more
reliable and understandable [48–50]. Additionally, providing explanations for AI decisions
can reveal new insights and patterns that were previously hidden within complex data. In
domains like biology and pharmacology, this can lead to discoveries and innovations that
were previously unreachable and that traditional methods may miss [51–54].

In this work, we focus on two primary goals. First, we explore the robustness and
stability of different explainability techniques for enhancing trustworthiness, transparency,
and generalizability of the insights derived from AI models, thereby supporting the broader
acceptance of these type of models in scenarios wherein these insights can have signifi-
cant impacts. In the same line, we also suggest an intersection of XAI methods approach,
combining insights from multiple explanation methods to derive more reliable or robust
interpretations of a model’s behavior. When multiple XAI techniques concur on the signif-
icance of the same set of features or patterns, the confidence in the identified features is
enhanced, and the associated uncertainty is reduced [55–57].

Second, we address the significant challenge of effectively managing the highly im-
balanced distribution of our dataset. Effectively handling data imbalance is crucial as it
ensures that the model performs well across all classes, preventing biases toward more
prevalent classes and enabling the accurate identification of critical features within the
receptor. In this context, the correct evaluation of the model performance across imbalance



Int. J. Mol. Sci. 2024, 25, 6572 4 of 33

mitigation methods is critical as it helps to determine the most effective techniques for
improving model generalization and reliability, ensuring that underrepresented classes are
accurately predicted and the derived insights are trustworthy.

2. Results

Figure 1 presents the receiver operating characteristic (ROC) curves for our proposed
one-dimensional convolution neural network (1D-CNN). The figure illustrates the model’s
performance across various class-imbalance mitigation techniques for the three conforma-
tional states—active, inactive, and intermediate. This compilation allows for a comparative
analysis of how each mitigation strategy affects the model’s ability to distinguish between
different states, highlighting the effectiveness of each approach in handling data imbalance.

Figure 1. Multi-class ROC curves for each of the analytical settings evaluated. The Area Under the
ROC Curve (AUC) values summarize the performance of the models for the three conformational
states. A score of 1 indicates perfect classification performance. The black dashed line indicates
random classification (AUC = 0.5).

Figure 2, in turn, provides a comparison of the performance of two selected methods,
namely SMOTEEN and Weighted Loss, against the evaluation of the model under an
unbalanced distribution using the accuracy and F1-score metrics.

To enhance our assessment of the model’s performance, the Matthews Correlation
Coefficient (MCC) score provides a more balanced measure compared to ROC curves,
particularly in the context of imbalanced datasets. Figure 3 underscores the effectiveness of
the class imbalance mitigation methods, demonstrating how they enhance the predictive
power of our model and reinforce the significance of these techniques in our analysis.



Int. J. Mol. Sci. 2024, 25, 6572 5 of 33

Figure 2. Accuracy and F1-score are displayed for each SMOTEENN and Weighted Loss methods
versus an unbalanced distribution of the data. The gross training accuracy is displayed in the left
plot, while F1-score is displayed per class in the other plot.

Figure 3. Classification performance as assessed by MCC across various methods for mitigating
class imbalance.

In addition, we compare our 1D-CNN with simpler models, namely Decision Trees
(DT) and Random Forest (RF). For this comparative analysis, we employ precision, recall,
and F1-score metrics, which provide a comprehensive evaluation across models. The results
are summarized in Table 1. For this comparison, only outcomes from models trained using the
SMOTEENN imbalance mitigation technique were included, given its superior performance
as shown in Figures 1 and 3. This focused approach ensures a clear and concise understanding
of the models’ performance, highlighting the robustness of our 1D-CNN model compared to
DT and RF under the best-performing imbalance mitigation strategy.

Table 1. Weighted average metrics of classification results for 1D-CNN, RF and DT, with SMOTEENN
imbalance mitigation method.

Model Precision Recall F1-Score

1D-CNN 0.915593 0.906689 0.908289
DT 0.710800 0.574343 0.580146
RF 0.685715 0.564699 0.484628

In the context of our explainability study, Figure 4 shows the contributions of some
key residues across all imbalance mitigation methods, as analyzed using the Layer-wise
Relevance Propagation (LRP) explanation technique. These residues are well-documented
in the literature for their crucial roles in the transition of the β2AR from its inactive to its
active state upon binding with a full agonist [58].
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Figure 4. Quantification of the contributions of critical residues, as identified in the literature and
analyzed using Layer-wise Relevance Propagation (LRP). Positive contributions to a conformational
state are depicted in red, while negative contributions are depicted in blue.

In the same context, the overall contribution of residues across conformational states
is illustrated in Figure 5. For clarity, this figure specifically highlights results from the
LRP technique paired with the SMOTEENN imbalance mitigation method, which has
demonstrated higher performance. Trough the Interquartile Range (IQR), we have filtered
out the most relevant residues—including both negative and positive contributions—and
detailed them in Table A1 from Appendix A.

Figure 5. Contribution maps using LRP for interpretability and SMOTEENN as imbalance mitigation
technique. Each row visualizes the mean level of contribution (positive or negative) across residues
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for one of three classes: active, intermediate, and inactive. Red points indicate the most relevant
residues in the trajectory, as determined by the IQR. Each of the 7TM regions of the GPCR is identified
by a gray-scale background interval. Regions in-between correspond to the extra-cellular loop (ECL)
and the intra-cellular loop (ICL).

In the same vein, a comprehensive compilation of contribution maps for various
explainability methods—namely Layer-wise Relevance Propagation (LRP), Local Inter-
pretable Model-agnostic Explanations (LIME), Shapley Additive Explanations (SHAP), and
Saliency Maps—under different imbalance mitigation methods are provided in Appendix B.
To highlight the unique aspect of Saliency Maps, which compute and display only positive
contributions, Figure 6 showcases the contribution maps generated using Saliency Maps
when the SMOTEENN imbalance mitigation method is applied.

Figure 6. Contribution maps using Saliency Maps for interpretability along with SMOTEENN for
mitigating imbalance. Each row visualizes the mean level of contribution—in this case, solely positive
contribution—across residues for one of three classes. Red points indicate the most relevant residues
as determined by the IQR. The 7TM regions are identified by a gray-scale background, with the
regions in between corresponding to ECL and ICL.

In our results, the feature importance derived from Decision Trees (DT) provides a
distinct contrast to the explanations offered by more complex explainability methods, as
demonstrated in Figure 7. DTs offer a global interpretation of predictions by identifying
key features significant across all classes, rather than delineating specific, class-related
attributions of features.
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Figure 7. Distribution of feature importance in the DT model with SMOTEENN class imbalance
mitigation technique. This plot visualizes the global average contribution of each residue to the
model’s decision-making process. Relevant residues, represented as red points, are those with
significantly higher or lower importance than the typical range, as determined by the IQR. Gray
shaded regions identify the 7TM regions, as in previous figures.

The RF variable importance suffers from a similar drawback. Nevertheless, analyzing
the reduction in prediction accuracy caused by permuting each feature [59,60] helps to
effectively identify which features are most influential in predicting each specific class, as
shown in Figure 8. Nevertheless, this method does not reveal negative contributions, which
remains a significant drawback.

Figure 8. Contribution maps are generated using feature importance with permutation, coupled
with the random undersampling technique for addressing data imbalance. Each row in these maps
represents the mean contribution level (considering only positive contributions) across residues for
one of the three classes: active, intermediate, and inactive. Relevant residues, represented as red
points, are those with significantly higher or lower importance than the typical range, as determined
by the IQR. The 7TM regions of the GPCR are delineated by varying shades of gray in the background,
with regions between them corresponding to ECL and ICL.
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Concerning the robustness of the explanations, the outcomes of our analyses can
be found in Table 2. In turn, Table 3 presents the stability results of various explainable
methods associated with the three top-performing models. Results from the simpler
models—DT and RF—using feature importance to elucidate predictions are also included.

Table 2. Summary of robustness results using cosine similarity. Best results in bold.

Model Explainable Method Imbalance Method Cosine Similarity

1D-CNN Saliency Maps ADASYN 0.9882
1D-CNN Saliency Maps SMOTEENN 0.9884
1D-CNN Saliency Maps Weighted Loss 0.9884

1D-CNN LRP ADASYN 0.5306
1D-CNN LRP SMOTEENN 0.0296
1D-CNN LRP Weighted Loss −0.0565

1D-CNN LIME ADASYN 0.0217
1D-CNN LIME SMOTEENN 0.03145
1D-CNN LIME Weighted Loss −0.0407

1D-CNN SHAP ADASYN 0.3126
1D-CNN SHAP SMOTEENN 0.2870
1D-CNN SHAP Weighted Loss 0.3225

DT Feature Importance ADASYN 0.3605
DT Feature Importance SMOTEEN 0.3016

RF Feature Importance ADASYN 0.8704
RF Feature Importance SMOTEEN 0.8953

Table 3. Summary of stability results using cosine similarity. Best results in bold.

Model Explainable Method Imbalance Method Cosine Similarity

1D-CNN Saliency Maps ADASYN 0.9531
1D-CNN Saliency Maps SMOTEENN 0.9506
1D-CNN Saliency Maps Weighted Loss 0.9545

1D-CNN LRP ADASYN 0.6550
1D-CNN LRP SMOTEENN 0.6393
1D-CNN LRP Weighted Loss 0.6649

1D-CNN LIME ADASYN 0.6172
1D-CNN LIME SMOTEENN 0.5908
1D-CNN LIME Weighted Loss 0.5772

1D-CNN SHAP ADASYN 1.0000
1D-CNN SHAP SMOTEENN 1.0000
1D-CNN SHAP Weighted Loss 1.0000

DT Feature Importance ADASYN 1.0000
DT Feature Importance SMOTEEN 1.0000

RF Feature Importance ADASYN 1.0000
RF Feature Importance SMOTEEN 1.0000

In assessing the consistency of explanation techniques, Figure 9 features Venn dia-
grams that denote consensus regarding relevant residues across explainability methods
when the top three performing class-imbalance correction methods are applied—namely
ADASYN, SMOTEENN, and Weighted Loss. These consensus residues should be the focus
of heightened attention in subsequent studies.

Table 4 lists the residues from Venn analysis and identified as significant across all
imbalance-mitigation methods using the LRP technique, which appears to be the most con-
sistent method. These residues are named according the Ballesteros–Weinstein numbering
system, a standard convention for annotating GPCR structure [61]. Further details about
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common residues across imbalance methods for the other explainability techniques can be
found in Appendix C.

Figure 9. Venn diagrams illustrating the overlap of residues identified as relevant by different
explainability methods (LRP, LIME, SHAP, SALIENCY MAPS) for the top-three imbalance correc-
tion techniques: ADASYN (red), SMOTEENN (yellow), and Weighted Loss (blue). Each number
represents the count of overlapping residues in each scenario.

Table 4. Relevant residues (as they consistently influence different conformational states) overlap-
ping across imbalance methods when using LRP. First column: conformational state of the residue;
second column: residue identifier; third column: residue’s transmembrane helix identifier; fourth col-
umn: computed average contribution of the residue.

State Residue Name Transmembrane Mean Contribution

active ASN511.50 H1 −0.0649
active LEU531.52 H1 0.0566
active ALA571.56 H1 −0.0640
active GLU62 ICL1 −0.0594
active VAL672.38 H2 −0.0392
active MET822.53 H2 −0.0418
active ILE942.65 H2 0.0419
active LEU952.66 H2 0.0848
active MET962.67 H2 0.0423
active MET98 ECL1 −0.0461
active SER137 ICL2 −0.0380
active TYR141 ICL2 0.0388
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Table 4. Cont.

State Residue Name Transmembrane Mean Contribution

active GLN142 ICL2 0.0579
active LEU145 ICL2 −0.0624
active ASN1484.40 H4 0.0428
active VAL1524.44 H4 −0.0462
active ILE1534.45 H4 −0.0865
active MET1564.48 H4 0.0341
active VAL1574.49 H4 0.0462
active TRP1584.50 H4 0.0440
active ILE1594.51 H4 0.0389
active SER1654.57 H4 −0.0547
active PHE1664.58 H4 −0.0610
active LEU1674.59 H4 −0.0669
active HIS178 ECL2 0.0518
active GLN179 ECL2 0.1001
active GLU180 ECL2 0.0514
active GLN1975.36 H5 −0.0591
active ALA1985.37 H5 −0.1251
active TYR1995.38 H5 −0.0477
active ALA2005.39 H5 −0.0334
active ILE2015.40 H5 0.0375
active ALA2025.41 H5 0.0496
active SER2035.42 H5 0.0515
active GLN299 ECL3 −0.0319
active ASN3127.39 H7 0.0451
active TYR3167.43 H7 −0.0420
active LEU339 C-Terminus 0.0428

intermediate VAL311.30 H1 0.0926
intermediate TRP321.31 H1 0.0788
intermediate VAL331.32 H1 0.2100
intermediate VAL341.33 H1 0.2947
intermediate GLY351.34 H1 0.3588
intermediate MET361.35 H1 −0.1127
intermediate GLY371.36 H1 −0.3433
intermediate ILE381.37 H1 −0.2234
intermediate VAL391.38 H1 −0.5593
intermediate MET401.39 H1 −0.8689
intermediate SER411.40 H1 −1.0831
intermediate LEU421.41 H1 −0.1794
intermediate ILE431.42 H1 0.6054
intermediate VAL441.43 H1 1.5149
intermediate LEU451.44 H1 0.6725
intermediate ALA461.45 H1 0.3262
intermediate ILE471.46 H1 −0.1183
intermediate VAL481.47 H1 −0.1742
intermediate PHE491.48 H1 −0.1774
intermediate GLY501.49 H1 −0.0678
intermediate VAL541.53 H1 0.0348
intermediate ILE551.54 H1 0.0429
intermediate GLN65 ICL1 −0.0533
intermediate THR682.39 H2 0.0326
intermediate TRP99 ECL1 0.0437
intermediate THR100 ECL1 0.0389
intermediate ALA1504.42 H4 0.0857
intermediate LEU1554.47 H4 −0.0386
intermediate ASN301 ECL3 0.0493
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Correspondingly, Figure 10 presents Venn diagrams that illustrate the level of agree-
ment in identifying relevant residues across the top three best-performing class imbalance
mitigation techniques using various interpretability methods. Table 5 lists the residues
identified as significant across all methods, representing a consensus among the techniques.

Figure 10. Comparative analysis of residue relationships using different imbalance methods and
interpretation predictions techniques.

Table 5. Overlapping relevant residues across different explainability methods when using distinct
imbalance methods. First column: explainability method; second column: state of the residue;
third column: residue identifier; fourth column: residue’s transmembrane helix identifier; fifth col-
umn: computed average contribution of the residue.

Explainability State Residue Transmembrane Mean
Contribution

ADASYN intermediate ILE431.42 H1 0.5594
ADASYN intermediate GLY371.36 H1 −0.1150
ADASYN intermediate MET361.35 H1 0.0144
ADASYN intermediate LEU421.41 H1 −0.0936
ADASYN intermediate ILE471.46 H1 −0.1187
ADASYN intermediate VAL391.38 H1 −0.0259

SMOTEENN intermediate ILE431.42 H1 0.4544
SMOTEENN intermediate SER411.40 H1 −0.1997
SMOTEENN intermediate GLY371.36 H1 −0.1156
SMOTEENN intermediate MET361.35 H1 0.1013
SMOTEENN intermediate LEU421.41 H1 −0.0684
SMOTEENN intermediate VAL341.33 H1 0.0175
SMOTEENN intermediate ILE471.46 H1 −0.0856
SMOTEENN intermediate VAL391.38 H1 −0.0130
SMOTEENN intermediate VAL481.47 H1 0.0131

Weighted Loss intermediate ILE431.42 H1 0.1535
Weighted Loss intermediate SER411.40 H1 −0.1194
Weighted Loss intermediate GLY371.36 H1 −0.1190
Weighted Loss intermediate MET361.35 H1 0.0838
Weighted Loss intermediate LEU421.41 H1 −0.0501
Weighted Loss active ILE471.46 H1 0.3491
Weighted Loss intermediate VAL391.38 H1 0.0416
Weighted Loss intermediate VAL481.47 H1 0.0164

3. Discussion

The reported results offer us a broad illustration of the complexities involved in studying
the conformational states of the (β2AR) receptor using a DL method. Here, we discuss the
results in terms of performance metrics, highlight consistencies among various methods, and
consider the potential implications of our findings for the specific domain of application.
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3.1. Performance Evaluation

From Figure 2, it is evident that, when the distribution of data is not adjusted, accuracy
results can be misleading. This metric can be inflated by a large number of correct predic-
tions for the majority class, resulting in significant bias. SMOTEENN improves precision,
recall, and F1-score for minority classes, indicating better handling of class imbalance.
While precision and recall offer valuable insights into a classifier’s performance, they have
limitations. Recall does not reveal the count of incorrect negative predictions, known as
false negatives, and precision does not show how many positive predictions were actually
incorrect, referred to as false positives. Additionally, F1-scores inherit the limitations of
precision and recall, making it crucial to interpret these metrics within the context of their
underlying biases. These limitations are highlighted by the Weighted Loss method’s plot
from Figure 2, where it appears to under-perform. This perceived under-performance
could stem from an incomplete evaluation that fails to adequately assess the method’s
effectiveness in handling class imbalances.

The ROC curves depicted in Figure 1 and the corresponding AUC scores provide us
with a quantitative evaluation of the model’s ability to discriminate between conformational
states in scenarios of great class imbalance, such as the one posed by the analyzed MD
data. Notably, the model struggles to accurately predict the intermediate class, despite its
predominance in sample size. Ordinarily, one may expect the trained model to exhibit a
clear preference for predicting the majority class. However, the results indicate that the
decision boundary between the majority and minority classes is not well-defined. This
is because the features discriminating between active and inactive states are more easily
distinguishable from each other than those discriminating either of these states from the
intermediate state, which hinders achieving high sensitivity.

Nevertheless, the positive impact of resampling techniques is clearly reflected in the
results. Techniques that generate synthetic samples, such as SMOTE, ADASYN, and SMO-
TEENN, demonstrate a more uniform AUC score across all classes, indicating significant
improvements in managing class imbalance by creating a more balanced dataset, which
in turn enhances the model’s accuracy and fairness by providing a better representation
of minority classes. The AUC for the intermediate class using SMOTEENN is 0.9616, while
ADASYN yields an AUC of 0.9632. In comparison, undersampling-based techniques strug-
gle to discriminate the intermediate state, as evidenced, for instance, by the lower AUC score
of 0.7804 obtained with the NearMiss algorithm. Random oversampling appears to suffer
from the same drawback. Undersampling techniques, while reducing computational load—an
inherent drawback of oversampling-based methods—can lead to the loss of crucial infor-
mation, negatively impacting the model’s performance. By potentially discarding valuable
data, undersampling methods risk oversimplifying the problem space, which is particularly
detrimental in complex datasets where every sample could carry important insights.

For providing an in-depth evaluation of model performance, the Matthews Correlation
Coefficient (MCC) is crucial as it considers all four categories of the confusion matrix,
offering a balanced metric unlike simpler measures such as accuracy. MCC’s nuanced
view is essential for highlighting discrepancies across classes, which helps prevent bias
in models that may otherwise favor over-represented classes. In contrast, ROC curves
assess the ability to distinguish between classes but fail to account for class distribution.
The significant improvement in MCC scores from the baseline unbalanced dataset to those
adjusted with SMOTEENN underscores the effectiveness of this method. SMOTEENN
addresses the challenge of accurately predicting underrepresented classes by synthesizing
new examples within the minority class and cleaning the data by eliminating outliers, thus
preserving data integrity and enhancing model reliability.

Offering a holistic view of model performance is not just beneficial but essential. By
integrating the comprehensiveness of MCC with the specificity of ROC curves, we can
achieve a more refined analysis of results, ensuring that our models are unbiased and
equitable in their predictions, i.e., that the model’s accuracy and reliability are consistent
across different groups, not just the majority.
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3.2. Explainability of the Models

Figure 4 enables us to inspect the results of our methodology with well-known recep-
tor activation mechanisms reported in [58]. The identified residues—ILE1213.40, SER2045.43,
SER2075.46, PRO2115.50, and PHE2826.44—influence significant structural changes in response to
agonist binding, thus being crucial in the activation of the receptor. The contribution results from
our analysis seem to align with their established roles in the conformational state. For example,
SER2045.43 shows significant contribution in both intermediate and active states, confirming
its critical role in forming interactions with the agonist that facilitate the receptor’s transition
to an active configuration. SER2075.46, on the other hand, shows its highest contribution in
the intermediate state, indicating its involvement in the crucial structural changes during the
early stages of activation. PRO2115.50 stands out with a clear contribution to the active state,
suggesting it plays a direct role in stabilizing the receptor’s active conformation. PHE2826.44

also shows a notable contribution to the intermediate state, reflecting its involvement in the
necessary adjustments within the receptor’s core structure that precede full activation. Similarly,
ILE1213.40 is particularly relevant in the intermediate state, indicating its role in the transitional
arrangements that help prepare the receptor for activation.

An in-depth analysis of the computed contribution for all residues across explainability
methods is included in Appendix B. Each method for providing explanations has strengths
and limitations that must be acknowledged. For instance, Layer-wise Relevance Propaga-
tion (LRP) can provide detailed, layer-by-layer explanations of the model by elucidating
the contribution of each neuron to the final decision. However, interpreting this wealth
of information can be challenging and, depending on the problem at hand, unnecessary.
Additionally, LRP may become computationally intensive with larger neural networks or
datasets. Conversely, LIME, being model-agnostic, offers flexibility and is beneficial for
providing straightforward explanations of predictions without the need to understand
the model’s internal workings. However, it produces simple, local explanations that may
not fully capture the model’s global behaviors, and the reliability of these explanations
heavily depends on the perturbations applied. Similarly, SHAP provides comprehensive
insights that are consistent and theoretically grounded, yet it also demands significant
computational resources, especially for large-scale models. Interestingly, Saliency Maps
offer a simpler approach but only account for positive contributions, which may limit their
utility in fully understanding the decision-making process.

The feature importance in DT, as shown in Figure 7, exhibits a similar limitation: while
it provides a global view of what features are generally important for the model to make
any decision, it falls short in offering detailed, class-specific insights. Unlike more granular
approaches, feature importance in DT does not differentiate between the nuances that
define an active, inactive, or intermediate state, thereby providing a general rather than a
granular understanding of the model’s decision-making process. LIME and SHAP can be
applied to RF and DT in order to surpass this problem. Nonetheless, RF models are capable
of reporting relevant class-specific attributes. In the caret package’s RF implementation in
R [62], both the feature permutation method and the Gini index approach are incorporated,
enhancing its utility in this nuanced class-specific attribute analysis.

From the results of our experimentation, the H1 region is consistently identified as
the most significant for classifying conformational states. More specifically, the results in
Table A1 from Appendix A reveal that, in the combination of LRP and SMOTEENN, a total
of 115 relevant residues were identified to be the most relevant for various conformational
states of the receptor, as determined by the IQR. Of these, 60 belong to the H1 region. This
finding aligns with previous research [44,63], which also identified the influence of the H1
TM region in a model trained using random undersampling, with explanations generated
through LRP. Additionally, in this study, residues from other regions such as ICL1, H2, H4,
H5, ECL1, ECL2, and H7 are also shown to contribute in the prediction of conformational
states, though in varying degrees and with distinct implications. These results provide
detail of the roles these regions play in the receptor’s functionality, even though they may
not be as prominently represented as those of H1.
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Delving deeper into the results from Table A1, we observe distinct patterns across the
active, intermediate, and inactive states. For instance, residues such as VAL341.33, GLY351.34,
and MET361.35 show significant positive contributions in the active state, suggesting a piv-
otal role in receptor activation. Conversely, residues like SER41 and MET40, while showing
negative contributions in both active and intermediate states, have positive contributions
in the inactive state, suggesting a potential inhibitory role in active states and a facilitating
role in the inactive state. Interestingly, the active state has the highest number of unique
residues. For example, the positive contribution of residue GLY351.34 may be linked to key
interactions or conformational changes necessary for receptor activation, while negative
contribution of residue VAL391.38 may suggest a regulatory or conformational counterbal-
ance. Similarly, in the intermediate state, residues such as PHE491.48 and LEU1554.47 may
provide insights into the structural shifts that occur as the receptor transitions between
active and inactive states. Their unique presence in this state underlines their potential role
in these transitional dynamics.

3.3. Robustness, Stability, and Consistency of the Explanations

In our robustness tests for the 1D-CNN model of different explanation methods un-
der various class-imbalance mitigation techniques—specifically, the top three performers,
ADASYN, SMOTEENN, and Weighted Loss—Saliency Maps stood out with superior per-
formance, achieving a near-perfect cosine similarity score of approximately 0.99. However,
it is crucial to note that Saliency Maps generate only positive contributions. This limitation
can lead to incomplete information, as negative contributions, which are essential for a full
understanding of model behaviors, are not represented. Conversely, LIME, which provides
a more comprehensive range of contributions, demonstrated the lowest performance in
terms of robustness, especially when used with Weighted Loss, where it recorded a cosine
similarity score of −0.0407, as detailed in Table 2. This poor performance can be attributed
to LIME’s heavy reliance on perturbing the input data, which, when altering the original
distribution for testing robustness, may compromise the integrity of the data and lead to
potentially less accurate explanations.

In terms of stability, SHAP has proven to be highly stable across repetitions, achieving
a perfect cosine similarity score of 1.00, as demonstrated in Table 3 across the top three
mitigation methods. This makes it exceptionally effective and reliable in providing expla-
nations. Its theoretical foundation ensures that the contribution of each feature is measured
consistently and fairly. Unlike other methods that analyze model decisions, SHAP exam-
ines how all features interact to influence the model’s decisions, rather than considering
each feature in isolation. However, it is important to note that SHAP is comparatively
demanding in terms of computational resources.

It is worth mentioning that LRP, while straightforward and effective in some scenarios,
notably underperformed with SMOTEENN and Weighted Loss imbalance mitigation meth-
ods. These atypical results suggest that synthetically generated samples from SMOTEENN
may not be representative of the data distribution. Additionally, the weighted schema could
be distorting the relevance propagation, given that the neural network’s inner workings
have been distinctly shaped based on class weights. Meanwhile, LIME remains the worst
performer in terms of stability, suggesting its lack of trustworthiness and effectiveness.
Notably, while DT and RF may appear more stable, this can be attributed to their inherent
design, which involves retraining for each test scenario. This adaptive training approach
boosts perceived stability rather than demonstrating an inherent robustness in handling
data variations or maintaining consistency across different contexts.

A further assessment of explainability methods has been carried out in terms of con-
sistency, using Venn diagrams in Figure 9 to visually compare and contrast the overlap
and divergence among the findings of different methods. For LIME, there is a considerable
lack of overlap among the residues when different imbalance methods are applied, sug-
gesting that the generated explanations vary significantly over them, potentially reflecting
its vulnerability to slight data shifts. In contrast, LRP has a strong overlap of 67 residues
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(listed in Table 4) between all three best performing methods (ADASYIN, SMOTEENN,
and Weighted Loss). Intriguingly, common residues span among active and intermediate
states. This consistency indicates that, despite its under-performance with SMOTEENN
and Weighted Loss in robustness and stability metrics, LRP’s explanations remain largely
consistent across imbalance-handling techniques.

Similarly, SHAP displayed a good balance, providing consistent explanations across
methods. Overall, these results highlight the importance of taking into account both
robustness and stability scores and how consistent their explanations are across different
imbalance mitigation methods when evaluating how well an explanation method works.
Similar analyses have been conducted to determine consistency across class-imbalance
correction methods under the various explainability techniques Figure 10. The three best-
performing methods, namely ADASYN, SMOTEENN, and Weighted Loss, yield similar
insights, identifying six, nine, and eight common residues across explainability methods
(Table 5), respectively. In all three cases, these common residues are located within the H1
region during the intermediate state of the protein.

The residues consistently estimated to be relevant from Venn Diagrams, especially
around TM region H1, could play a key role in ligand binding, signal transduction, or
other receptor functions. The ability to single out these residues with high precision could
guide future experimental designs, potentially leading to the development of more targeted
therapeutics or better understanding of receptor dynamics. Moreover, having a clearer
understanding of the conformational states of the β2AR receptor and the residues that
play crucial roles in these states can help predict receptor behavior in response to different
ligands or external stimuli.

4. Materials and Methods

We base our study on MD simulation data obtained by Kohlhoff et al., on the Google
Exacycle platform, details of which can be found in [43]. The accumulated simulation time
is 2.15 ms, produced by strategically employing multiple short parallel simulations, each
culminating in distinct rounds that, when combined via Markov state models (MSMs),
offered a nuanced description of the GPCR activation landscape. According to [43], running
numerous shorter trajectories increases the probability of capturing rare and biologically
significant events, such as the elusive transient intermediate states critical to GPCR func-
tion. These intermediate states are often overlooked in the continuum of longer, singular
simulations due to their transient nature.

A molecular visualization of the β2AR receptor bound to the agonist BI-167107 is
shown in Figure 11.

The dataset encompasses simulations of both the inactive (PDB 2RH1) and active (PDB
3P0G) crystal structures of the β2AR receptor, employing two specific ligands: the partial
inverse agonist Carazolol and the full agonist BI-167107. Additionally, simulations without
ligands are included to provide a baseline for understanding ligand-independent receptor
behavior. These simulations are designed to elucidate sequences of conformational trans-
formations and interactions that a receptor undergoes as it transitions between different
states—active, inactive conformations and meta-stable intermediate states—in response to
binding with specific ligands. By starting from the inactive state and introducing the full
agonist, we observe the transition toward activation, revealing the conformational changes
necessary for receptor activation. Conversely, simulations beginning with the active state
and introducing the inverse agonist explore the potential pathways leading back to the
inactive conformation.

In our case study, we aim to elucidate key motifs, specifically crucial residues and their roles
in the conformational transformations during the receptor’s transition between states. For this,
the explanations from a DL-based model serve as a relevant tool in the knowledge generation
realm. We concentrate on establishing a robust analytical framework with a particular focus on
the inactive structure of the β2AR receptor bound to the full agonist BI-167107, anticipating that
these results can be readily extrapolated to analyze other GPCR structures.
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(a) β2 AR beginning from an inactive state. (b) β2 AR beginning from an active state.

Figure 11. Crystal structure model of the β2-adrenergic receptor with the full agonist BI-167107 in
red. The image provides a detailed three-dimensional portrayal of the receptor in two conformations:
initiated from an inactive state (a) and from an active state (b).

4.1. Data Pre-Processing

In our approach, we transformed the high-dimensional molecular dynamics (MD)
data using both feature engineering and dimensionality reduction. We simplified the
structural information of the receptor by calculating the center of mass of each residue
from its constituent atoms in every simulation sample. This method not only reduces data
dimensionality while preserving the overall movement of the residues but also provides
clearer insights into their dynamics, which are vital for deciphering complex structural
shifts. For simplicity, each trajectory is represented as single 846-dimensional vector
(282 residues multiplied by 3 coordinates) rather than processing each coordinate separately.
This unified representation helps us maintain the spatial relationships between residues
and makes feature extraction more straightforward in our subsequent analysis.

In describing the receptor states, the focus is placed on the distance between specific
helices in the receptor structure, as described in [43]. In particular, we have considered
the distance between the transmembrane helix 3 (H3) and helix 6 (H6), measured using
the alpha-carbon atoms of residues arginine at position 131 and leucine at position 272 of
the amino acid sequence, abbreviated as R131 and L272, respectively. This metric is
acknowledged as one of the experimentally well-known features of GPCRs associated with
activation states [16,64]. A significant change in the H3–H6 distance not only serves as
an indicator of the receptor’s conformational transitions, but it is also significant for the
receptor’s interaction with other proteins, which in turn, could impact signaling pathways.
In the receptor, the H3–H6 distances in the active and inactive conditions are, in turn, higher
than or equal to 14 Å, or lower than or equal to 8.5 Å; otherwise, the state is considered
to be intermediate. While global metrics like the root mean square deviation (RMSD) of
atomic positions offer a comprehensive view of structural deviations, the simplicity and
directness of measuring the distance between two distinct points such as residues R131 and
L272 provides an immediate and interpretable insight into the receptor’s structural shifts.

4.2. Class Imbalance

The dataset under study exhibits a significant class imbalance, with the intermedi-
ate state being heavily predominant, indicating a tendency of the receptor to linger in
transitional—intermediate—conditions. The density plot in Figure 12 visually highlights
the distribution characteristics of the three classes. The intermediate state class is widely
spread, taking a broader range of values. In contrast, the sharper peaks observed for the
active and inactive states reflect a narrower distribution with higher frequencies around
specific values. This imbalance can lead to biased model predictions, favoring the majority
class (in this case, the intermediate state) in detriment of the minority classes (active and
inactive states).
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Figure 12. Density plot showcasing the distribution of conformational states (Active, Intermediate,
Inactive) across varying distances (in Angstroms). It illustrates the intricacy in distinguishing between
inactive and active conditions, as they manifest within a narrower range during the transition,
occurring gradually until they become evident.

In our previous work, we rigorously addressed the issue of dataset imbalance by experi-
menting with various re-sampling techniques [65]. Both the undersampling of the majority
class and the oversampling of the minority class were explored, employing methods such
as ADASYN (Adaptive Synthetic [66]), SMOTE (Synthetic Minority Over-sampling Tech-
nique [67]), SMOTEENN (SMOTE + Edited Nearest Neighbors [68]), NearMiss Algorithm,
Random Oversampling, and Random Undersampling to ensure a more evenly distributed
representation of the conformational states. SMOTE and ADASYN are popular oversampling
methods that generate synthetic samples of the minority class; they are illustrated in Figure 13.

SMOTE creates synthetic samples by finding the k-nearest-neighbors for minority
class observations and drawing a line between the neighbors, then generating random
points along these lines [67,69]. ADASYN, instead, adapts the density distributions of the
minority class to create synthetic data [66]. While both methods enhance the minority class
representation, they may create overlapping classes if the synthetic samples are generated
without considering the majority class distribution, potentially leading to increased false
positives. In the same line, SMOTEENN (bottom-right image in Figure 13) combines
over-sampling of the minority class via SMOTE with cleaning of the majority class by
removing any majority samples whose class label differs from at least two of its three
nearest neighbors [67,68,70–72]. This hybrid method attempts to provide a well-balanced
dataset, but it may become computationally intensive as the dataset size increases.

Random Oversampling and Random Undersampling are simpler techniques, wherein
the former duplicates random instances of the minority class, and the latter removes
random instances of the majority class to achieve a more balanced dataset [73,74]. While
these methods are computationally less demanding, they can either exacerbate overfitting
(in the case of Random Oversampling) or lose potentially crucial information (in the case of
Random Undersampling). In a similar vein, the NearMiss Algorithm is an undersampling
technique, which selects examples based on the distance to the nearest examples for the
majority class, aiming to provide a balance between the classes. While this technique is
as straightforward to implement as Random Undersampling, there is a risk of discarding
crucial data. Lastly, the Weighted Loss method was assessed, which, rather than altering
the original data distribution, adjusts the cost function to penalize miss-classifications of the
minority class more severely, as seen in refs. [75–77]. This offers the advantage of training
on the genuine dataset without the need for synthetic samples or removing existing ones.
The weighting scheme for each class is calculated by taking the total number of instances
(nc) in the dataset and dividing it by the number of instances in a particular class (nt),
1 − nc

nt
. This ratio represents the class imbalance compared to the overall dataset.
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Figure 13. This figure illustrates how SMOTE, ADASYN, and SMOTEENN techniques address
class imbalance in a 2D feature space. The original dataset (top-left image) shows the minority
class (purple X’s) significantly underrepresented compared to the majority class (white circles).
SMOTE (top-right image) generates new minority instances along the lines connecting existing
points. ADASYN (bottom-left image) focuses on areas near the decision boundary to create synthetic
samples, resulting in a more varied distribution of the minority class. SMOTEENN (bottom-right image)
combines over-sampling with under-sampling, cleaning the synthetic samples by removing those that
are classified as noise or are in regions of class overlap. Synthetic data points are depicted in red.

In analyzing these techniques, it becomes evident that there is a trade-off between
achieving a balanced dataset, maintaining the original data information, and computational
efficiency. The selection of the most appropriate method is problem-dependent [78,79]. In
this context, the correct assessment of the performance of our post-resampling classification
model becomes crucial for generating a better understanding of the generalization across
all classes. A diverse set of metrics is used in our experiments to provide robust insights
into the classification performance.

The Confusion Matrix is a key tool for assessing the model predictions, also serving as
the source from which several relevant performance metrics can be derived. The Accuracy
metric provides a general understanding of the model predictions, but it is inadequate for
imbalanced scenarios. A model could show high accuracy by merely predicting the majority
class, thus entirely missing out on the minority class instances. Here, the Precision metric
provided a measurement into the model’s exactness when making positive predictions.
Nevertheless, it does not inform about the model’s ability for identifying all actual positive
instances, a gap filled by the Recall metric. While these metrics together provide a more
comprehensive look at the model performance, they exclusively focus on positive instances,
overlooking true negatives which can be crucial depending on the specific domain or
problem at hand [80]. The F1-score, a blend of Precision and Recall, aims at enhancing the
model performance measurement, yet still leans heavily on true negatives.

The MCC is a more informative measurement in imbalanced scenarios. Unlike the
other metrics, MCC considers all quadrants of the confusion matrix—true positives, true
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negatives, false positives, and false negatives, thus offering a balanced view of the per-
formance across all classes. MCC values range from −1 to +1, with +1 describing perfect
prediction, 0 indicating random prediction, and −1 representing inverse prediction.

4.3. XAI Methods

In our previous research, we extensively explored the explanations of the predictions
made by the DL model using the LRP method under various class imbalance mitigation
techniques [65]. Our aim was to ensure that the unveiled information was unbiased and
did not predominantly reflect the characteristics of the majority class (the intermediate
condition of the receptor). LRP provides a granular view of how different conformational
states are perceived, by decomposing the prediction into contributions from individual
features [81]. Initially, the prediction is transferred from the output layer to the input
layer. As it moves backward trough the layers, the so-called relevance (the contribution
to the final prediction) of each neuron to the preceding ones is redistributed based on the
contribution of individual neurons; a neuron that contributes more receives a larger share
of the relevance. Various so-called rules exist for propagating the relevance values back
through the network for providing a fine-grained explanation. Once the relevance has been
distributed throughout the entire network, it is possible to generate a visualization in form
of a heatmap. Such visualization aids to emphasize the contribution of each input feature
to the final prediction.

Although LRP is a valuable asset for unveiling relevant information within the con-
formational space, the exploration of multiple explanation methods could yield a more
comprehensive understanding of the problem and it may increase the trustworthiness of
the results [82]. Additionally, finding consistency across different explanation methods can
increase the confidence in the obtained explanations and the insights derived from them. For
the experiments reported in this paper, we have relied on common explanation-generating
methods such as LIME [82], SHAP [83], and Saliency Maps [84], alongside LRP.

Saliency Maps and LRP are specifically designed for elucidating the predictions of
neural network models. Saliency Maps are created by computing the gradient of the
prediction with respect to the input data. This gradient, computed using back-propagation,
indicates how the output value changes with small changes in the input. In essence, the
gradients tell us which features need to be changed the least to affect the model’s decision
the most. The primary advantage of Saliency Maps resides in their simplicity and the direct
visual explanation they provide. However, these maps tend to emphasize features broadly
rather than in a granular approach. Additionally, they are non-negative, i.e., they display
regions of positive contribution to the model’s decision, without representing inhibitory or
negative effects.

On the other hand, LIME and SHAP are model-agnostic methods that have demon-
strated broader applicability across different types of ML models. LIME operates by
examining individual data points. It introduces slight perturbations to these points, creat-
ing a set of subtly altered instances. These perturbed instances are then weighted based
on their proximity to the original data point. Using this weighted dataset, LIME trains
surrogate models—often linear regression models—to approximate the behavior of the
more complex model, as illustrated in Figure 14.

By dissecting these surrogate models, LIME discerns the relative importance of each
feature in the predictions, offering interpretable insights into the complex model’s local
decision-making process, although at the cost of the computational overhead of repeatedly
constructing these local surrogate models. Unlike LIME, SHAP does not rely on surrogate
models; instead, it uses principles from game theory to compare what a model predicts
with and without each feature, across many different combinations of features, to calculate
each feature’s contribution to the prediction. While SHAP provides clear insights into the
model’s behavior, it can be slow and requires a significant amount of computing power,
especially for models with many features, complex structures or many samples—produced
by the usage of oversampling methods—if seeking a global explanation. Along with the
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computational demands, we are also faced with the subjectivity involved in selecting
neighborhoods and other parameters specific to these techniques [85,86].

Figure 14. Illustration of how LIME approximates the nonlinear decision boundary of a model
(delineated by shades of gray) with a simpler, linear boundary (dashed black line) in the vicinity of a
specific data point. The white dots are the perturbed data points sampled around the chosen instance,
which is marked in purple.

Each of the methods described in the previous paragraphs has relative strengths,
making them well-suited to different tasks depending on the need for model-specific or
model-agnostic explanations, local or global insights, and visual or quantitative explana-
tions. In this context, we endeavor for an unified approach that would allow us to capture
a broader/global understanding of the predictions, while also giving due consideration to
explaining specific features that play a pivotal role in shaping the conformational condi-
tions of the receptor. Additionally, our objective is to generate both visual and quantitative
analyses of the explanations produced, extending the application to one-dimensional data
analysis derived from MD simulations.

4.4. Assessment of Explanation Methods

In the field of XAI, the robustness and stability of predictions are not merely advanta-
geous but essential. These qualities ensure that the explanations provided by AI models
are not only accurate under controlled conditions but also remain consistent across varying
environments and datasets [87,88]. This consistency is vital for generalizability, ensuring
that the insights gained from one set of data can be effectively applied to another without
loss of fidelity. Robust explanations can withstand minor perturbations in input data, which
is crucial in dynamic real-world applications where data variability is common. Similarly,
stable explanations guarantee that the interpretative outcomes are repeatable and reliable
over time, providing a dependable basis for decision-making. Although a wide range of
explainability methods exists, assessing the quality and trustworthiness of these explana-
tions remains an open challenge. Several criteria have been proposed for this purpose.
For instance, one study measures the fidelity of LRP-produced explanations by estimating
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the drop in prediction score resulting from the deletion of pixels deemed important by an
explanation method [89]. Similarly, another source highlights how perturbations affect the
quality of explanations and their practical application in real-world scenarios [90].

We assess the robustness and stability of distinct explanation techniques under dif-
ferent imbalance methods drawing inspiration from [57]. For assessing robustness, we
perturbed the inputs using Gaussian noise with a zero mean and a standard deviation of 0.5,
ensuring that the distribution of the data is not substantially altered while generating ran-
dom noise that could affect the explanations. Using this approach, we validate whether
the features identified as important by the different explainability techniques substantially
impact the model outputs. Likewise, the assessment of stability is carried out by randomly
selecting a representative population from the dataset and randomly repeating the explana-
tions between two to five times to assess whether the results remain consistent. In our study,
the consistency of explanations, both in terms of robustness and stability, is evaluated using
the cosine similarity. This metric computes the cosine of the angle between two non-zero
vectors, with its values ranging between −1 and 1. A higher value (closer to 1) indicates
that the explanations are more similar concerning the orientation of these vectors, i.e., they
are directionally aligned. This alignment can signify that the explanations consistently
identify the same features as important, maintaining the relative importance of these fea-
tures across different instances or conditions. Thus, using this assessment, we can ascertain
whether different explanation methods in varying settings yield consistent interpretations
of the model’s behavior. Broadly, by employing input perturbations and repetition across a
representative population, our methodology enables a thorough assessment of explanation
consistency against potential bias introduced by imbalanced data.

4.5. Experimental Setup

In this section, we detail the experimental setup for the investigation of the conforma-
tional space of the β2 AR receptor. The methodology builds upon previous work, where
we addressed a multi-class classification problem using DL-based models to discriminate
between active, intermediate, and inactive conformations [65]. Broadly, the process can be
broken down into several phases.

Initially, MD simulations were transformed into a suitable format to facilitate analysis,
relying on the computation of the center of mass to produce 1D vectors, as previously
mentioned. Data were partitioned into training and validation sets to ensure model gen-
eralization. These data were then fed into a 1D-CNN model architecture tested across
different configurations and enriched with distinct class imbalance mitigation methods.
Our 1D-CNN model was methodically developed layer-by-layer, drawing inspiration from
an empirical strategy emphasizing iterative assessments of various configurations and
evaluation metrics, as detailed in [65]. Performance evaluation used metrics suitable for the
imbalanced scenario, including Precision, Recall, F1-score, and particularly the MCC score.

In addition, we computed traditional Receiver Operating Characteristic (ROC) curves
using a One-vs-All (OvA) approach to address our multi-class problem. In the same vein, we
benchmarked the results obtained from the 1D-CNN against simple classifiers such as Decision
Trees (DT) and Random Forests (RF), considering feature importance analysis to elucidate their
predictions. This may be seen as a baseline performance comparison with DL, but also from
the point of view that classifiers such as DT and RF are more readily interpretable by design.

As previously described, several XAI methods, including LRP, LIME, SHAP, and Saliency
Maps, were utilized. Each method produced a contribution map that emphasized the im-
portance of motifs for each receptor condition. The analysis was further refined using the
IQR. This approach helps identify cases often overlooked as outliers but yet significant as the
most prominent residues in our study. Lastly, the evaluation of the robustness and stability of
XAI techniques concentrated on the top three performing models: SMOTEENN, ADASYN,
and Weighted Loss. Furthermore, we conducted a consistency analysis using Venn diagrams
to reveal overlapping residues across explainability techniques under the best-performing
imbalance methods.
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5. Conclusions

In this study, we explored the conformational dynamics of the β2AR receptor from MD
simulations using ML models. Ensuring that the natural class-imbalance of these data in
terms of their conformational states adscription does not bias the ML models’ performance
is paramount. In turn, ensuring that black-box ML models’ predictions are explainable is
crucial. Dealing with both potential limitations in parallel ensures the robustness of the
predictions and their trustworthiness. This approach guarantees that the findings are not
influenced by anomalies or unrepresentative features. If the model’s predictions are biased,
the explanations may mistakenly emphasize irrelevant features, leading to inaccurate
models and, consequently, to incorrect conclusions. Robust explanations ensure that the
outcomes generated are minimally affected by minor fluctuations, enhancing generalization
and building trust. Stability means that the outcomes do not vary significantly from one
case to another unless the data themselves are substantially different.

In our experiments, we address the explainability of our 1D-CNN ML model through
various post hoc techniques, both model-specific and model-agnostic. Each selected method
is tailored to match the demands of our study, balancing the need for explainability, com-
putational efficiency, and depth of insight into the model’s behavior. For our study case, a
deep dive into the internal mechanics of our model is not as crucial as providing clear, fast,
and human-readable explanations of the model’s decisions. These explanations helped us in
constructing a detailed analysis to observe distinctive patterns associated with different confor-
mational states predicted by our model in the form of contribution maps. In this context, the
LRP explainability technique has been shown to offer a straightforward method for generating
clear and consistent explanations, particularly useful in scenarios wherein model-agnostic
explanations are not required. Conversely, the LIME method appears to be less effective in
the reported evaluations, including robustness, stability, and consistency. Notably, the SHAP
technique delivers remarkable performance at the cost of high computational demand.

By correcting for class imbalance, the model’s ability to generalize from a limited
number of samples is significantly enhanced. This ensures that insights drawn from
the data are not biased toward the majority class, leading to more accurate and reliable
interpretations of the receptor’s conformational states. Likewise, an accurate evaluation of
classification results is crucial, as an incorrect assessment could depict an overly optimistic
picture of the model’s performance, particularly in problems characterized by severe
skewed distributions among classes. The systematic assessment of classification results is
crucial for reinforcing confidence in the model’s performance while avoiding biases. This
entails employing a variety of metrics and benchmarking against established baselines, in
order to ensure that the techniques employed genuinely enhance classification performance
without introducing bias. When class imbalance is not treated, the MCC scores were
markedly lower, indicating poorer generalization and biased predictions.

Importantly, the decision to calculate the center of mass for each residue represents a
strategic approach to simplify and clarify the MD data. Effective data processing and trans-
formations are both essential for preparing the dataset for ML applications, ensuring that
the inherent challenges of working with high-dimensional data are managed effectively. By
focusing on the center of mass, we distill complex atomic coordinates into a more manage-
able form that captures the essential movements and interactions within the receptor. This
method not only reduces the data dimensionality, but also preserves crucial information
about the dynamics of the molecular structure, facilitating a deeper understanding of the
receptor’s behavior. Furthermore, following the results of Kohlhoff et al. [43], we have
established a labeling method that categorizes the receptor states based on the distance
between specific helices, thereby enhancing the interpretability of the MD simulations. This
targeted approach allows us to directly relate structural changes to functional outcomes,
such as activation states, providing clear insights into the mechanisms that govern receptor
activity. Accurate data treatment not only ensures the reliability of model predictions but
also enhances the clarity and applicability of the explanations, thereby directly influencing
the success of downstream applications and research outcomes.
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Broadly, the insights about relevant motifs obtained in our analyses may become
significant in pharmacoproteomics by enhancing our understanding of the inner mecha-
nisms of receptors. Each conformational state of a GPCR can be associated with distinct
functional outcomes, influencing how the receptor interacts with ligands. For example, the
active conformational state of a GPCR may be associated with agonist binding and signal
transduction, leading to a physiological response. Conversely, the inactive state may be
targeted by antagonists to prevent unwanted signaling.

Lastly, the proposed analytical methodology has considerable potential for expansion.
This could involve exploring other GPCRs, investigating alternative DL architectures, or
integrating experimental data that encompass a broader range of conditions. Such ad-
vancements could greatly enhance the predictive capabilities of our models and effectively
bridge the gap between computational models and actual biological systems.
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Appendix A

Here, we detail the contributions of relevant residues as identified by the LRP method,
combined with the SMOTEENN technique for imbalance mitigation, which demonstrated
superior performance in our experiments. Table A1 enumerates these residues for each
conformational state, as determined by the Interquartile Range (IQR), and also includes
their respective transmembrane regions and the computed mean contributions.

Table A1. Contribution of residues for different conformational states. First column: residue identifier;
second column: region of the transmembrane helix; third column: computed average contribution.

(a) Active State Contributions

Residue Name Transmembrane Mean Contribution

VAL311.30 H1 0.2092
TRP321.31 H1 0.0676
VAL331.32 H1 0.2886
VAL341.33 H1 0.5918
GLY351.34 H1 1.5021
MET361.35 H1 0.7761
GLY371.36 H1 −0.3627
ILE381.37 H1 −0.1454
VAL391.38 H1 −1.3410
MET401.39 H1 −1.7757

https://simtk.org/projects/natchemgpcrdata
https://simtk.org/projects/natchemgpcrdata
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Table A1. Cont.

(a) Active State Contributions

Residue Name Transmembrane Mean Contribution

SER411.40 H1 −1.8760
LEU421.41 H1 −0.6127
ILE431.42 H1 0.1783
VAL441.43 H1 1.2615
LEU451.44 H1 0.6632
ALA461.45 H1 0.6786
ILE471.46 H1 0.1412
VAL481.47 H1 0.1233
ASN511.50 H1 −0.0720
LEU531.52 H1 0.0601
VAL541.53 H1 0.0417
ALA571.56 H1 −0.0615
GLU62 ICL1 −0.0552
GLN65 ICL1 0.0447
VAL672.38 H2 −0.0353
VAL812.52 H2 −0.0325
MET822.53 H2 −0.0457
GLY832.54 H2 −0.0367
ILE942.65 H2 0.0436
LEU952.66 H2 0.0936
MET962.67 H2 0.0365
MET98 ECL1 −0.0449
TRP99 ECL1 −0.0800
THR100 ECL1 −0.0506
SER137 ICL2 −0.0465
TYR141 ICL2 0.0479
GLN142 ICL2 0.0565
LEU145 ICL2 −0.0627
ASN1484.40 H4 0.0412
ALA1504.42 H4 0.0840
VAL1524.44 H4 −0.0462
ILE1534.45 H4 −0.0944
MET1564.48 H4 0.0338
VAL1574.49 H4 0.0363
TRP1584.50 H4 0.0455
ILE1594.51 H4 0.0378
SER1654.57 H4 −0.0472
PHE1664.58 H4 −0.0760
LEU1674.59 H4 −0.0764
THR177 ECL2 0.0340
HIS178 ECL2 0.0583
GLN179 ECL2 0.1104
GLU180 ECL2 0.0505
ALA181 ECL2 0.0358
CYS184 ECL2 −0.0364
TYR185 ECL2 −0.0328
GLN1975.36 H5 −0.0687
ALA1985.37 H5 −0.1220
TYR1995.38 H5 −0.0586
ALA2005.39 H5 −0.0323
ILE2015.40 H5 0.0334
ALA2025.41 H5 0.0485
SER2035.42 H5 0.0526
GLN299 ECL3 −0.0397
ASN3127.39 H7 0.0489
TYR3167.43 H7 −0.0469



Int. J. Mol. Sci. 2024, 25, 6572 26 of 33

Table A1. Cont.

(a) Active State Contributions

Residue Name Transmembrane Mean Contribution

GLY3207.47 H7 0.0312
LEU339 C-Terminus 0.0434

(b) Intermediate State Contributions

Residue Name Transmembrane Mean Contribution

VAL311.30 H1 0.0941
TRP321.31 H1 0.0791
VAL331.32 H1 0.2116
VAL341.33 H1 0.2983
GLY351.34 H1 0.3681
MET361.35 H1 −0.1076
GLY371.36 H1 −0.3470
ILE381.37 H1 −0.2240
VAL391.38 H1 −0.5690
MET401.39 H1 −0.8806
SER411.40 H1 −1.0995
LEU421.41 H1 −0.1839
ILE431.42 H1 0.6116
VAL441.43 H1 1.5330
LEU451.44 H1 0.6826
ALA461.45 H1 0.3322
ILE471.46 H1 −0.1201
VAL481.47 H1 −0.1765
PHE491.48 H1 −0.1796
GLY501.49 H1 −0.0685
ASN511.50 H1 −0.0313
VAL541.53 H1 0.0354
ILE551.54 H1 0.0434
GLN65 ICL1 −0.0531
THR682.39 H2 0.0325
TRP99 ECL1 0.0438
THR100 ECL1 0.0391
ALA1504.42 H4 0.0866
ARG1514.43 H4 0.0327
LEU1554.47 H4 −0.0390
LEU1634.55 H4 −0.0317
ASN301 ECL3 0.0491

(c) Inactive State Contributions

Residue Name Transmembrane Mean Contribution

VAL311.30 H1 −0.0437
VAL331.32 H1 −0.0845
VAL341.33 H1 −0.1813
GLY351.34 H1 −0.4075
MET361.35 H1 −0.1317
GLY371.36 H1 0.1968
ILE381.37 H1 0.0844
VAL391.38 H1 0.3386
MET401.39 H1 0.5095
SER411.40 H1 0.5568
LEU421.41 H1 0.1875
ILE431.42 H1 −0.0817
VAL441.43 H1 −0.3731
LEU451.44 H1 −0.2599
ALA461.45 H1 −0.2053
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Appendix B

In this appendix, we present a comprehensive collection of contribution maps com-
puted using various explainability methods, namely LIME, LRP, SHAP, and Saliency Maps,
paired with a range of class-imbalance mitigation techniques. These techniques include
starting from an Unbalanced Distribution, followed by Random Undersampling, the Near-
Miss algorithm, Random Oversampling, SMOTE, ADASYN, SMOTEENN, and Weighted
Loss. The resulting maps are presented in Figures A1–A8, respectively.

Figure A1. Contribution maps over an unbalanced distribution. Relevant residues are represented as
red points.

Figure A2. Contribution maps under Random Undersampling. Relevant residues are represented as
red points.

Figure A3. Contribution maps under Near-Miss algorithm. Relevant residues are represented as
red points.

Figure A4. Contribution maps under Random Oversampling. Relevant residues are represented as
red points.
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Figure A5. Contribution maps under SMOTE. Relevant residues are represented as red points.

Figure A6. Contribution maps under ADASYN. Relevant residues are represented as red points.

Figure A7. Contribution maps under SMOTEENN. Relevant residues are represented as red points.

Figure A8. Contribution maps under Weighted Loss. Relevant residues are represented as red points.

Appendix C

Here, we list the residues consistently identified as relevant across the selected imbal-
ance mitigation techniques, as revealed by the Venn diagrams associated with different
explainability methods in Figure 9. Table A2 enumerates these residues.
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Table A2. Contribution of common residues for different conformational states. The first column
denotes the residue name, the second column indicates the region of the transmembrane helix, and
the third column presents the computed average contribution.

Saliency Maps
Common Contributions

Across Imbalance Methods

State Residue Transmembrane
Mean
Contribution

active PHE491.48 H1 0.0337

intermediate VAL311.30 H1 0.0321
intermediate VAL331.32 H1 0.0997
intermediate VAL341.33 H1 0.0531
intermediate GLY351.34 H1 0.2772
intermediate MET361.35 H1 0.3054
intermediate GLY371.36 H1 0.3435
intermediate ILE381.37 H1 0.0845
intermediate VAL391.38 H1 0.1786
intermediate MET401.39 H1 0.1712
intermediate SER411.40 H1 0.3422
intermediate LEU421.41 H1 0.1551
intermediate ILE431.42 H1 0.6180
intermediate VAL441.43 H1 0.2698
intermediate LEU451.44 H1 0.0372
intermediate ALA461.45 H1 0.1233
intermediate ILE471.46 H1 0.2716
intermediate VAL481.47 H1 0.0317

inactive GLU62 ICL1 0.0296
inactive ARG63 ICL1 0.0361
inactive LEU64 ICL1 0.0355
inactive GLN65 ICL1 0.0393
inactive ILE722.43 H2 0.0370
inactive TYR1323.50 H3 0.0349
inactive ALA1985.37 H5 0.0348
inactive TYR1995.38 H5 0.0360
inactive SER2205.59 H5 0.0306
inactive ARG2285.67 H5 0.0321
inactive GLN2295.68 H5 0.0344
inactive LEU230 ICL3 0.0336
inactive LYS263 ICL3 0.0365
inactive PHE264 ICL3 0.0375
inactive CYS265 ICL3 0.0363
inactive LEU266 ICL3 0.0338
inactive GLU2686.20 H6 0.0322
inactive TRP3137.39 H7 0.0343
inactive GLY3157.42 H7 0.0317
inactive GLY3207.47 H7 0.0296
inactive PHE3217.48 H7 0.0323

LIME
Common Contributions

Across Imbalance Methods

State Residue Transmembrane
Mean
Contribution

active ILE471.46 H1 0.0014

intermediate GLY371.36 H1 −0.0021
intermediate VAL391.38 H1 −0.0012
intermediate LEU421.41 H1 −0.0009
intermediate ILE431.42 H1 −0.0009

inactive MET361.35 H1 −0.0021
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Table A2. Cont.

SHAP
Common Contributions

Across Imbalance Methods

State Residue Transmembrane
Mean
Contribution

active GLU301.29 H1 0.0189
active ILE471.46 H1 0.3491
active PHE491.48 H1 0.0651
active ALA571.56 H1 −0.0165
active PHE1043.23 H3 −0.0212
active PHE1664.58 H4 −0.0197
active HIS172 ECL2 −0.0158
active GLN179 ECL2 0.0213
active GLU188 ECL2 −0.0201
active CYS190 ECL2 −0.0184
active LEU230 ICL3 0.0315
active LYS2736.42 H6 0.0180
active GLN299 ECL3 −0.0189
active ARG304 ECL3 0.0156
active LEU3107.45 H7 0.0155
active ASN3127.47 H7 0.0144
active TRP3137.48 H7 0.0226

intermediate VAL311.30 H1 0.0156
intermediate VAL331.32 H1 0.0448
intermediate GLY351.34 H1 0.1313
intermediate MET361.35 H1 0.0838
intermediate GLY371.36 H1 −0.1190
intermediate ILE381.37 H1 −0.0173
intermediate VAL391.38 H1 0.0416
intermediate SER411.40 H1 −0.1194
intermediate LEU421.41 H1 −0.0501
intermediate ILE431.42 H1 0.1535
intermediate VAL441.43 H1 0.0299
intermediate LEU451.44 H1 0.0535
intermediate VAL481.47 H1 0.0164
intermediate GLN2295.68 H5 0.0151
intermediate LYS2706.38 H6 0.0162

inactive VAL341.33 H1 −0.0759
inactive MET401.39 H1 0.0963
inactive ALA461.45 H1 −0.0346
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