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Abstract: Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases
the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic
variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in
the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to
the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to
improving cancer risk characterization and effective screening protocols. The only founder mutation
described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1∆9–12), and
its description focuses on the gene sequence, but no transcription profiles have been generated for
individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients
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and healthy individuals who were heterozygous for PV BRCA1∆9–12 by analyzing the differential
expression of both alleles compared with the homozygous BRCA1 control group using RT–qPCR, and
we describe the isoforms produced by the BRCA1 wild-type and BRCA1∆9–12 alleles using nanopore
long-sequencing. Using the Kruskal–Wallis test, our results showed a similar transcript expression of
the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control
group. An association between the recurrence and increased expression of both alleles in HBOC
patients was also observed. An analysis of the sequences indicated four wild-type isoforms with
diagnostic potential for discerning individuals who carry the PV BRCA1∆9–12 and identifying which
of them has developed cancer.

Keywords: hereditary breast and ovarian cancer; BRCA1; pathogenic variants; founder mutation;
BRCA1∆9–12; allele differential expression; isoform; nanopore sequencing

1. Introduction

The hereditary component of cancer contributes to 10% of all cancer cases globally.
Among these, hereditary breast and ovarian cancer syndrome (HBOC) is the most prevalent,
constituting 10% of all breast cancer (BrCa) cases and 20% of all ovarian cancer (OvCa)
cases [1–4]. HBOC is linked to heterozygous and germline pathogenic variants (PVs) in
cancer predisposition genes, with BRCA1 and BRCA2 being the most commonly affected
genes [5,6]. Identifying individuals with PVs in HBOC has the following significant im-
plications: (I) facilitating timely cancer diagnosis through high-risk screening methods
(e.g., magnetic resonance imaging for breast cancer); (II) enabling targeted therapies, such as
poly(ADP-ribose) polymerase (PARP) inhibitors, recognized as treatment options for major
HBOC-related malignancies; (III) implementing cancer risk reduction strategies, including
risk-reducing surgeries (mastectomy and/or salpingo-oophorectomy) or chemoprevention
with agents such as tamoxifen or raloxifene for breast cancer; and (IV) identifying asymp-
tomatic individuals at a high risk for cancer through cascade molecular diagnostics, thereby
enabling the effective prevention of cancer morbidity and mortality [1–7]. This comprehen-
sive approach underscores the importance of early detection, targeted interventions, and
personalized risk management strategies in mitigating the impact of HBOC.

Hence, systematically studying PVs within HBOC genes is paramount, with a focus on
understanding their implications for specific phenotypes. This entails exploring phenotype–
genotype correlations in terms of tumor risks, age of onset, differential responses to phar-
macological treatments, and drug resistance. Additionally, it is crucial to investigate how
these variants differ among populations based on their ancestry. For instance, certain PVs
may be prevalent within populations due to founder effects, which result in reduced genetic
diversity and an increased frequency of specific genetic variants [8,9]. The identification of
founder mutations facilitates the characterization of HBOC patients and enhances screening
strategies to identify individuals and families harboring PVs [10,11].

Within the Mexican population, a single BRCA1 founder PV has been documented:
the exon 9–12 deletion (BRCA1∆9–12) [1,11,12]. BRCA1∆9–12 arises from splicing between
the AluSp element in intron 8 and the AluSx element in intron 12, resulting in a significant
structural rearrangement and a loss of 15.4 kb of the BRCA1 gene [12]. This deletion
induces a premature stop codon in the mRNA, suggesting its likely deleterious nature [12].
Moreover, the exon 9–10 deletion is the most prevalent PV identified in Mexico, associated
with a heightened risk of high-grade epithelial ovarian cancer occurring at a younger age.
The exon 9–10 deletion also exhibits an extended favorable response to the PARP inhibitor
olaparib for recurrent ovarian cancer [1,11–13].

However, there is a dearth of studies elucidating the mechanisms underlying these
clinical discrepancies compared to observations with other pathogenic variants (PVs).
Specifically, there is a notable absence of research on the isoforms generated from both the
BRCA1 wild-type (WT) and BRCA1∆9–12 (∆9–12) alleles. The evidence suggests that tran-
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scripts of BRCA1 PVs may evade nonsense-mediated mRNA decay (NMD) mechanisms
via isoform splicing events or the upregulation of WT isoforms, thereby rescuing the ho-
mologous recombination (HR) response pathway involving BRCA1. This phenomenon has
been associated with resistance to PARP inhibitors and platinum-based therapies [14–19].
However, it remains unknown whether the BRCA1∆9–12 mutation generates a translatable
transcript or modulates the expression of WT isoforms.

This study aimed to characterize the transcript expression of both WT and ∆9–12 alleles
in cancer patients (CaH) and healthy individuals (HH) heterozygous for the BRCA1∆9–12 PV,
as well as their relation to the homozygous WT status of healthy individuals not carrying
the PV (Ctrl). Our preliminary findings suggest that specific expression profiles may
hold significance in the early detection of this founder PV in asymptomatic individuals,
offering a cost-effective alternative via qPCR for diagnosing and monitoring asymptomatic
individuals (Scheme 1).
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Scheme 1. Schematic description of experimental design. (A) Total RNA was extracted from
peripheral blood lymphocytes obtained from 20 healthy individuals who were homozygous for
the BRCA1WT allele, corresponding to the control group (C); 10 healthy individuals who were
heterozygous for the BRCA1∆9–12 variant (HH); and 10 cancer patients who were heterozygous
for the BRCA1∆9–12 variant (CaH), the last two as study groups. (B) A gene expression analysis
between alleles in the three groups was performed with a real-time PCR (RT–qPCR) and ∆CT analysis.
(C) A transcription variant analysis of the alleles of the three groups was performed using the Oxford
Nanopore target sequencing. Each individual was marked with a barcode, allowing for tracking in
each sample. (D) Isoform profiling of the expression pattern in the studied groups.

2. Results
2.1. Clinical Characteristics of the Patient Cohort

The characterization of the patient cohort was an important goal of this study and the
starting point for establishing a correlation between transcription allele differences across
the groups. The main clinical features were described in relation to tumor pathological
characteristics, treatment, disease-free survival time, olaparib maintenance treatment, and
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recurrence (Table 1). The cohort comprised 11 female patients, all of whom were in the
CaH group. One patient (CA11) lacked a description of her clinical characteristics, since her
treatment was conducted at another institution and her clinical history was unavailable;
her cancer diagnosis and BRCA1 PV confirmation were corroborated. Among the following
10 patients, the age of primary tumor presentation ranged from 30 to 49 years. Four out of
ten patients with available clinical histories were diagnosed with ovarian cancer as their
first tumor, while the remaining six were diagnosed with breast cancer. The subsequent
development of a secondary primary tumor was reported in three of the breast cancer
patients and two of the ovarian cancer patients. The disease-free survival period ranged
from 27 to 115 months, and six patients were reported to have cancer recurrence, none
of which were breast–ovary related. Treatment for four of the six breast cancer patients
included radiotherapy, and radioresistance was not reported in any of the patients (Table 1).

Table 1. Clinical characteristics of cancer patients carrying BRCA1∆9–12 mutation.

1◦ Primary Tumor 2◦ Primary Tumor

Patient

A
ge

of
D

iagnosis
(Years)

Tum
or

Localization

H
istology

*

C
linicalStage

A
ge

of
D

iagnosis
(Years)

Tum
or

Localization

H
istology

*

C
linicalStage

D
isease-Free

Survival
(M

onths)

O
laparib

R
ecurrence

R
adiotherapy

CA1 49 Ovary HGSC IV 55 Thyroid PTC IA 72 27c Hepatic No

CA2 36 Left
Breast

IDC SBR
TN ki67

40%
IA NA 27 NA NA No

CA3 35 Right
Breast

Grade 2
IDC IIB 51 Left

Breast

IDC SBR 8
TN ki67

30%
IA 90 NA NA Yes

CA4 53 Ovary HGSC IV 56 Thyroid PTC IA 60 60c Retroperitoneum No

CA5 43 Right
Breast

IDC SBR 9
TN ki67

80%
IIA NA 27 NA NA Yes

CA6 30 Left
Breast

IDC SBR 9
RH+

Her2+ ki
67 15%

IIA NA 115 NA NA No

CA7 44 Ovary HGSC IIIC NA 36 36c Hepatic No

CA8 35 Left
Breast ILC TN EX 39 Right

Breast EX EX no 3c Cervical Yes

CA9 49 Ovary HGSC IC NA 32 No Inguinal lymph
node No

CA10 32 Right
Breast

IDC SBR 9
TN IA 40 Ovary HGSC IIIB 86 8c Retroperitoneum

and Breast Yes

HGSC—high-grade serous carcinoma; IDC—infiltrating ductal carcinoma; PTC—papillary thyroid carcinoma;
SBR—Scarff–Bloom–Richardson grading; TN—triple negative; HR—hormonal receptor; Her2+—human epi-
dermal growth factor receptor protein positive; ILC—infiltrating lobular carcinoma; NA—not applicable;
EX—external diagnosis/treatment. * The availability of clinical information in records has led to limitations in its
presentation. No clinical information was available.
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2.2. Analysis of BRCA1WT and BRCA1∆9–12 Transcript Expression in the ∆9–12 Heterozygous
Groups and Controls

To describe and establish whether transcriptional differences were present between
the allele expression among the patients who presented with HBOC and those who did not
develop cancer and to compare it to that of the healthy Ctrl, we designed a specific set of
primers to differentiate between the WT and ∆9–12 transcripts according to the size of the
amplicons: 210 bp for the WT and 127 bp for the ∆9–12 transcripts (Figure 1A,B).
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Figure 1. The expression of the BRCA1WT allele is increased in comparison to that of the BRCA1∆9–12

allele in healthy and cancer-heterozygous patients. (A) A depiction of the 24 exons composing the
BRCA1WT transcript (green). Primers for the amplification of the wild-type product recognize the
junction of exons 6 and 7 (forward) and exon 10 (reverse), as depicted with yellow squares. RT–PCR
produced a 210 bp amplification product of the wild-type transcript. (B) The deletion of exons 9–12
of the BRCA1 gene (green) leads to a mutant BRCA1∆9–12 transcript (yellow). The primers used for
amplification of the mutant transcript recognized the junction of exons 6 and 7 (forward) and the
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junction of exons 8 and 13 (reverse). RT–PCR produced a 127 bp amplification product of the
BRCA1∆9–12 transcript. (C) Endpoint PCR amplicons from 10 control samples (C1–C10) amplified
with a mixture of one forward primer and two different reverse primers. The presence of a single
210 bp band indicates homozygosity for the BRCA1WT allele. GAPDH was used as a housekeeping
control gene. (D) Endpoint PCR amplicons of samples from five patients with cancer (CA1–CA5) and
five healthy heterozygotes (P1–P5) amplified with a mixture of one forward primer and two different
reverse primers. The presence of two bands at 210 bp and 127 bp indicates heterozygosity for BRCA1
and amplification of the BRCA1WT and BRCA1∆9–12 transcripts. GAPDH was used as a housekeeping
control gene; GAPDH controls from CaH and HH samples were run on different gels. (E) Sanger
sequencing electropherogram of a BRCA1WT control sample, corroborating the joining of exons 8 and
9 in the amplification product. (F) Sanger sequencing electropherogram of a BRCA1∆9–12 sample,
corroborating the joining of exons 8 and 13 in the amplification product. (G) A comparison of the
differential expression between the BRCA1 alleles among the three groups of samples evaluated by
RT–PCR and analyzed using ∆CT. There were differences between all the box data of the groups
except for the BRCA1WT allele in the HH group, which showed expression levels similar to those of
the homozygous control group. All bar comparisons were performed between alleles, not between
study groups. The range of differences is indicated by the following values: * < 0.05, *** < 0.001. In
the case of no difference, ns—not significant (p > 0.05) was used.

To ensure primer specificity, a primer mix reaction was utilized where the characteristic
band pattern expected for each group could be visualized, one band in the Ctrl group
showing the BRCA1 homozygous WT status, and two bands in both the CaH and HH
groups exhibiting the BRCA1 heterozygous WT and ∆9–12 alleles (Figure 1C,D). Sanger
sequencing confirmed that exons 8–9 were spliced in the 210 bp WT amplicon and that
exons 8–13 were spliced in the 127 bp ∆9–12 amplicon (Figure 1E,F). Transcript amplification
using a single primer set was also performed to verify a single amplicon for each sample
(Supplementary Figure S2), along with the visualization of representative samples of each
group in one electrophoresis gel. The samples were amplified by the primer mix reaction
and the specific primers for the WT and ∆9–12 transcripts.

Once the specificity of our two sets of primers was verified, we used an RT–qPCR
approach to evaluate the transcript expression. We found differences in the WT transcript
expression between the groups (χ2 = 12.37; p = 0.002; d.f. = 2), except between the WT
transcripts in the Ctrl (0.0094 ± 0.0028) and HH (0.0075 ± 0.0024) groups. The ∆9–12 allele
also showed significant differences in gene expression (χ2 = 13.91; p = 0.003; d.f. = 3). The
∆9–12 allele showed a lower expression in HH (0.0043 ± 0.0017) and CaH (0.0026 ± 0.0013)
than in their wild-type counterparts (HH: 0.0075 ± 0.0024; CaH: 0.0044 ± 0.0025). A
significant difference was also observed between the ∆9–12 allele in CaH and the WT allele
in HH (W = 2; p = 0.0003) (Figure 1G). The above patterns were not observed in any of the
heterozygous groups, where the ∆9–12 allele expression remained below that of the WT
allele; even though a slight increase was observed in the HH group, the difference was not
significant. Equal WT transcript expression between HH and Ctrl individuals, as evaluated
in lymphocytes, has not been reported, which makes this result an interesting antecedent
for healthy PV heterozygous individuals.

2.3. Correlation of the WT and ∆9–12 CaH Transcript Expression Alleles with Clinical Characteristics

After identifying the differences in transcript expression for each allele in the CaH
group, different clinical characteristics were evaluated to identify correlations suggesting
new information about this PV and the patient’s clinical presentation. We compared
previously related clinical characteristics to changes in allele-specific expression patterns
for PVs in BRCA1 [20]. Cancer recurrence was the only clinical characteristic showing
significant differences for the WT and ∆9–12 alleles (Figure 2A,B). These findings provide
a new observation not described for BRCA1 PVs, adding to their genotype–phenotype
description and concluding our evaluation of the transcription among HBOC patients.
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Figure 2. Differential expression of both BRCA1 transcripts is associated with recurrence in patients.
The relative expression of the samples (n = 9) was assessed using the ∆CT method, and the differences
between groups were evaluated using the Wilcoxon test in conjunction with a Bonferroni adjustment.
All analyses were performed using R; statistical significance was set at p < 0.05. Statistically significant
differences are marked with * p < 0.05. A red square indicates where an overexpression is observed.
(A) Association between clinical characteristics and relative expression of BRCA1WT allele. * p = 0.032
is noted in the red square. (B) Association between clinical characteristics and relative expression of
BRCA1∆9–12 allele variant. * p = 0.016 is noted in the red square.

2.4. Isoform Expression from the BRCA1∆9–12 Allele

Another main objective of this work was to identify and study the isoforms and
sequence heterogeneity in our group’s samples. To achieve this goal, we amplified the
full-length BRCA1 WT and ∆9–12 isoform sequences by endpoint PCR using a single
primer set that was complementary to the adjacent region of the starting and stop codons
(Figure 3A,B). Once the amplicons were obtained from each sample, our first approach
to confirm the amplification of the BRCA1 allele isoforms was to select representative
samples from each group to be observed in a 1% gel (Figure 3C) and corroborated by
Sanger sequencing of the purified bands, which corresponded to the expected weight of
these transcripts and the joint of exons 8 and 9 for the WT strain and exons 8 and 13 for the
∆9–12 strain (Figure 3D).

We sequenced all the amplified isoforms from the samples using nanopore technology.
The identified isoforms were analyzed using principal component analysis (PCA) of the
top 79 expressed isoforms; the samples were separated by differentiation state, mostly
along PC1. The expression patterns correlated and grouped the samples according to
heterozygous ∆9–12 (CaH and HH) and homozygous WT (Ctrl) characteristics, as the
PCA plot exhibited greater variance (35.49%) between these groups (Figure 4A). The CaH
and HH groups clustered differently from each other on the PC3 axis, although with
less variance (8.3%), as visualized in a 3D PCA plot (Figure 4B). A second analysis was
undertaken using a heatmap of dissimilarity. Hierarchical clustering showed two different
areas, where the Ctrl samples clustered within themselves with high similarity, and in the
other panel, the CaH and HH samples correlated in another area (Figure 4C). This plot
suggests that the transcriptional changes in isoform expression can distinguish between
the Ctrl group and individuals with the BRCA1∆9–12 PV (CaH and HH), and confirms the
differential expression of WT isoforms when the PV BRCA1∆9–12 is present.
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Figure 3. Complete amplification of BRCA1 variants for nanopore sequencing. (A) The location of the
BRCA1WT transcript (green) and its exons are indicated by primers targeting exons 2 and 24. The
BRCA1WT sequence product corresponds to 5802 bp. (B) The BRCA1∆9–12 transcript (yellow) with
the deleted exons shows the same primer localization at exons 2 and 24, with a decreased length
of the amplified product of 2164 bp. (C) An endpoint PCR of the control samples (representative
samples C3 and C4), healthy heterozygous samples (representative sample P6), and cancer patient
samples (representative sample CA9) showing the transcripts and isoforms amplified with the primers
described in A and B, with emphasis on the 5802 bp and 2164 bp amplicons. (D) Sanger sequencing
corroboration of the BRCA1WT sample C3 sequence (left) from the purified band corresponding
to an expected size of 5802 bp. The chromatogram of the BRCA1WT amplification showed the
splicing of exons 8 and 9. Sanger sequencing of the sequences of BRCA1WT and BRCA1∆9–12 in the
sample CA9 (right) of the purified bands corresponding to expected sizes of 5802 bp and 2164 bp,
confirming in the chromatograms the join of exons 8 and 9 in the BRCA1WT and exons 8 and 13 in
BRCA1∆9–12 amplicons.
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Figure 4. Identification of differential isoform expression. The samples are color-coded as Ctrl (green),
HH (yellow), and CaH (red). (A) Principal component analysis (PCA) of WT and 9–12 isoform
expression between Ctr, HH, and CaH samples. The plot shows the two principal components. The
Ctr samples differentiated from the HH and CaH samples on the PC1 axis with a greater variance
(35.49%). (B) Principal component analysis in 3D (PCA 3D), where the samples are visualized in the
plot with a third axis, PC3, where HH samples aggregate in the positive values of the axis, separating
from CaH samples, which aggregate in the negative values of the axis. The P7 sample can be observed
separately from the Ctr group on the PC2 axis. (C) Heatmap of dissimilarity matrix for clustering
BRCA1 isoform expression. The color intensity on the map corresponds to the Euclidean distance of
samples based on normalized counts of the BRCA1 isoforms, where white indicates high similarity
and dark blue indicates low similarity in the isoform’s expression across individuals. (D) Heatmap of
isoform z scores of the top differentially expressed isoforms between groups.

2.5. Potential Predictors of PV and Cancer

Four isoforms were among the 79 BRCA1 isoforms identified according to changes in
expression. Two of them, isoform 1 (ENST00000352993.7) and isoform 2 (ENST00000484087.6),
were overexpressed in samples with BRCA1∆9–12 (CaH and HH) and underexpressed in the
Ctrl samples, allowing the differentiation between heterozygotes for PV BRCA1∆9–12 and
healthy homozygotes for BRCA1. Isoforms 3 (ENST00000700082.1) and 4 (ENST00000618469.2)
differentiated the samples within the CaH group from the HH group by being overexpressed
in the HH samples and subexpressed in the CaH samples (Figure 4D). These results suggest
that these isoforms could be used to differentiate the population of PV heterozygotes and
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identify those who develop cancer, making them potential biomarkers for identifying BRCA1
PV patients.

3. Discussion

It is estimated that 10% of newly diagnosed breast and/or ovarian cancers are
hereditary [21]. HBOC is an inherited predisposition to breast and/or ovarian cancers
due to specific gene mutations [22]. The most important genes associated with hereditary
breast and ovarian cancers are BRCA1 and BRCA2 [23–25]. Therefore, testing individuals
for specific gene mutations and detecting PVs provides clinical information for genetic
counseling, enabling directed oncological management and risk reduction surgeries [26,27].
These advantages expanded when PV detection increased for a founder mutation, such as
BRCA1∆9–12, in the population [9,10,12].

The benefits of identifying PVs in the population are not limited to the gene but also
to the isoforms transcribed from it. The presence of specific variants, such as BRCA12288delT

and BRCA1185delAG, has been shown to have a substantial impact on patients who are
heterozygous for these PVs, as resistance to PARP inhibitor treatment and platinum in the
tumor via the rescue of the HR pathway has been explained through isoforms [17,18,28].
However, even though studying the mechanisms by which the isoforms provide molecular
advantages in tumor resistance, and thus tumor survival, has been key to understanding
their relevance in the context of cancer, their identification and description are the first
fundamental steps in scaling this knowledge.

3.1. Group Identification through Specific Allele Transcript Expression

This study describes the changes in the expression of heterozygous allele transcripts
of the pathogenic variant 9–12. We aimed to characterize the population that carries this PV
and identify differences in its transcription, which may lead to significant clinical benefits
from the observed correlations. The correlation between transcription and clinical associa-
tions in BRCA1 PVs has been previously explored [20,29,30]. However, this work addresses
this issue from an integrative perspective, including heterozygous healthy individuals,
patients, healthy individuals, their non-PV counterparts, and allele-specific transcript as-
sessment. The HH group and the individual allele evaluation provided information that
allowed us to identify equal WT transcript expression between the two healthy groups,
independent of their PV status, and observe the subexpression of the WT transcript only in
cancer patients. Considering these results, the prospect of a biomarker for the follow-up of
families with PV should be explored.

Given the limited cohort size and the absence of data that continue to inform us of
changes in expression during cancer development, we cannot claim that gene compensation
is the biological mechanism of this result. However, this approach should be explored as a
possible strategy for healthy heterozygote cells to counter the haploinsufficiency of their
WT allele [31,32] and avoid carcinogenesis, as has been proposed for biological models such
as zebrafish, Drosophila, mice, human breast cancer cell cultures, and colorectal cancer
tissues [32–34].

3.2. Isoform Pattern and Clinical Correlation

Among the isoforms that allow the study groups to be differentiated, isoforms 1, 2, and
4 have translational potential. Regardless, only isoform 4 was described as 100% similar to
the BRCA1 variant 1 protein. This suggests that isoform 4 can potentially rescue the HR
repair pathway, as observed in other BRCA1 VPs [15], possibly influencing the similarity
observed in the allele-specific transcript analysis. Therefore, functional analyses need to be
performed to investigate the effect of this isoform at the transcript and protein levels.

In summary, this work significantly contributes to describing the genotypic character-
istics of the BRCA1∆9–12 PV at the transcriptional level and proposes two main strategies
for diagnostic tools: the use of changes in transcript expression and the use of four isoforms
with biomarker potential. To translate these results to clinical practice, the further evalua-
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tion of patients and their healthy relatives in a larger cohort and a prospective follow-up are
needed to delineate when expression levels change between the two groups. Subsequent
research into the biological mechanism by which WT allele expression changes when cancer
occurs should be conducted. It is fundamental to continue describing the new isoforms
identified during this project, not only for their translation potential but also to offer a
breakthrough in the characterization of Hispanic populations.

4. Materials and Methods
4.1. Sample Collection

This study included a total of 40 RNA samples, 11 of which came from leukocytes of
CaH of the Hereditary Cancer Clinic of the National Cancer Institute (INCan) in Mexico and
nine from HH of the patients’ families; all 20 samples were heterozygous for PV ∆9–12. The
BRCA1∆9–12 mutation was confirmed in all the participants, and complete gene sequencing
confirmed no other mutation in either allele; these results were published by Fragoso in
2019. Familiar extensions for diagnosis and family consultation were followed at INCan.
Informed consent was obtained from all groups. The BRCA1 Ctrl yielded the remaining
20 RNA samples. All the samples were collected under the Ethics in Research Committee
of the National Cancer Institute (CEI/1036/16). The sample selection workflow followed
throughout the study is described in the supplementary figures (Supplementary Figure S1).

4.2. RNA Extraction

RNA was extracted from the cells using Direct-zolTM RNA MiniPrep (ZYMO, Irvine,
CA, USA, ref. R2052) according to the manufacturer’s instructions. Total RNA was quanti-
fied using a NanoDrop 3300 (Thermo Scientific, Waltham, MA, USA), and the OD260/280
ratio was determined. The RNA integrity number (RIN) was determined using an Agi-
lent Bioanalyzer 2100 with an RNA 6000 Nano Assay (Agilent Technologies, Santa Clara,
CA, USA).

4.3. cDNA Synthesis and Endpoint PCR Assay

Two different protocols were used, considering the purpose of the amplified tran-
scripts. Protocol 1 aimed to obtain the amplicons of a partial region of the BRCAWT and
BRCA1∆9–12 transcripts for expression evaluation by RT–qPCR, and Protocol 2 aimed to am-
plify the complete sequence of the transcripts and their isoforms for analysis by nanopore
sequencing.

4.3.1. Protocol 1

cDNA synthesis was performed using a High-Capacity cDNA Reverse Transcription
Kit (Thermo Scientific, Waltham, MA, USA, ref. 4368814) according to the manufacturer’s
instructions.

The endpoint PCR was carried out with a total volume of 20 µL with 1X DreamTaq
Buffer, 0.06 U of DreamTaq DNA Polymerase (Thermo Scientific, Waltham, MA, USA, ref.
EP0701), a concentration of 0.4 µM dNTPs (Thermo Scientific, Waltham, MA, USA, ref.
R0181), 0.4 µM of each primer (two sets of primers were used to amplify each transcript
allele; detailed information is given in the primers section), and 1 µL of cDNA. The thermal
cycling conditions were 94 ◦C for 5 min, followed by 40 cycles of 94 ◦C for 30 s, primer
annealing at 59 ◦C for 30 s, primer extension at 72 ◦C for 45 s, and a final extension at 72 ◦C
for 7 min. PCR products were resolved in a 1% agarose gel using electrophoreses for 45 min,
and a 1 Kb ladder was used (Axygen, Central Ave Union City, CA, USA, ref AXY1016). This
method corresponds to the results presented in Figures 1 and 2. The band size comparison
between alleles in the studied groups can be seen in Supplementary Figure S3.

4.3.2. Protocol 2

cDNA and PCR endpoints were synthesized from 500 ng of RNA using the SuperScript
IV One-Step RT–PCR System (Thermo Scientific, Waltham, MA, USA, ref. 12594100)
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following the manufacturer’s instructions for protocol amplification and the BRCA1 Jong
ex1/12 primer set, as detailed in the primers section. The conditions used for the thermal
cycler program were as follows: reverse activation, 55 ◦C for 10 min; RT inactivation/initial
denaturation, 98 ◦C for 2; amplification cycle, 36 cycles of 98 ◦C for 10 s, 60 ◦C for 30 s,
and 72 ◦C for 3:30 min; and a final extension at 72 ◦C for 5 min. The final products were
purified using a QIAquick PCR Purification Kit (QIAGEN, Germantown, MD, USA, ref.
28106) and resolved on a 1% agarose gel using electrophoresis for 45 min. A 1 Mb ladder
was used (Rockland Immunochemicals, ref MB-204-0500). Representative amplicons from
this protocol are presented in Figure 3 and Supplementary Figure S4.

4.4. Primers

All primers were custom-designed by the researchers, except those used for amplifying
the complete sequence of BRCA1 (Table 2), which were obtained from the primer set
published by Lucy C. de Jong et al. in 2017 [15].

Table 2. Primers used to amplify complete and partial BRCA1 cDNA sequences.

Protocol 1

Symbol Sequence 5′-3′ Bases Amplicon (bp) Transcript
amplificated

F BRCA1 Ex.6-7 TCC TTG CAG
GAA ACC AGT CT 20

210 Partial BRCA1WT

R BRCA1 Ex.10 TTC ATC CCT GGT
TCC TTG AG 20

F BRCA1 Ex.6-7 TCC TTG CAG
GAA ACC AGT CT 20

127 Partial BRCA1∆9–12

R BRCA1 Ex.8-13 CAT GGT ATC CCT
CTG CCA ATT 21

Protocol 2

Symbol Sequence 5′-3′ Bases Amplicon (bp) Transcript
amplificated

F BRCA1 Jong ex1 GCG CGG GAA
TTA CAG ATA AA 20 5802 Complete BRCA1WT

R BRCA1 Jong ex24 AAG CTC ATT CTT
GGG GTC CT 20 2164 Complete BRCA1∆9–12

4.5. RT–qPCR Assay

Ten microliters of RT–qPCR was performed using Maxima SYBR Green/ROX qPCR
Master Mix (Thermo Scientific, Waltham, MA, USA, ref. K0222) and 0.16 µM of each primer.
The thermal cycling conditions were 94 ◦C for 5 min, followed by 40 cycles of 94 ◦C for
30 s, primer annealing at 59 ◦C for 30 s, primer extension at 72 ◦C for 45 s, and a final
extension at 72 ◦C for 7 min. Relative gene expression levels were assessed using ∆CT for
the different sample groups, with normalization to the housekeeping gene GAPDH. This
method is shown in the graphic in Figure 3.

4.6. GridION Library Preparation and Sequencing

We selectively included only PCR samples with concentrations exceeding 200 ng,
comprising 10 control samples, seven carrier samples, and eight patient samples. The
concentrations of these PCR products were determined using a Qubit dsDNA HS Assay
Kit (Molecular Probes, Life Technologies, Eugene, OR, USA, ref. Q32851) according to the
manufacturer’s guidelines. Each sample was subjected to amplification, yielding several
amplicons of varying sizes that ranged from 200 to 6000 bp.
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For sample preparation, we used the NEBNext Ultra II End Repair and dA-tailing Kit
(New England BioLabs Inc., Ipswich, MA, USA). Native barcoding of the amplicons was
conducted in a 20 µL reaction volume, which included 1.5 µL of DNA-repair amplicons,
2.5 µL of Native Barcode EXP-NBD104 and EXP-NBD114 (Oxford Nanopore Technologies,
Oxford, Oxfordshire, UK), 10 µL of NEBNext Ultra II Ligation Master Mix (New England
Biolabs, Ipswich, MA, USA), 0.5 µL of NEBNext Ligation Enhancer (New England Biolabs,
Ipswich, MA, USA), and 5.5 µL of nuclease-free water. The mixture was incubated for
20 min at 20 ◦C, followed by 10 min at 65 ◦C. Subsequently, the barcoded amplicons
were pooled.

For sequencing, we used the Ligation Sequencing Kit 1D (SQK-LSK110) according
to the manufacturer’s protocol for adapter ligation. The library was then purified using
AMPure XP beads and quantified using a Qubit dsDNA HS Assay Kit. We loaded 50 ng
of the library onto an R.9.4.1 flow cell for sequencing on the GridION platform (Oxford
Nanopore Technologies, Oxford, Oxfordshire, UK) over a period of 72 h. ONT MinKNOW
software (Oxford Nanopore Technologies, Oxford, Oxfordshire, UK) was used to collect
the raw sequencing data. We confirmed the availability of active pores upon receipt and
immediately before the sequencing run. Detailed information is given in the primers
section. This method is shown in Figure 4.

4.7. Bioinformatic Analysis

Fastq reads were trimmed for adapters and quality with Pychopper. The trimmed
reads were then mapped to the genome GRCh38 built using minimap2 in splice mode
using the parameters -ax splice --MD. The quantification of BRCA1 transcripts (known and
novel) was performed by mapping to the annotated gencode.v44 transcripts with salmon
and the long-read parameter --ont --noLengthCorrection. Differential transcript expression
was performed with DESeq2. An unsupervised method was applied.

4.8. Statistical Analysis

Considering the sample size, a normal distribution was assessed using the Lilliefors,
Kolmogorov–Smirnov, and Shapiro–Wilk tests. The results confirmed that the samples did
not show a normal distribution (p > 0.05). Therefore, we analyzed RT–qPCR differences
among the three groups (cancer patients, healthy heterozygotes, and controls) using a non-
parametric Kruskal–Wallis test. Furthermore, we employed a paired Wilcoxon test with a
Bonferroni adjustment as a post hoc analysis to assess pairwise differences. The differential
expression of both BRCA1 transcripts in the clinical aspects of CaH was evaluated using
the Wilcoxon test in conjunction with the Bonferroni adjustment. The differential statistic
was established at p < 0.05, and the range of differences was indicated by the following
values: * < 0.05, ** < 0.01, ***< 0.001.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms25126773/s1.
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