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Abstract: Phytochemicals and tryptophan (Trp) metabolites have been found to modulate gut
function and health. However, whether these metabolites modulate gut ion transport and serotonin
(5-HT) metabolism and signaling requires further investigation. The aim of this study was to
investigate the effects of selected phytochemicals and Trp metabolites on the ion transport and 5-HT
metabolism and signaling in the ileum of mice in vitro using the Ussing chamber technique. During
the in vitro incubation, vanillylmandelic acid (VMA) reduced (p < 0.05) the short-circuit current,
and 100 µM chlorogenic acid (CGA) (p = 0.12) and perillic acid (PA) (p = 0.14) had a tendency to
reduce the short-circuit current of the ileum. Compared with the control, PA and N-acetylserotonin
treatment upregulated the expression of tryptophan hydroxylase 1 (Tph1), while 100 µM cinnamic
acid, indolelactic acid (ILA), and 10 µM CGA or indoleacetaldehyde (IAld) treatments downregulated
(p < 0.05) the mRNA levels of Tph1. In addition, 10 µM IAld or 100 µM ILA upregulated (p < 0.05) the
expression of monoamine oxidase A (Maoa). However, 10 µM CGA or 100 µM PA downregulated
(p < 0.05) Maoa expression. All selected phytochemicals and Trp metabolites upregulated (p < 0.05)
the expression of Htr4 and Htr7 compared to that of the control group. VMA and CGA reduced
(p < 0.05) the ratios of Htr1a/Htr7 and Htr4/Htr7. These findings may help to elucidate the effects of
phytochemicals and Trp metabolites on the regulation of gut ion transport and 5-HT signaling-related
gut homeostasis in health and disease.
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1. Introduction

The gut microbiota, together with its metabolites, has been proven to modulate host
metabolism and improve the gut barrier and function [1,2]. Robust gut function is essential
for maintaining whole-body nutrition and health. The small intestine is crucial for nutrient
absorption and immunity; however, these processes are affected by the gut microbiota,
which has attracted much attention in recent years [3]. It has been shown that tryptophan
(Trp) metabolites regulate the gut barrier and immune response [4,5]. Indoleacetic acid and
indole-3-aldehyde alleviate gut inflammation by decreasing lipopolysaccharide-induced
production of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and in-
terleukin (IL)-1β in macrophages and promoting the production of IL-22 and the expression
of tight junction proteins in the colon of mice [6–8]. In addition, a study with aryl hydro-
carbon receptor (AHR)−/− mice suggested that indole-3-ethanol and indole-3-pyruvate
regulated gut barrier function in an AHR-signaling dependent manner [9]. However, other
mechanisms underlying the regulatory role of Trp metabolites in small intestine function
require further investigation.
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Moreover, phytochemicals, which are naturally bioactive compounds in plants, have
attracted great attention because of their health-promoting benefits, including antioxidant,
immunomodulatory, and antibacterial activities and the ability to increase the efficiency of
nutrient digestion and absorption [10–12]. Perillic acid, a major metabolite of D-limonene,
regulates the body immune response by increasing the total numbers of white blood cells
and promotes the production of the antioxidative compound glutathione in the small intes-
tine of mice [13–15]. Curcumin protected against oxidative injury and inflammation of the
gut through inhibiting the nuclear factor κ-B (NF-κB)/IκB signaling pathway, decreasing
m6A RNA methylation and boosting intestinal autophagy in duckling and piglet mod-
els [16–18]. In addition, the phenolic compounds cinnamic acid and chlorogenic acid have
been proposed to have antioxidant and anti-inflammatory properties [19]. Cinnamic acid
can alleviate oxidative stress in the liver by inhibiting macrophage infiltration and down-
regulating the expression of proinflammatory cytokines such as TNF-α and IL-6 [20,21]. In
addition, chlorogenic acid suppressed gut inflammation and reduced hepatotoxicity by
downregulating the expression of the proinflammatory cytokines IL-1β, IL-6, and interferon-
γ (IFN-γ) and interfering with mitochondrial function and Nrf2/HO-1 signaling [22,23].
The above findings suggested that the antioxidant and immune-modulatory capacity of
the abovementioned phytochemicals can improve gut function and health through mul-
tiple mechanisms [24]. However, further studies are warranted to uncover the detailed
mechanisms that regulate gut function.

Serotonin (5-HT) is an important hormone and signaling molecule that regulates
gut functions, including gut motility, ion transport, fluid secretion, and immune func-
tion [25–27]. More than 90% of 5-HT in the body is produced in the enterochromaffin cells
(EC) of the gut through the metabolism of Trp by tryptophan hydroxylase 1 (Tph1). Extra-
cellular 5-HT can be taken up by the serotonin reuptake transporter and then degraded
to 5-hydroxyindoleacetic acid by monoamine oxidase A (Maoa) [28]. A study on the link
between 5-HT and gut immune function showed that 5-HT altered colitis susceptibility in
Tph1−/− mice [29]. In addition, we have shown that Trp and Limosilactobacillus mucosae
can alleviate dextran sulfate sodium (DSS)-induced colonic inflammation by upregulating
the expression of 5-HT receptors (Htr), including Htr1a and Htr4, and reducing Htr2a and
Htr7 expression [30,31]. Moreover, a study in weaned piglets revealed that there was a
positive correlation between Htr7 expression and the levels of proinflammatory cytokines,
including IL-1β, IL-8, and TNF-α, but a negative correlation between Htr4 expression and
levels of IFN-γ in the jejunum [32]. 5-HT was found to regulate intestinal motility via
the activation of Htr3 and Htr4 [33]. In addition, microbial tryptamine stimulates gut
transit by stimulating epithelial HTR4, which is accompanied by increased colonic fluid
secretion in mice [34]. Therefore, the combination of 5-HT and Htr has a substantial effect
on gut function [35]. However, the regulation of 5-HT metabolism and signaling by di-
etary bioactive compounds in the small intestine and the underlying mechanisms require
further investigation.

This study aimed to identify the differences in the mode of action of different phyto-
chemicals and Trp metabolites in the regulation of 5-HT signaling and ion transport in the
mouse ileum using the Ussing chamber technique. The findings of this study will aid in
the development of potential dietary interventions for improving gut health.

2. Results
2.1. Effects of Different Phytochemicals and Trp Metabolites on the Short-Circuit Current of the
Mouse Ileum

Compared to those in the control group, the ileum of mice treated with forskolin
(10 µM) had greater Isc (p < 0.05). However, the VMA (100 µM) treatment group had a
lower Isc (p = 0.05) than the control group (Table 1). Compared with the control, PA (100 µM)
or curcumin (100 µM) tended to reduce Isc (p = 0.1) (Table 1). A representative diagram
comparing the short-circuit current (Isc) following the administration of phytochemicals is
shown in Figure 1.
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Table 1. Effects of different phytochemicals and Trp metabolites on the short-circuit current (Isc)
across the mouse ileum 1.

Components
Concentration (µM)

p Value
0 10 100

Forskolin 1.00 ± 0.11 1.68 ± 0.20 ND <0.05

Phytochemicals

CA 1.00 ± 0.14 ND 0.81 ± 0.08 0.52

CGA 1.00 ± 0.01 0.99 ± 0.02 0.87 ± 0.01 0.12

Curcumin 1.00± 0.03 1.05 ± 0.36 0.76 ± 0.08 0.19

MurA 1.00 ± 0.18 0.85 ± 0.14 1.07 ± 0.36 0.51

PA 1.00 ± 0.13 0.76 ± 0.17 0.63 ± 0.12 0.14

VMA 1.00 ± 0.15 a 0.57 ± 0.10 ab 0.41 ± 0.01 b 0.05

Trp metabolites

IAld 1.00 ± 0.10 0.97 ± 0.08 ND 0.85

ILA 1.00 ± 0.05 ND 0.93 ± 0.24 0.79

NAS 1.00 ± 0.24 0.97 ± 0.23 1.06 ± 0.25 0.80

2-Oxindole 1.00 ± 0.09 0.99 ± 0.14 1.02 ± 0.04 0.90
1 The values in the table are the means with SEM. Labeled means in a row without a common letter differ, p < 0.05.
CA, cinnamic acid; CGA, chlorogenic acid; MurA, muramic acid; PA, perillic acid; VMA, vanillylmandelic acid;
Trp, tryptophan; IAld, indoleacetaldehyde; ILA, indolelactic acid; NAS, N-acetylserotonin; ND, not determined.
Forskolin: n = 4; CA: n = 6; CGA: (10 µM) (n = 3) and (100 µM) (n = 3); Curcumin: (10 µM) (n = 3) and (100 µM)
(n = 6); MurA: (10 µM) (n = 4) and (100 µM) (n = 3); PA: (10 µM) (n = 3) and (100 µM) (n = 4); VMA: (10 µM) (n = 4)
and (100 µM) (n = 3); IAld: n = 5; ILA: n = 4; NAS: (10 µM) (n = 3) and (100 µM) (n = 3); 2-Oxindole: (10 µM)
(n = 3) and (100 µM) (n = 3).
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2.2. Effects of Different Phytochemicals and Trp Metabolites on the Gene Expression and Protein
Abundance of Key Enzymes Involved in 5-HT Metabolism in the Mouse Ileum

Analysis of the gene expression of 5-HT metabolism-related enzymes in the ileum
revealed that forskolin (10 µM), PA or NAS treatment upregulated (p < 0.05) the expression
of Tph1 compared with that in the control group (Figure 2). In addition, VMA, CA (100 µM),
CGA (10 µM), ILA (100 µM), and IAld (10 µM) downregulated (p < 0.05) the expression
of Tph1 (Figure 2). The protein abundance of Tph1 in the ileum was not affected by the
abovementioned phytochemicals and Trp metabolites (Figure 3). In addition, 100 µM VMA,
MurA, ILA or 10 µM IAld upregulated (p < 0.05) the expression of Maoa. However, PA
(100 µM) and CGA (10 µM) downregulated (p < 0.05) Maoa expression (Figure 2).
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Figure 2. Effects of different phytochemicals and Trp metabolites on the gene expression of 5-HT
metabolism-related enzymes, including Tph1 (A) and Maoa (B) in the ileum of mice. The data in
the charts are the means ± SEMs. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the control
group. Tph1, tryptophan hydroxylase 1; Maoa, monoamine oxidase A; VMA, vanillylmandelic
acid; PA, perillic acid; MurA, muramic acid; CA, cinnamic acid; CGA, chlorogenic acid; NAS,
N-acetylserotonin; ILA, indolelactic acid; IAld, indoleacetaldehyde. The number of animals is shown
in Table 1.
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2.3. Effects of Different Phytochemicals and Trp Metabolites on the Gene Expression of Htr and
Their Ratios in the Mouse Ileum

Analysis of the gene expression of the Htr revealed that 100 µM VMA, GA, and NAS
or 10 µM MurA upregulated (p < 0.05) the expression of Htr1a (Figure 4). Treatment with
10 µM VMA, PA, MurA, curcumin, CGA, NAS or IAld or 100 µM CA or ILA upregulated
(p < 0.05) the expression of Htr4 and Htr7 (Figure 4).

To further compare the effects of selected phytochemicals and Trp metabolites on the
expression of Htr, the expression ratios of Htr1a/Htr7, Htr4/Htr7, and Htr4/Htr7 were
calculated and analyzed based on their relative expression to that of Gapdh (Figure 5).
Compared to those in the control group, the Htr1a/Htr4 and Htr4/Htr7 ratios in the
curcumin (100 µM) and PA (10 µM) groups were greater (p < 0.05). However, the ileum
treated with 10 µM or 100 µM VMA or CGA and 10 µM curcumin had lower (p < 0.05)
Htr1a/Htr7, Htr4/Htr7, and Htr1a/Htr4 ratios (Figure 5).
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Figure 4. Effects of different phytochemicals and Trp metabolites on the expression of serotonin
receptor genes, including Htr1a (A), Htr4 (B), and Htr7 (C) in the ileum of mice. The data in the
charts are the means ± SEMs. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to the control group.
The number of animals is shown in Table 1. VMA, vanillylmandelic acid; PA, perillic acid; MurA,
muramic acid; CA, cinnamic acid; CGA, chlorogenic acid; NAS, N-acetylserotonin; ILA, indolelactic
acid; IAld, indoleacetaldehyde.
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3. Discussion

Phytochemicals and Trp metabolites have been shown to improve gut function and
homeostasis, and these health-promoting effects may be partially due to their regulation
of gut 5-HT metabolism and signaling [35,36]. Gut barrier function is important not only
for defense against luminal pathogens but also for nutrient absorption and electrolyte
balance [37]. Our current study suggested that VMA reduced the short-circuit current,
and 100 µM CGA and PA had a tendency to reduce the short-circuit current of the ileum.
PA and NAS upregulated Tph1 expression, while CA, CGA, ILA, or IAld downregulated
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Tph1 expression. Moreover, PA or CGA downregulated Maoa expression. However, ILA
and IAld upregulated Maoa expression. All selected phytochemicals and Trp metabolites
upregulated the expression of Htr4 and Htr7; however, PA increased the Htr4/Htr7 ratio,
while VMA and CGA reduced the Htr1a/Htr7 and Htr4/Htr7 ratios. These findings may
help to gain further insight into the regulatory role of phytochemicals and Trp metabolites
on gut 5-HT homeostasis-mediated gut function in health and disease.

The findings of our present study revealed that different Trp metabolites regulate gut
5-HT homeostasis differently. Mounting evidence has shown that the gut microbiota and
its metabolites are crucial for the production of 5-HT by regulating Tph1 expression in the
intestines of rodents [38]. In particular, microbial-derived Trp metabolites exert diverse
effects on the host physiology and gut function, including gut immune modulation [4,39].
Microbial indole derivatives such as ILA inhibit the proliferation of macrophages by
reducing glycolysis, NF-κB, and hypoxia-inducible factor pathways and decreasing CCL2/7
in epithelial cells and mice [40]. In rat and mouse models, NAS can alleviate intestinal
ischemic injury and DSS-induced chronic colitis [41–43]. In TNF-α-stimulated epithelial
cells, the addition of ILA did not alter the expression of Tph1 [44]. Additionally, microbial
5-hydroxyindole has been shown to promote 5-HT release from RIN14B cells, which
regulates gut motility by activating Htr3 and Htr4 [39]. In our study, the Trp metabolite
NAS upregulated the expression of Tph1, while ILA and IAld downregulated the expression
of Tph1, suggesting that the regulation of 5-HT production differs among different Trp
metabolites. Notably, the abovementioned regulatory role of different Trp metabolites may
also be affected by different physiological conditions of the gut (i.e., normal conditions
vs. inflammation) [44]. Further studies are required to determine the differential effects of
various Trp metabolites on 5-HT signaling to identify new targets for dietary strategies to
improve gut function.

Our current study also reinforces the importance of gut 5-HT metabolism and signaling
in the anti-inflammatory effects of phytochemicals. The limonene derivative PA has been
widely used in food, medicine, and cosmetics [13]. PA was proposed to be a potential
anticancer, immunomodulatory, and anti-obesogenic bioactive compound [45]. However,
there are very few studies on the regulatory role of PA on gut 5-HT. In mice, PA alleviated
radiation-induced small intestinal histopathological damage and reduced the production of
the proinflammatory cytokines IL-1β and TNF-α [15]. In addition, supplementation with
0.1% D-limonene hampered diet-induced obesity in mice with increased levels of PA and
perillic acid-8,9-diol in the urine [46]. Our current results demonstrated that PA stimulated
5-HT synthesis, inhibited 5-HT degradation, and upregulated Htr4 and Htr7 expression. We
therefore deduced that PA might exert its beneficial effects by affecting 5-HT metabolism
and Htr, but this needs to be further confirmed in vivo. Additionally, the present findings
confirmed that CGA downregulated the expression of Tph1 and Maoa, which is in line
with a previous finding that CGA suppressed Maoa activity and prevented 5-HT from
being deaminated [47]. In addition, studies have shown that curcumin can modulate 5-HT
levels in the brain and exert antidepressant and anticonvulsive effects [48–50]. Additionally,
curcumin has been widely reported to promote intestinal health by affecting cross-talk
among cell signaling pathways, immune function, and the gut microbiota [24,51]. However,
a recent study suggested that higher concentrations (20–80 µM) of curcumin exerted
cytotoxic effects on human small intestine epithelial cells, which might be a compensatory
protective mechanism under conditions of impaired cell vitality [52]. Notably, our current
results revealed that curcumin at low and high concentrations had opposite effects on
Tph1 expression in the ileum, indicating that its effect on 5-HT signaling may be dose
dependent. Moreover, the levels of 5-HT were decreased in the colon of rats with irritable
bowel syndrome by curcumin supplementation, but an Htr1a antagonist reversed this
effect, indicating that the beneficial effect of curcumin is Htr1a dependent [53]. This finding
is in line with our current finding that the Htr1a/Htr4 ratio was increased by 100 µM
curcumin. Taken together, the intricate role of 5-HT and its receptors in the regulation of
gut function modulated by the abovementioned compounds requires further investigation.
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The expression of different subtypes of Htr in the gut plays vital roles in gut functions,
including gut secretion, motility, and immune modulation [33]. Despite a great clinical
interest and an increasing number of studies devoted to Htr, the mechanism modulating Htr
effect on physiological and pathological functions required further validation. A previous
study showed that the Htr1 and Htr7 receptors can form homo- and heterodimers [54],
thus impairing the ability of Htr1 to activate the Gi-protein system and further downstream
signaling pathway. Especially, a recent report found that overexpression of Htr7 led to
the decreased abundance of Htr1a in the membrane protein fraction from the midbrain
samples of C57BL/6 mice [55], thus exerting an antidepressive effect, which suggests the
interaction and proportion of Htr played important roles in the physiology and pathology
of the body. However, changes in the proportion of Htr in the gut and the effects and
mechanisms of Htr interaction on gut function in gut health and disease remain poorly
understood. A recent study in weaned piglets indicated that there is a correlation between
the expression of Htr, including Htr4 and Htr7, and the production of inflammatory factors
in the jejunum [32]. In addition, Trp upregulated Htr1a and Htr4 expression, thus mitigating
DSS-induced colitis in mice [30]. Interestingly, although the inhibition of Htr1a or Htr4 by
their antagonists exacerbated DSS-induced colitis in mice, the modulation of one Htr via
its antagonist did not change the expression of other Htr [30]. In our current study, CGA
stimulated the expression of Htr1a, Htr4, and Htr7, but the Htr1a/Htr4, Htr1a/Htr7, and
Htr4/Htr7 ratios were lower than those in the control group. Hence, we speculated that
the relative proportion of each Htr in the intestine may be vital for the regulation of gut
homeostasis; however, more studies are warranted to test this hypothesis.

The Ussing chamber system has been extensively used for evaluating the transport
of ions, nutrients, and drugs across various epithelial tissues, as well as intestinal perme-
ability [56]. Short-circuit current (Isc) is an indicator of the tissue’s ability to absorb or
secrete [57]. Our results indicated that 10 µM forskolin increases Isc significantly, and this
suggested the ion transport through ileum epithelium tissue was active. However, a higher
dose (100 µM) of PA and curcumin tended to decrease the Isc in the ileum of the mice,
which would suggest either an inherent change in epithelial transport or a decrease in
fluid secretion. In addition, activation of ion transport in the intestine can be achieved in
part through the production of hormones from enteroendocrine cells. Hormones, such
as 5-HT, can in turn act on mucosal nerve endings and activate secretomotor neurons by
activating Htr [58,59]. Therefore, whether PA-induced Isc change is caused by the indi-
rect 5-HT signaling effect can be explored by the addition of selective blockers of Tph1
responsible for 5-HT synthesis or Htr antagonists in future studies. Also, one limitation
of our present study is that the sample size is relatively small, so more sample sizes need
to be replicated in future experiments to verify the above speculation. In addition, by
using an EC-enriched monolayer system, scholars found that treatment with forskolin (10
µM) and the dietary nutrient curcumin (100 µM) stimulated 5-HT production by cells [60].
This result was partly consistent with our finding that Isc and Tph1 gene expression were
elevated by forskolin. However, the findings regarding the ability of curcumin to stimulate
5-HT release were inconsistent with our experimental results, as evidenced by the fact that
100 µM curcumin treatment reduced Isc and Tph1 expression in our study. This might be
due to the differences in the experimental systems used in the two studies [60].

4. Materials and Methods
4.1. Reagents

Primary antibody against Tph1 (Cat# 12339) was purchased from Cell Signaling
Technology (Danvers, MA, USA). Glucose and salts were purchased from Sangon Biotech
Co., Ltd. (Shanghai, China). Curcumin (#HY-N0005), forskolin (#HY-15371), indolelactic
acid (ILA, #HY-113099), and 2-oxindole (#HY-Y0061) were obtained from Med Chem
Express Co., Ltd. (Shanghai, China), and the purity of these reagents is more than 98%.
Cinnamic acid (CA, #C80857), chlorogenic acid (CGA, #C3878), indoleacetaldehyde (IAld,
#I1000), muramic acid (MurA, #M2503), N-acetylserotonin (NAS, #A1824), perillic acid
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(PA, #218359), and vanillylmandelic acid (VMA, #H0131) were purchased from Merck
Sigma-Aldrich (Shanghai, China), and the purity is more than 95%. The compounds used
in this study were dissolved in dimethyl sulfoxide (DMSO, final concentration 0.1%) and
further diluted with Krebs’ solution for subsequent Ussing chamber experiments. The
concentrations of the substances were selected with reference to the possible non-toxic
dosages that have been reported in cell and mice experiments. Chemical structures and
certain physicochemical properties of the above compounds used in this study are shown
in Table 2.

Table 2. Chemical structures and certain physicochemical properties of the selected compounds used
in this study.

Components Molecular
Structure

Molecular
Formula

Molecular
Weight
(g/mol)

LogP Melting
Point (◦C)
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Table 2. Cont.

Components Molecular
Structure

Molecular
Formula

Molecular
Weight
(g/mol)

LogP Melting
Point (◦C)
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C8H7NO 133.15 1.2 123~128

CA, cinnamic acid; CGA, chlorogenic acid; MurA, muramic acid; PA, perillic acid; VMA, vanillylmandelic acid;
Trp, tryptophan; IAld, indoleacetaldehyde; ILA, indolelactic acid; NAS, N-acetylserotonin; N/A, not applicable.

4.2. Animals

In this study, sixty 10~12 week-old C57BL/6 male mice with an average body weight
of 27.0~30.0 g were purchased from Beijing HFK Bioscience (Beijing, China). Upon arrival,
the mice were allowed to acclimate for 7 days before the experiment. The mice were housed
in polycarbonate cages in a specific-pathogen-free environment and were kept at 22–25 ◦C
and 45–55% relative humidity with a 12 h light/dark cycle and ad libitum water and feed.
The standard rodent diet (Cat#1032, Beijing HFK Bioscience) used in the experiments was
the same as that used in our previous study [30].

4.3. Ussing Chamber Experiments

Before Ussing chamber analysis, the mice were anesthetized with ether before they
were euthanized by cervical dislocation, according to the previous method [31]. The
proximal ileum was first rinsed with precooled Krebs’ solution (11.1 mM glucose, 118 mM
NaCl, 4.8 mM KCl, 1.0 mM NaH2PO4, 1.2 mM MgSO4, 25 mM NaHCO3, 2.5 mM CaCl2,
pH = 7.4) to remove the chyme and then opened along the mesenteric border.

A six-channel Ussing chamber system (MC6-6, Physiologic Instrument, Reno, NV,
USA) was used to measure the short-circuit current (Isc) (as shown in Figure 6). The isolated
ileum segments of 1.5 cm in length were then pinned onto Ussing chamber sliders (P2300,
0.2 cm2 apertures) within 15 min after sampling. After that, the sliders with the ileum were
mounted into chambers (EasyMount Diffusion Chambers, Physiologic Instruments), and
5 mL of Krebs’ solution was added to the mucosal side and serosal side of the ileum. A final
concentration of 5 mM mannitol was added to the mucosal side to limit active transport
while maintaining osmotic balance. Ileal tissue was stabilized for 15 min before clamping
the voltage to 0 V before treatment. Final concentrations of 10 µM or 100 µM of the selected
compounds were added to the chamber for up to 40 min after the mounted tissues were
stabilized. Forskolin (10 µM) was used as a positive control, as reported previously [61].
In this study, the number of ileal tissues tested used for each compound was equal to
the number of animals used (n = 3~6). The Isc was continuously recorded by Acquire
& Analyze software 2.3 (Physiologic Instruments, Reno, NV, USA). Tissue viability was
assessed according to a previous method [61], and tissues with a <1 mV increase in the
transepithelial potential difference were excluded from further analysis.
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4.4. RNA Extraction and Quantitative Real-Time PCR Analysis

After Ussing chamber analysis, total RNA was extracted from the analyzed ileal tissues
using an RNAiso Plus kit (Takara, Beijing, China). The integrity and purity of the RNA
were determined using a Nanodrop P330 (Implen, Munich, Germany) and electrophoresis.
RNA was then reverse-transcribed using a FastKing RT kit from TIANGEN Biotech Co., Ltd.
(Beijing, China). Quantitative real-time PCR was performed using a SYBR Premix Ex Taq II
(Takara, Beijing, China) with an ABI 7500 real-time PCR detection system (Thermo Fisher,
Waltham, MA, USA). The sequences of the primers (Tph1, Maoa, Htr1a, Htr4, Htr7, and
GAPDH) used for this study were described previously [30]. GAPDH was utilized as the
internal reference. The 2−∆∆Ct method was used for the quantification of gene expression.

4.5. Western Blot Analysis

Ileum samples were homogenized in liquid nitrogen, and protein was extracted and
measured for the abundance of Tph1 by Western blot analysis, according to a previous
protocol [62]. Protein bands were measured via ECL Plus detection reagents (Thermo
Fisher, Waltham, MA, USA) and visualized by the Image Quant LAS 4000 mini system (GE
Healthcare, Piscataway, NJ, USA). The band intensity of each target protein was compared
with that of GAPDH by Image J software version 1.53 (NIH, Bethesda, MD, USA).

4.6. Statistical Analysis

The values are presented as the means ± SEMs. Statistical differences between two
groups were analyzed by t-tests. The data were assessed by one-way ANOVA followed
by Duncan’s multiple comparison test. SPASS 22.0 (IBM, Armonk, NY, USA) and Prism
9.0 (GraphPad, Boston, MA, USA) were used for statistical analysis. p < 0.05 was used to
indicate a significant difference.

5. Conclusions

In conclusion, 100 µM VMA or curcumin reduced Isc, and PA and NAS upregulated
the gene expression of Tph1, but CGA (10 µM), IAld (10 µM), and ILA (10 µM) down-
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regulated the gene expression of Tph1. The selected phytochemicals and Trp metabolites
upregulated the expression of Htr4 and Htr7 compared to those in the control group. PA
(10 µM) increased the Htr4/Htr7 ratio, while CGA decreased the Htr1a/Htr4, Htr1a/Htr7,
and Htr4/Htr7 ratios. These findings may help to elucidate the regulatory role of phy-
tochemicals and Trp metabolites in gut 5-HT signaling-mediated gut ion transport and
homeostasis, thereby providing potential dietary intervention options for improving gut
function and health in humans and animals.
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