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Abstract: Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe
approach to preventing drug-taking behavior, including opioids. However, most successful preclinical
and clinical results come from studies in adult males. We examined whether systemic injections of
CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned
place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg,
i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly,
a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and
females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD
pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only
in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor
(CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The
reinstatement of CCP in females was associated with a decreased MOR expression, but no changes
were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction
significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to
potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits
of recognition memory only in males. These results suggest that CBD could reduce reinstatement
to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more
investigation is required.

Keywords: oxycodone; cannabidiol; reward; conditioned place preference; MOR; CB1R; adolescent rats

1. Introduction

The growing abuse of both prescription and illegal opioids has led to a nationwide
healthcare crisis in the United States. Oxycodone (OXY) is one of the most prescribed and
abused opioid painkillers and carries a high risk of opioid dependence and misuse [1,2].
Published data show that OXY is very often the first opioid abused in adolescents enrolled
in substance use disorders [3]. It is a semi-synthetic opioid analgesic processed from
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thebaine; a lesser constituent found in opium [4]. It is used to treat both acute and chronic
pain and has become the most prescribed opioid painkiller in some countries, surpassing
morphine [5]. Pharmacologically, OXY acts as a moderately selective agonist for the mu
opioid receptor (MOR). It exhibits a lower affinity for MOR compared to morphine and
demonstrates minimal affinity for delta (DOR) and kappa (KOR) opioid receptors [6]. OXY
crosses the blood–brain barrier with a permeability that is seven times greater than that
of morphine. It also has a quicker onset and a longer duration of action compared to
morphine [6], while causing fewer side effects [7]. Due to its potent effects on the brain’s
reward system, oxycodone is among the most abused drugs today.

The opioid crisis has brought attention to the difficulties in treating opioid use disorder
(OUD), primarily because existing medications mainly consist of MOR agonist substitution
pharmacotherapies like methadone and buprenorphine [8,9]. The significant stigma and
strict governmental regulations surrounding these pharmacotherapies, attributed to their
addictive nature and diversion to the black market, create additional barriers to clinical
care and access. As a result, these medications are not fully utilized in addressing the
needs of millions of people with OUD [10,11]. The treatment gap for the considerable
number of patients with OUD underscores the pressing necessity for innovative thera-
peutic approaches that diverge from targeting the MOR. Emerging evidence indicates
that the reward and reinforcement mechanisms of opioids necessitate interaction between
the endocannabinoid (ECS) and opioid systems within the brain [12–14]. For example,
lower levels of opioid seeking-, reinforcement-, dependence-, and relapse-like behaviors
accompany the attenuation of cannabinoid receptors 1 (CB1R) signaling [15–19].

Of note, the ECS has a fundamental role in the signaling of rewarding events [20,21].
ECS (2-arachidonoly glycerol, 2-AG; anandamide, AEA) and cannabinoid receptors (CB1R,
CB2R) are widely expressed in brain regions of the mesocorticolimbic system, and it is
thought that they can influence dopaminergic signaling within this pathway [22–25]. The
ECS also appears to be involved in the plasticity of the mesocorticolimbic system, which is
essential for the development of adaptive changes that lead to drug dependence [26,27].
Currently, modulating the ECS has been identified as a potential target for developing
strategies to treat drug addiction [28]. Regrettably, the clinical application of direct (orthos-
teric) CB1R antagonists (inverse agonists) is restricted due to adverse side effects, such as
depression, anxiety, and suicidal thoughts [29–31].

Cannabidiol (CBD) appears to satisfy several criteria for a safe approach to preventing
drug-taking behavior. CBD is a phytocannabinoid constituent of the Cannabis sativa plant
devoid of addictive effects [32]. The pharmacology of CBD is not completely understood
because this compound has multiple mechanisms of action. It influences several receptors
and systems, including ECS [33], serotonergic [34], and opioid [35] systems, among others
[see review [36]]. CBD, moreover, is a partial agonist of the D2 receptors, and stimulates
TRPV1 and 5-HT1A receptors [37–39]. Within the ECS, CBD has a low affinity for CB1R and
CB2R [40], even though CBD exerts a negative allosteric modulation effect on both recep-
tors [41]. In addition, CBD has been shown to reduce the hydrolysis of the endocannabinoid
AEA through its interaction with fatty acid amide hydrolase (FAAH) [41,42]. Cumulative
evidence suggests that CBD lacks abuse potential, as it does not produce rewarding effects
and does not trigger withdrawal symptoms following repeated administration [43,44]. In
addition, CBD is relatively long-lasting [45], and it appears to reduce anxiety, which is
common among people with substance use disorders [46]. The “anti-addictive” actions of
CBD have been described in some substance use disorders, including opioid, alcohol, and
psychostimulants, mostly in adult male animals [28,47,48].

The drug-induced conditioned place preference (CPP) paradigm commonly used to
assess the rewarding properties of addictive substances involves associating the pleasurable
effects of these drugs with a specific environment through classical conditioning. Over
time, this environment acquires and retains secondary motivational significance, a process
that is integral to addiction research [49]. Extinguishing this preference and then later
reinstating it can be prompted by drug priming or stress, triggering the retrieval of the
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rewarding memories associated with the drug [49,50]. The objective of the present study
was to investigate the influence of CBD on extinction and reinstatement of OXY-induced
CPP in adolescent male and female rats. The reinstatement was induced by priming dose
of OXY. Furthermore, locomotor activity was evaluated during the CPP expression and
reinstatement phase. Here, we also applied the novel object recognition (NOR) task to
determine if deficits in declarative memory have an impact on the CPP reinstatement in rats.
Finally, we estimated the role of MOR and CB1R in OXY prime-induced CPP reinstatement
in the prefrontal cortex (PFC) and hippocampus (HIP), the brain structures involved in
drug addiction in adolescents of both sexes [51,52].

2. Results
2.1. OXY-Induced Significant CPP

This study investigated the ability of OXY to induce rewarding effects in adolescent
rats of both sexes. The CPP expression test revealed that OXY given during the conditioning
phase of the CPP task produced a significant rewarding effect in both male and female
rats. The statistical analysis (two-way ANOVA) of time spent in the drug-paired compart-
ment showed a significant effect of OXY [F (1, 20) = 51.67; p < 0.001], but no significant
effect of sex [F (1, 20) = 2.833; p > 0.05], and a significant effect of interaction of these
factors [F (1, 20) = 5028; p < 0.05]. Tukey’s multiple comparisons test showed statistically
significant differences in time spent in OXY and 0.9% NaCl paired compartment both in
male (p < 0.001) and female rats (p < 0.05) (Figure 1A). Moreover, neither OXY treatment
([F (1, 20) = 0.09285; p > 0.05]) nor sex of rats ([F (1, 20) = 2.838; p > 0.05]) affected the
distance traveled by tested rats during the CPP expression (Figure 1B).
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Figure 1. The effect of repeated OXY administration on rat behavior (male and female) in the CPP 

paradigm. (A) OXY increased time spent in the drug-paired compartment during the CPP expres-

sion test, *** p < 0.001; # p < 0.05; (B) OXY did not have impact on locomotor activity; (C) CBD ad-

ministration did not accelerate extinction of OXY-induced CPP. Comparison between the 1st day 

and 4th: ** p < 0.01 vs. male OXY + CBD; # p < 0.05 vs. male OXY + vehicle; ^ p < 0.05 vs. female OXY 

+ CBD; $ p < 0.05 vs. female OXY + vehicle. All data are expressed as mean ± SEM. 
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Figure 1. The effect of repeated OXY administration on rat behavior (male and female) in the
CPP paradigm. (A) OXY increased time spent in the drug-paired compartment during the CPP
expression test, *** p < 0.001; # p < 0.05; (B) OXY did not have impact on locomotor activity; (C) CBD
administration did not accelerate extinction of OXY-induced CPP. Comparison between the 1st day
and 4th: ** p < 0.01 vs. male OXY + CBD; # p < 0.05 vs. male OXY + vehicle; ˆ p < 0.05 vs. female OXY
+ CBD; $ p < 0.05 vs. female OXY + vehicle. All data are expressed as mean ± SEM.
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2.2. Extinction of CPP

After 4 days of CPP extinction, the tested animals did not show any place preference,
and CBD administration (once daily) during this period did not accelerate the extinction. In
the male rats, the three-way ANOVA showed a significant effect of time [F (3, 80) = 5.610;
p < 0.01], OXY [F (1, 80) = 84.94; p < 0.001] and time × OXY interaction [F (3, 80) = 6.462;
p < 0.001], but no significant effect of CBD [F (1, 80) = 0.07279; p > 0.05]. In the female rats,
the three-way ANOVA indicated a significant effect of time [F (3, 80) = 6.476; p < 0.001],
OXY [F (1, 80) = 67.98; p < 0.001] and time × OXY interaction [F (3, 80) = 5716; p < 0.01],
but no significant effect of CBD [F (1, 80) = 0.02489; p > 0.05]. Furthermore, comparisons
between groups via Tukey’s test showed significant differences in time spent in drug-paired
compartment between days 1 vs. 4 of extinction in male (p < 0.01) and female (p < 0.05)
CBD-treated rats, as well as male (p < 0.05) and female (p < 0.05) vehicle-treated rats
(Figure 1C).

2.3. CBD Prevented Reinstatement of OXY-Induced CPP in Male, but Not Female Rats

Our results revealed that repeated CBD administration during the extinction period
prevented the reinstatement of the CPP induced by the OXY priming dose only in male rats,
which means that there are sex differences in CBD effect in adolescent rats. The three-way
ANOVA showed a significant effect of OXY [F (1, 40) = 33.08; p < 0.001], but no significant
effect of sex [F (1, 40) = 0.2177; p > 0.05] nor CBD [F (1, 40) = 2.682; p > 0.05]. Moreover, the
three-way ANOVA indicated a significant effect of OXY × sex [F (1, 40) = 4.269; p < 0.05],
OXY × CBD [F (1, 40) = 6.467; p < 0.05], and OXY × sex × CBD [F (1, 40) = 5.351] interactions.
Tukey’s multiple comparisons test showed statistically significant differences in time spent
in drug-paired compartment between 0.9% NaCl + Vehicle vs. OXY + Vehicle (p < 0.01)
and OXY + Vehicle vs. OXY + CBD male rats (p < 0.01]. In female rats, Tukey’s test
showed statistically significant differences between 0.9% NaCl + Vehicle vs. OXY + Vehicle
(p < 0.05), but CBD did not reverse this effect (Figure 2A). CBD alone did not affect the time
spent in the drug-paired chamber.
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Figure 2. Effect of CBD given during extinction on reinstatement of OXY-induced CPP. (A) OXY-
induced CPP was reinstated by OXY priming dose both in males and females; however, repeated CBD
treatment during extinction was able to diminish this effect only in male rats, ** p < 0.01, ## p < 0.01,
ns—not significant; (B) OXY priming induced locomotor sensitization in OXY-treated rats, CBD
diminished this effect in both male and female rats (with a stronger effect in males) *** p < 0.001;
# p < 0.05. All data are expressed as mean ± SEM.

2.4. CBD Prevented Locomotor Hyperactivity Induced by Priming Dose of OXY

Repeated administration of CBD during the extinction phase of CPP inhibited OXY
priming dose-induced hyperactivity on the reinstatement day, and effectively prevented
the manifestation of behavioral sensitization produced by repeated OXY treatment. The
three-way ANOVA showed a significant effect of OXY [F (1, 38) = 20.41; p < 0.001], CBD
[F (1, 38) = 28.54; p < 0.001], and OXY × CBD interaction [F (1, 38) = 13.84; p< 0.001].
However, the effect of sex [F (1, 38) = 2.086] and other interactions were not significant.
Tukey’s multiple comparisons test showed statistically significant differences between
0.9% NaCl + Vehicle vs. OXY + Vehicle (p < 0.001) and OXY + Vehicle vs. OXY + CBD
male rats (p < 0.001). In female rats, Tukey’s multiple comparisons test showed statistically
significant differences between 0.9% NaCl + Vehicle vs. OXY + Vehicle (p < 0.05) and
OXY + Vehicle vs. OXY + CBD (p < 0.05) groups (Figure 2B). Thus, our findings show that
CBD had a preventive effect on hyperactivity induced by a priming dose of OXY, and this
effect was more pronounced in males than females.

2.5. CBD Reversed Recognition Memory Impairment Induced by OXY in Male, but Not
Female Rats

Adolescent animals were subjected to the NOR task to evaluate whether memory
deficits have an impact on the OXY prime-induced outcome from the OXY-induced rein-
statement of CPP. Our findings demonstrated that repeated OXY administration diminished
declarative memory in the NOR task in both male and female adolescent rats; however,
repeated CBD treatment was able to reverse this effect in male, but not in female rats. The
three-way ANOVA showed a significant effect of OXY [F (1, 40) = 28.62; p < 0.001] and CBD
[F (1, 40) = 6.457; p < 0.05], but no significant effect of sex [F (1, 40) = 1.576; p > 0.05]. More-
over, the three-way ANOVA indicated a significant effect of OXY × CBD [F (1, 40) = 1.605;
p < 0.05] and OXY × sex × CBD [F (1, 40) = 6184; p < 0.05] interactions. Tukey’s test showed
significant differences in preference score between 0.9% NaCl + Vehicle vs. OXY + Vehicle
(p < 0.001) in male rats, and the same effect was observed in females (p < 0.05); however,
this effect was reversed by CBD only in male (p < 0.01) and not in female rats (p > 0.05)
(Figure 3).
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Figure 3. Effect of repeated OXY and CBD administration on short-term memory in NOR task in 

male and female adolescent rats. OXY administration induced declarative memory deficits in NOR 

task both in males and females, and CBD treatment was able to prevent this effect only in male rats. 

*** p < 0.001; ** p < 0.01; # p < 0.05. All data are expressed as mean ± SEM. 
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Figure 3. Effect of repeated OXY and CBD administration on short-term memory in NOR task in
male and female adolescent rats. OXY administration induced declarative memory deficits in NOR
task both in males and females, and CBD treatment was able to prevent this effect only in male rats.
*** p < 0.001; ** p < 0.01; # p < 0.05. All data are expressed as mean ± SEM.

2.6. Adolescent OXY and CBD Exposure Differentially Modify MOR and CB1R Expression in the
PFC and HIP in Adolescent Male and Female Rats

To assess the correlation between behavioral and neurochemical changes induced
by OXY, as well as the impact of CBD on these changes, we examined (using ELISA) the
expression of MOR and CB1R in the PFC and HIP, structures involved in memory processes.

Data from the three-way ANOVA indicated a significant effect of OXY [F (1, 40) = 25.21;
p < 0.001], sex [F (1, 40) = 7.524; p < 0.01], CBD [F (1, 40) = 7.274; p < 0.05], and OXY
× sex interaction [F (1, 40) = 16.81; p < 0.001] on MOR expression in the PFC of rats.
Tukey’s multiple comparisons test showed statistically significant differences between 0.9%
NaCl + Vehicle vs. OXY + Vehicle (p < 0.05), OXY + Vehicle vs. OXY + CBD (p < 0.05),
and between 0.9%/CBD vs. OXY + CBD (p > 0.05) in male rats (Figure 4A). These results
suggest that OXY-induced changes in MOR in the PFC were seen only in male rats and
CBD potentiated this effect. However, in females, OXY-induced alterations in the MOR
expression only in the HIP, and CBD treatment had no impact on these changes. The
three-way ANOVA indicated a significant effect of OXY [F (1, 40) = 17.29; p < 0.001]
and OXY × sex interaction [F (1, 40) = 18.57; p < 0.001] on MOR expression in the HIP.
However, the effects of sex [F (1, 40) = 3.618; p > 0.05] and CBD [F (1, 40) = 2.176; p > 0.05]
were not significant. Tukey’s test showed statistically significant differences between 0.9%
NaCl + Vehicle vs. OXY + Vehicle (p < 0.05) and 0.9% NaCl/CBD vs. OXY + CBD (p < 0.01)
in female rats (Figure 4C).

Furthermore, repeated OXY administration enhanced the expression of CB1R in the
PFC of male, but not female rats. Subsequent administration of CBD did not change this
effect. The three-way ANOVA indicated a significant effect of OXY [F (1, 40) = 7.527:
p < 0.01], CBD [F (1, 40) = 6.646; p < 0.05], and OXY × CBD interaction on CB1R expression
in the PFC of rats. Tukey’s multiple comparisons test showed that OXY significantly
increased CB1R expression in male rats (p < 0.01), while in females, this effect was not
significant (p > 0.05) (Figure 4B). In addition, no significant changes were seen in the
hippocampal expression of CB1R in male and female adolescent rats. ANOVA analysis did
not reveal a significant effect of OXY [F (1, 40) = 0.008814; p > 0.05], sex [F (1, 40) = 0.2507;
p > 0.05], nor CBD [F (1, 40) = 0.7406; p > 0.05] on CB1R expression in the HIP of the tested
animals (Figure 4D).
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Figure 4. Effect of OXY and CBD administration on the expression of MOR and CB1R in the PFC
(A,B) and HIP (C,D) in male and female adolescent rats. OXY decreased MOR expression in the
PFC of males (A) and in the HIP of females (C), but increased CB1 expression in the PFC of males
(B). Moreover, CBD potentialized the effect of OXY on MOR in the PFC of males (A), ### p < 0.001;
** p < 0.01; * p < 0.05; # p < 0.05, but not females (C), ns—not significant. All data are expressed as
mean ± SEM.

3. Discussion

The findings presented in this study offer insights into the impact of CBD admin-
istration on drug seeking behavior associated with OXY addiction in adolescent male
and female rats. Specifically, CBD was effective in preventing OXY prime-induced CPP
reinstatement, locomotor sensitization, and memory deficits associated with OXY injections
in male adolescent rats. In addition, CBD had an impact on MOR and CB1R expression in
the PFC of male rats. In female rats, CBD failed to affect behavioral outcomes associated
with OXY injections, except for locomotor sensitization. These data suggest that there
are sex differences in CBD effects on OXY-induced behavior associated with addiction in
adolescent male and female rats.

3.1. Effects of CBD on Drug Prime-Induced CPP Reinstatement

In our study, adolescent male and female rats both developed CPP induced by OXY
(3 mg/kg) in the contextual assay, despite males initially showing a higher preference
than females for the drug compartment. These results are consistent with previous reports
wherein OXY, at the same dose, induced CPP in adult male [50,53] and female rats [54]. In
the present study, CBD, given prior to each extinction trial, did not accelerate the extinc-
tion of conditioned behavior in male and female rats. These data are in accordance with
a very recent investigation conducted in adult male mice, in which CBD given prior to
each extinction trial did not accelerate CPP extinction, but it blocked the priming-induced
reinstatement of cocaine CPP [55]. Other studies indicate that CBD given intracerebroven-
tricularly (icv) prior to every extinction session accelerated the extinction and prevented the
reinstatement of extinguished methylphenidate-induced CPP by methylphenidate priming
dose in adult male rats [56]. Still other research shows that in male adult Wistar rats, the
injection of CBD (10 mg/kg, i.p.) prevented the development of CPP behavior, whether it
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was reinstated by a priming dose of morphine or through exposure to stress [57]. In male
adult C57BL/6J mice, administering the same dose of CBD also significantly lowered the
development of morphine-induced conditioned place preference (CPP) [58]. In our study,
CBD given prior to each extinction trial prevented the CPP reinstatement induced by OXY
priming dose in adolescent male, but not female rats. Thus, our results support previously
published data in male animals that CBD can reduce cue-induced reinstatement of opioid
(drug) seeking behavior after extinction. The rewarding effects of OXY are primarily me-
diated by its action on the MOR in the mesolimbic and nigrostriatal pathways [59]. Thus,
one of the mechanisms of action of CBD is that it can lead to a reduction in dopaminergic
transmission [37,60,61], which might cause anti-reward effects. However, it is difficult to
explain why such effect is observed only in male animals.

3.2. Impact of CBD on Locomotor Activity in Drug Prime-Induced CPP Reinstatement

The locomotor responses triggered by addictive substances offer a method to examine
both drug sensitivity issues and the neuroplastic changes caused by drug use. In the current
study, locomotor response of animals did not differ during expression of CPP when animals
were free of drugs; however, locomotor activity of animals was significantly increased
during the reinstatement session after a priming dose of OXY (1.5 mg/kg). The increase
of locomotor activity after intermittent administration was observed in both sexes in the
OXY-treated group (vs. control) that received a priming dose of OXY. Such an increase
of locomotor activity in previously OXY-treated rats implies an increase in sensitivity to
OXY. Furthermore, repeated treatment with CBD did not change the locomotor effect of
an acute dose of OXY (1.5 mg/kg) in both sexes. Thus, the current findings indicate that
adolescent rats can develop locomotor sensitization to OXY, potentially context-dependent,
reflecting neuroplasticity in response to repeated exposure to MOR agonists. These results
underscore the susceptibility of adolescent individuals to OXY dependence. We find that
male adolescent rats exhibit higher preference for OXY-paired context in the reinstatement
procedure than female rats. Moreover, male animals display greater locomotor sensitization
than females. However, other authors showed [62] opposing relationships between the
locomotor effects of morphine and CPP in female vs. male adult mice.

In our study, this effect of OXY was ameliorated by prior CBD treatment during CPP
extinction in both sexes. Previous research has outlined the role of CB1R in influencing the
pharmacological effects of various addictive substances. Specifically, CB1R activation has
been identified as pivotal in the development of opioid-induced locomotor sensitization.
Studies have shown that mice lacking CB1R (CB1R KO) did not exhibit sensitization to
morphine [63]. Furthermore, other investigations have indicated that the CB1R receptor
antagonist, rimonabant, effectively prevented the manifestation of behavioral sensitization
induced by morphine, with its effectiveness being dependent on the context in adult
female mice when given in a drug-associated environment, but not in their home cage [64].
In our study, CBD, as a negative allosteric CB1R modulator [65] reduced OXY-induced
locomotor sensitization in both sexes but failed to prevent the CPP reinstatement in female
rats. The findings imply that the impacts of repeated CBD exposure on reward and
motor functions can be separated in adolescent female rats. Indeed, they suggest that
diminishing cannabinoid activity might forecast changes in motor function that are distinct
from alterations in reward perception.

3.3. Impact of CBD on Learning and Memory Deficits in OXY-Treated Adolescent Rats

After exposure to drug-associated cues, drug reward memory can enter two opposing
processes: reconsolidation and extinction [66]. Both are promising approaches to regulating
drug reward memory and preventing relapse. Published data show that CBD given just
after reactivation CPP sessions impairs reconsolidation (a process during which original
memory could be updated) of morphine-reward memory lasting at least 2 weeks, as well as
reinstatement of morphine-induced CPP and conditioned place aversion (CPA) induced by
naltrexone administration in adult male Wistar rats [57]. In our study, CBD treatment before



Int. J. Mol. Sci. 2024, 25, 6651 9 of 17

every extinction session (the formation of new inhibitory learning rather than an erasure of
the original (drug) memory) [67] did not accelerate the extinction of OXY-induced CPP in
male and female adolescent Wistar rats. Still, despite the lack of a non-extinction control,
we observed that CBD reduces the reinstatement of OXY-induced place preference, and
this suggests that such reduction was, at least in part, due to the concomitant extinction
trial. One of the hypotheses that could explain such outcome is that CBD causes a memory
impairment. Therefore, we tested whether CBD affected nonemotional memory by using
the NOR task. The experiment was performed on the reinstatement day after an OXY
priming dose. Our results revealed that repeated CBD administration did not affect the
short-term memory of either novel or familiar objects, but it reversed memory impairment
induced by repeated OXY administration in male rats. Considering that pharmacological
enhancement of extinction typically relies on substantial reduction of extinction-mediated
memory [68,69], and there was no evidence for any such reduction in our present study
and other CBD studies [70], it remains unclear if CBD enhanced drug memory extinction in
our study.

3.4. MOR and CB1R in Drug Prime-Induced CPP Reinstatement

Published data showed that signaling through ECS within the limbic brain regions, in-
cluding the PFC and HIP, has been demonstrated to profoundly influence the emotional and
memory-related processing of motivational signals associated with opioid dependence [71].
Our study supports these data and indicated that the reinstatement of OXY-induced CPP
by drug priming was associated with a decrease of MOR and an increase of CB1R expres-
sion in the PFC in adolescent male rats, whereas female adolescent rats demonstrated
a decrease of MOR and no changes of CB1R expression in the HIP. CBD administration
during extinction significantly potentiated the reduction of MOR expression in the PFC
of males and only showed tendency to potentiate the reduction of MOR expression in the
HIP of females. Thus, although opioid reward and reinforcement require crosstalk between
the ECS and opioid system in the brain [12,13,72], our data suggest that in adolescence,
there are differences in the response to cannabinoid compounds, especially in females that
received opioid.

Adolescence is a critical stage of development characterized by substantial behavioral,
morphological, hormonal and neurochemical changes, including alterations in brain regions
implicated in the reinforcement and reward mechanisms associated with drugs such as
opioids [73]. Our study showed that in adolescent males, the MOR in the PFC is engaged in
relapse to OXY CPP reinstatement. Of note, the PFC is involved in decision-making, reward-
seeking, and impulsivity [74,75]. Thus, we hypothesize that OXY-induced changes in MOR
could be responsible for compulsive intake of abuse drugs and return to addiction. In turn,
in females, the MOR in the HIP plays an important role in relapse to OXY prime-induced
drug-context reinstatement. The HIP has been implicated in various aspects of drug-related
behavior, including the association between context and drug reward-related responses,
and the craving and seeking of drugs, particularly in the context of reinstatement and
relapse to substance abuse [76]. Moreover, the HIP is crucial for transforming short-term
memories into long-term ones, a process thought to contribute to the aberrant learning
associated with addiction [77]. Thus, we hypothesize that OXY-induced aberrant learning
processes in the HIP are involved in relapse to drug addiction in female adolescent rats in
our study.

3.5. Limitation and Future Research Direction

Existing research underscores differences between animal sex, age, and strain in sus-
ceptibility to addiction. Unlike our study on adolescent females, adult female rats showed
a stronger drive to acquire OXY compared to their male counterparts [78–80]. Adult female
rats exhibited heightened responses during extinction and increased conditioned reinstate-
ment for heroin [81] and fentanyl [82]. Cannabinoids induced greater antinociception,
catalepsy, sexual behavior, and anxiety in female rats than in male rats [83], although
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locomotor and thermoregulatory responses remained similar between sexes [84]. More-
over, intact female rats self-administered cannabinoids at higher rates compared to male
rats, whereas ovariectomized females showed less sensitivity to the reinforcing effects of
cannabinoids [85]. Consequently, findings suggested that the gonadal hormone estradiol
interacts with the ascending telencephalic dopamine system, leading to sex differences
in motivated behaviors, including drug-seeking [86]. Given this information, a limitation
of our study is the lack of consideration for the hormonal cycle in female rats. There is
limited research on sex differences in the impact of CBD on addictive behavior. Nonethe-
less, similar to our study where CBD did not prevent the reinstatement of OXY-induced
CPP in adolescent female rats, other studies have found that CBD did not affect morphine
withdrawal syndrome in adult females [87]. Another study limitation is the lack of ver-
ification of the role of CB2R in OXY. In fact, recent findings indicate that CB2R agonists
disrupted CPP induced by cocaine [88,89] or ethanol [90–92]. Additionally, CB2R antag-
onists have been shown to block the acquisition of nicotine-induced CPP [93,94] and the
expression of alcohol-induced CPP [92]. However, this impairment might be due to the
aversive properties of CB2 antagonists, as they can induce conditioned place aversion
(CPA) [94]. In addicted individuals, CB2R may influence the mesolimbic dopamine system
by: (i) affecting microglia and astrocytes, which express CB2R [95,96], or (ii) inhibiting
dopamine release in mesolimbic structures [97]. In the hippocampus, CB2R activation is
involved in the expression of CPP due to its role in spatial memory recovery [98], leading
to the inhibition of cocaine-induced CPP [89]. Furthermore, CB2R can play a role in opioid
tolerance and reward-seeking behavior [99]. Research suggests that CB2R may contribute
to the effects of CBD, with CBD potentially acting as CB2R antagonist/inverse agonist or
partial agonist [60,100]. Thus, future studies should investigate the role of CB2R in the
motivational effects induced by OXY.

Apart from unknown the role of CB2R in OXY actions, CBD inhibitory effects on
OXY-induced reward might depend on multiple receptor mechanisms depending on the
dose [60]. Another possibility is that different receptors could form functional heterodimers
or interact at the level of intracellular signaling, meaning that blocking one receptor phar-
macologically could affect CBD’s action on other receptors. However, in our experiment,
we used only a separate dose of CBD (10 mg/kg), therefore, more research is required to
address these issues.

In conclusion, our findings indicate that CBD is effective in preventing OXY seeking
behavior after a period of abstinence in adolescent male, but not in female rats. This effect
in males appears to be due to the interaction between CB1R and MOR. Further research
is needed to determine whether the lack of effect in female adolescent rats is related to
gonadal hormone status, dose of CBD, or other mechanisms, such as that, for example, of
CB2R. It is important to investigate the mechanisms behind these sex differences, especially
since previous research has shown that CBD reduces cue-induced cravings in humans with
heroin use disorder [101].

4. Materials and Methods
4.1. Animals

This study involved 96 Wistar rats of both sexes, which were bred and housed in
the vivarium of the Medical University of Lublin, Poland. The vivarium followed a 12 h
light/12 h dark cycle, with lights on at 8:00 a.m., and maintained a constant temperature of
22 ± 1 ◦C and humidity of 55 ± 10%. Throughout the study, the rats had ad libitum access
to food and water. The experiments began when the animals were 28 days old (PND28).
These were carried out according to the National Institute of Health Guide for the Care and
Use of Laboratory Animals, as well as to the European Community Council Directive for
Care and Use of Laboratory Animals (86/609/EEC), and was approved by the Local Ethics
Committee (30/2023).
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4.2. Treatment Conditions and Drugs

At the beginning of this study, the animals (96) were divided into 2 sets (for reward
and memory test purposes), each subjected into two main groups: 0.9% NaCl and OXY.
Next, the 0.9% NaCl group was subdivided into 2 groups: 0.9% NaCl + vehicle (group 1)
and 0.9% NaCl + CBD (group 3), while the OXY group was also subdivided into 2 groups:
OXY + vehicle (group 2) and OXY + CBD (group 4), each consisting of 12 individuals
(6 males and 6 females).

OXY (Norpharma, Copenhagen, Denmark) was diluted in 0.9% NaCl and adminis-
tered once a day at a dose of 3 mg/kg [53]. CBD (THC Pharm GmbH, Frankfurt, Germany)
was administered to animals at a dose of 10 mg/kg (the dose was chosen on the basis
of previous work [57]), and was obtained by suspending the substance in a vehicle (1%
solution of Tween 80 (Sigma, St. Louis, MO, USA) in 0.9% NaCl). The solutions were
prepared just before administration, ex tempore. All substances used in the experiments
were administered intraperitoneally (i.p).

4.3. Procedures
4.3.1. Conditioned Place Preference (CPP) Test

One set of animals was used in this experiment. CPP is a basic test used to assess
the rewarding effect of various addictive substances. It is carried out in the following
stages: pre-test, conditioning, place preference test, extinction of preferences, and reinstate-
ment of preferences. The apparatus used to perform this test consists of cages measuring
65 cm × 35 cm × 30 cm, divided into two parts (compartments) and with different colored
walls. One compartment had smooth black walls, while the other featured black and white
vertical stripes, and both had metal grating floors. These compartments were divided by
removable guillotine doors. To ensure cleanliness and to remove any odors, the apparatus
underwent thorough cleaning before each test, followed by wiping with dry paper towels.
The boxes were placed in a soundproof room with neutral noise masking and subdued
40 lux lighting. Locomotor activity (total distance traveled) and time spent in each chamber
were tracked using cameras and computer software (ANY-maze video tracking system 6.3,
Stoelting Co. Wood Dale, IL, USA).

Habituation Phase and Pre-Test

On PND 28 and 29, the animals were habituated to the apparatus. For this purpose,
the rats were placed individually in one of the compartments, and allowed to move freely
and explore the full apparatus for 15 min.

A pre-test was performed on PND 30. This part of the study took place before the
injections began. Each animal was placed in the apparatus for 15 min with open access to
both rooms. In this way, it was tested whether animals showed preferences for staying in
specific places. The test showed no such behavior.

Conditioning Phase

The conditioning stage lasted 8 days (PND31-38) and aimed to develop place pref-
erence after OXY administration [53]. On odd days, animals from groups 1 and 3 were
injected with 0.9% NaCl solution, and rats in groups 2 and 4 received OXY at a dose of
3 mg/kg, i.p. (once a day before each conditioning session). The rats were always injected
immediately before being placed into the conditioning chamber for 60 min to associate it
with a rewarding substance. Some animals were conditioned to the compartment with
black walls, and others to the room with white and black stripes. During this stage, the
doors in the cage remained closed and the animals were not able to move between compart-
ments. On PND32, 34, 36, and 38, that is, on even-numbered days, each animal received an
injection of 0.9% NaCl solution, and then they were placed in the appropriate equipment
chamber (opposite to the previous day).
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CPP Expression Test

Approximately 24 h after the last conditioning session (PND39), the CPP expression
test was performed. The animals could move freely between the compartments of the
apparatus for 15 min. Time spent in OXY-coupled compartment and distance traveled were
measured by video tracking. On this day, the animals did not receive any injection.

Extinction Phase

The CPP extinction was performed for the subsequent 4 days (PND40-43) after the
CPP test (CPP expression test), and the animals no longer received OXY injections. Half of
the rats (groups 3 and 4) were treated with CBD (10 mg/kg, i.p.) and the remaining groups
received a vehicle (groups 1 and 2). After injections (once a day, over the 4 days), animals
were placed in a random compartment of the apparatus with free access to both chambers.
The time spent in compartments was assessed for 60 min to determine whether the place
preference had been extinguished. The CPP was considered as extinguished when the time
spent in the saline- and drug-paired compartments were similar to those of the pre-test
phase.

Reinstatement Phase

After CPP extinction, on the last day of the experiment (PND44, corresponding to a
human age span of 15–17 [102,103]), each animal received a priming injection of OXY at a
dose of 1.5 mg/kg, i.p., and then they were placed in the apparatus with free access to both
compartments. The time spent by the rats in a particular compartment and the distance
traveled were measured to determine whether place preference was reinstated in the tested
animals after a priming dose of OXY.

4.3.2. Novel Object Recognition (NOR) Task

Another set of animals was used in this experiment. Utilization of the NOR task with
drug injections identical to those used in the CPP task allowed us to examine whether OXY
exposure induced deficits in recognition memory and whether CBD was able to prevent
the memory deficits induced by OXY. All animals, regardless of sex and age (PND44),
underwent the NOR task within a Plexiglass box measuring 40 cm × 40 cm × 40 cm,
illuminated with approximately 20 lux light, in a quiet environment. The animals were
acclimated to the apparatus for 30 min before each session of the NOR task. The NOR task
consisted of three sessions: (1) habituation, followed by (2) a training session lasting 5 min,
and (3) a testing session also lasting 5 min, with a 30 min interval between the training
and testing sessions [104–106]. During the training session, two identical objects were
positioned in diagonal corners of the box. In the subsequent testing session, one of the
objects was replaced by a novel object, differing in color and shape from the familiar object.
Each animal was separately placed in the center of the box facing one of the remaining
empty corners. Both the training and the testing sessions were recorded to provide further
analysis of animal behaviors. The evaluation of object recognition was conducted manually
by an experimenter who was blind to the experimental conditions, and the results were
expressed as a percentage. The objects used were selected based on preliminary studies that
demonstrated no inherent preference for any object. Following each session of the NOR
task, the animals were returned to their home cages. Immediately before the testing session,
each animal received the same priming dose of OXY (1.5 mg/kg, i.p.) as the animals in
CPP reinstatement.

4.3.3. Enzyme-Linked Immunosorbent Assay (ELISA)

Right after the CPP procedure, the animals were decapitated, and the dissected brain
structures were subjected to biochemical experiments to evaluate the influence of OXY
and CBD administration on MOR and CB1R expression. The validation of protein levels
involved the use of a Rat MOR ELISA Kit (E1559Ra; Bioassay Technology Laboratory,
Shanghai, China) and a Rat CB1R ELISA Kit (E1475Ra; Bioassay Technology Laboratory,
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China), following the respective manufacturer’s protocols. In brief, rat brain structures were
homogenized in cold PBS (pH 7.4) containing protease and phosphatase inhibitors (Sigma-
Aldrich, St. Louis, MO, USA), followed by centrifugation at 5000× g for 5 min. Protein
concentration in the supernates was determined using a bicinchoninic acid assay (BCA)
protein assay kit from Serva (Heidelberg, Germany). The absorbance of duplicate samples
and standards was measured at a wavelength of λ = 450 nm using a Multiskan Spectrum
spectrophotometer (Thermo LabSystems, Philadelphia, PA, USA). Protein concentrations
were calculated from standard curves and expressed as ng/mg of protein.

4.4. Statistical Analysis

The data obtained were analyzed using Prism v. 8.0.0 for Windows (GraphPad Soft-
ware, San Diego, CA, USA). Statistical significance of the effects observed in both behavioral
and molecular tests was assessed using two- or three-way analysis of variance (ANOVA)
with repeated measures, followed by Tukey’s post hoc test. Results were reported as means
± standard errors of means (SEM), with a p-value less than 0.05 considered statistically
significant for all tests.
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