Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties
Abstract
:1. Introduction
2. Results
2.1. General Characteristics
2.2. Biochemical Parameters
2.3. Expression of Genes Involved in Steatohepatitis Pathogenesis
2.4. Concentration of Soluble Vascular Adhesion Protein-1
2.5. Analysis of Fat Deposition in Liver Tissue
2.6. Histopathological Analysis
2.7. Oxidative Stress and Antioxidative Defenses in Liver Tissue
2.8. Type 3 Deiodinase Measurement
2.9. Endoplasmic Reticulum Stress and Cell Apoptosis in Liver Tissue
2.10. Krebs Cycle Enzymes in Liver Tissue
3. Discussion
4. Materials and Methods
4.1. Animals and Ethical Procedures
4.2. Study Design
4.3. Experimental Diets
4.4. Ornithine Aspartate and Vitamin E Treatment
4.5. Biochemical Analysis
4.6. Real-Time PCR
4.7. Histopathological Analysis
4.8. Quantitative Analysis of Liver Fat Deposition
4.9. Soluble Vascular Adhesion Protein-1 Measurements
4.10. Oxidative Stress Parameters, Antioxidative Defenses, and Krebs Cycle Enzymes
4.10.1. Carbonyl Measurement
4.10.2. Malondialdehyde (MDA) Levels
4.10.3. Sulfhydryl Content
4.10.4. Antioxidative Defenses
4.10.5. Glutathione Peroxide, Glutathione Reductase, and Superoxide Dismutase Activities
4.10.6. Activities of Glutamate Dehydrogenase (GDH), α-Ketoglutarate Dehydrogenase (α-KGDH), and Succinate Dehydrogenase (SDH)
4.11. Western Blot Analysis
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M. Non-alcoholic fatty liver disease—A global public health perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Worm, N. Beyond Body Weight-Loss: Dietary Strategies Targeting Intrahepatic Fat in NAFLD. Nutrients 2020, 12, 1316. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018, 67, 123–133. [Google Scholar] [CrossRef]
- Marschner, R.A.; Roginski, A.C.; Ribeiro, R.T.; Longo, L.; Alvares-da-Silva, M.R.; Wajner, S.M. Uncovering Actions of Type 3 Deiodinase in the Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Cells 2023, 12, 1022. [Google Scholar] [CrossRef]
- Longo, L.; Tonin Ferrari, J.; Rampelotto, P.H.; Hirata Dellavia, G.; Pasqualotto, A.; Oliveira, C.P.; Thadeu Schmidt Cerski, C.; Reverbel da Silveira, T.; Uribe-Cruz, C.; Álvares-da-Silva, M.R. Gut Dysbiosis and Increased Intestinal Permeability Drive microRNAs, NLRP-3 Inflammasome and Liver Fibrosis in a Nutritional Model of Non-Alcoholic Steatohepatitis in Adult Male Sprague Dawley Rats. Clin. Exp. Gastroenterol. 2020, 13, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Marschner, R.A.; Arenhardt, F.; Ribeiro, R.T.; Wajner, S.M. Influence of Altered Thyroid Hormone Mechanisms in the Progression of Metabolic Dysfunction Associated with Fatty Liver Disease (MAFLD): A Systematic Review. Metabolites 2022, 12, 675. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef]
- Butterworth, R.F.; Canbay, A. Hepatoprotection by L-Ornithine L-Aspartate in Non-Alcoholic Fatty Liver Disease. Dig. Dis. 2019, 37, 63–68. [Google Scholar] [CrossRef]
- Canbay, A.; Sowa, J.P. L-Ornithine L-Aspartate (LOLA) as a Novel Approach for Therapy of Non-alcoholic Fatty Liver Disease. Drugs 2019, 79, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Nagashimada, M.; Ota, T. Role of vitamin E in nonalcoholic fatty liver disease. IUBMB Life 2019, 71, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Alcala, M.; Calderon-Dominguez, M.; Serra, D.; Herrero, L.; Ramos, M.P.; Viana, M. Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice. PLoS ONE 2017, 12, e0186579. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, P.; Gill, R.K.; Saksena, S.; Alrefai, W.A. Disturbances in Cholesterol Homeostasis and Non-alcoholic Fatty Liver Diseases. Front. Med. 2020, 7, 467. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Stewart, A.G.; Woodman, O.L.; Ritchie, R.H.; Qin, C.X. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front. Pharmacol. 2020, 11, 603926. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, E.L.; Karim, S.; Newsome, P.N.; Lalor, P.F. Inhibition of vascular adhesion protein-1 modifies hepatic steatosis. World J. Hepatol. 2020, 12, 931–948. [Google Scholar] [CrossRef]
- Li, H.Y.; Lee, W.J.; Chen, M.J.; Chuang, L.M. Change in vascular adhesion protein-1 and metabolic phenotypes after vertical banded gastroplasty for morbid obesity. Obes. Res. 2005, 13, 855–861. [Google Scholar] [CrossRef]
- Trivedi, P.J.; Tickle, J.; Vesterhus, M.N.; Eddowes, P.J.; Bruns, T.; Vainio, J.; Parker, R.; Smith, D.; Liaskou, E.; Thorbjørnsen, L.W.; et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut 2018, 67, 1135–1145. [Google Scholar] [CrossRef]
- Weston, C.J.; Shepherd, E.L.; Claridge, L.C.; Rantakari, P.; Curbishley, S.M.; Tomlinson, J.W.; Hubscher, S.G.; Reynolds, G.M.; Aalto, K.; Anstee, Q.M.; et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J. Clin. Investig. 2015, 125, 501–520. [Google Scholar] [CrossRef]
- Vidart, J.; Axelrud, L.; Braun, A.C.; Marschner, R.A.; Wajner, S.M. Relationship among Low T3 Levels, Type 3 Deiodinase, Oxidative Stress, and Mortality in Sepsis and Septic Shock: Defining Patient Outcomes. Int. J. Mol. Sci. 2023, 24, 3935. [Google Scholar] [CrossRef] [PubMed]
- Ogawa-Wong, A.; Carmody, C.; Le, K.; Marschner, R.A.; Larsen, P.R.; Zavacki, A.M.; Wajner, S.M. Modulation of Deiodinase Types 2 and 3 during Skeletal Muscle Regeneration. Metabolites 2022, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Marschner, R.A.; Banda, P.; Wajner, S.M.; Markoski, M.M.; Schaun, M.; Lehnen, A.M. Short-term exercise training improves cardiac function associated to a better antioxidant response and lower type 3 iodothyronine deiodinase activity after myocardial infarction. PLoS ONE 2019, 14, e0222334. [Google Scholar] [CrossRef] [PubMed]
- Wajner, S.M.; Goemann, I.M.; Bueno, A.L.; Larsen, P.R.; Maia, A.L. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J. Clin. Investig. 2011, 121, 1834–1845. [Google Scholar] [CrossRef] [PubMed]
- Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 2009, 1787, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, I.; Gottschalk, B.; Jarc, A.; Bresilla, D.; Rost, R.; Obermayer-Pietsch, B.; Graier, W.F.; Madreiter-Sokolowski, C.T. T3-induced enhancement of mitochondrial Ca(2+) uptake as a boost for mitochondrial metabolism. Free. Radic. Biol. Med. 2022, 181, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F.; Kircheis, G.; Hilger, N.; McPhail, M.J.W. Efficacy of l-Ornithine l-Aspartate for the Treatment of Hepatic Encephalopathy and Hyperammonemia in Cirrhosis: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Exp. Hepatol. 2018, 8, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.K.; Pillai, K.K.; Pal, S.N.; Akhtar, M.; Aqil, M.; Sharma, M. Effect of l-ornithine l-aspartate against thioacetamide-induced hepatic damage in rats. Indian. J. Pharmacol. 2010, 42, 384–387. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.B.R.; Longo, L.; Filippi-Chiela, E.; de Souza, V.E.G.; Behrens, L.; Pereira, M.H.M.; Leonhard, L.C.; Zanettini, G.; Pinzon, C.E.; Luchese, E.; et al. Ornithine Aspartate and Vitamin-E Combination Has Beneficial Effects on Cardiovascular Risk Factors in an Animal Model of Nonalcoholic Fatty Liver Disease in Rats. Biomolecules 2022, 12, 1773. [Google Scholar] [CrossRef]
- Raab, W.P. Kaliopenic nephrosis: Protective action of L-ornithine-L-aspartate. Clin. Chim. Acta 1972, 39, 239–242. [Google Scholar] [CrossRef]
- Mailankot, M.; Jayalekshmi, H.; Chakrabarti, A.; Vasudevan, D.M. Effect of exogenous L-ornithine L-aspartate on ethanol induced testicular injury in Wistar rats. Indian. J. Clin. Biochem. 2009, 24, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, M.; Sánchez-Vera, I.; Sevillano, J.; Herrero, L.; Serra, D.; Ramos, M.P.; Viana, M. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity 2015, 23, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Menke, A.L.; Driessen, A.; Koek, G.H.; Lindeman, J.H.; Stoop, R.; Havekes, L.M.; Kleemann, R.; van den Hoek, A.M. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 2014, 9, e115922. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Lechón, M.J.; Donato, M.T.; Martínez-Romero, A.; Jiménez, N.; Castell, J.V.; O’Connor, J.E. A human hepatocellular in vitro model to investigate steatosis. Chem. Biol. Interact. 2007, 165, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, A.; Viegas, C.M.; Tonin, A.M.; Busanello, E.N.; Grings, M.; Moura, A.P.; Leipnitz, G.; Wajner, M. Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: A possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sci. 2013, 93, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol. Biol. 1998, 108, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, M.Y.; Markesbery, W.R. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci. Lett. 2001, 302, 141–145. [Google Scholar] [CrossRef]
- Browne, R.W.; Armstrong, D. Reduced glutathione and glutathione disulfide. Methods Mol. Biol. 1998, 108, 347–352. [Google Scholar] [CrossRef]
- Wendel, A. Glutathione peroxidase. Methods Enzymol. 1981, 77, 325–333. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Glutathione reductase. Methods Enzymol. 1985, 113, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Marklund, S.L. Product of extracellular-superoxide dismutase catalysis. FEBS Lett. 1985, 184, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.R.; Mirandola, S.R.; Assuncao, N.A.; Castilho, R.F. Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: Involvement of mitochondrial glutamate metabolism. J. Neurosci. Res. 2012, 90, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Tretter, L.; Adam-Vizi, V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci. 2000, 20, 8972–8979. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.C.; Ruitenbeek, W.; Berden, J.A.; Trijbels, J.M.; Veerkamp, J.H.; Stadhouders, A.M.; Sengers, R.C.; Janssen, A.J. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin. Chim. Acta 1985, 153, 23–36. [Google Scholar] [CrossRef]
- Fuziwara, C.S.; Kimura, E.T. High iodine blocks a Notch/miR-19 loop activated by the BRAF(V600E) oncoprotein and restores the response to TGFbeta in thyroid follicular cells. Thyroid. Off. J. Am. Thyroid. Assoc. 2014, 24, 453–462. [Google Scholar] [CrossRef]
Biochemical Parameters | |||||
---|---|---|---|---|---|
Variables # | Control | MASLD | LOLA | VitE | p * |
AST (U/L) | 76.14 a (±12.0) | 142.1 b (±68.7) | 108.5 b (±36.0) | 105.5 b (±33.5) | <0.05 |
ALT (U/L) | 39.4 (±7.5) a | 79.9 (±16.0) b | 50.9 (±18.1) a | 54.0 (±12.3) a | <0.01 |
Glucose (mg/dL) | 121.3 (±7.4) a | 147.3 (±21.5) b | 150.6 (±15.3) b | 144.6 (±23.7) b | <0.05 |
Total cholesterol (mg/dL) | 90.3 (±7.9) a | 131.4 (±15.0) b | 108.9 (±51.5) a,b | 102.9 (±29.1) a,b | 0.03 |
LDL cholesterol (mg/dL) | 50.4 (±15.2) a | 86.9 (±12.6) b | 71.8 (±31.2) a,b | 74.8 (±24.7) a,b | 0.009 |
HDL cholesterol (mg/dL) | 27.3 (±5.4) a | 17.2 (±5.6) b | 17.3 (±4.4) b | 18.3 (±4.1) b | <0.001 |
Triglycerides (mg/dL) | 75.9 (±22.0) a | 120.9 (±20.1) b | 60.33 (±21.7) a | 64.7 (±26.9) a | <0.005 |
Gene expression of hepatic inflammatory markers | |||||
Il1b mRNA (Fold) | 1 (±0.59) a | 4.58 (±3.35) a,b | 3.21 (±2.44) a | 15.71 (±18.11) b | <0.05 |
Il6 mRNA (Fold) | 1 (±0.49) a | 8.78 (±4.31) b | 3.46 (±3.66) a,b | 10.32 (±10.19) b | <0.05 |
Il10 mRNA (Fold) | 1 (±0.08) a | 0.30 (±0.23) a,b | 1.23 (±1.20) | 0.17 (±0.15) b | <0.05 |
TNF-α mRNA (Fold) | 1 (±0.76) | 2.07 (±3.59) | 1.45 (±1.39) | 0.68 (±0.79) | 0.996 |
Vascular Adhesion Protein-1 | |||||
(ng/mL) | 2.05 (±1.25) a | 4.66 (±1.10) b | 3.92 (±0.84) b | 5.03 (±1.98) b | <0.05 |
Gene | Forward | Reverse |
---|---|---|
Il1b | CAGAACATAAGCCAACAAGTGGTATT | CACAGGGATTTTGTCGTTGCT |
Il6 | TCCTACCCCAACTTCCAATGCTC | TTGGATGGTCTTGGTCCTTAGCC |
Il10 | GAGAGAAGCTGAAGACCCTCT | TCATTCATGGCCTTGTAGACAC |
Tnfa | AAATGGGCTCCCTCTCATCAGTTC | TTGGATGGTCTTGGTCCTTAGCC |
Dio1 | ATTTGACCAGTTCAAGAGACTCGTAG | GGCGTGAGCTTCTTCAATGTA |
Dio3 | AACAGGGTGAAAGAGGGACATGGT | TAATCCCTTCTCCAAGGAGTCCTAGCCT |
Chop | CCAGCAGAGGTCACAAGCAC | CGCACTGACCACTCTTGTTTC |
Bcl2 | GGCATCTGCACACCTGGAT | GGGCCATATAGTTCCACAAAGG |
Ucp2 | TCAACTGTACTGAGCTGGTGACCTA | GGAGGTCGTCTGTCATGAGGTT |
Pgc1a | GGAGCAATAAAGCAAAGAGCA | GTGTGAGGAGGGTCATCGTT |
Gapdh | CTACCCCCAATGTATCCGTTGT | ATGTCATCATACTTGGCAGGTTTC |
CyPA | GTCAACCCCACCGTGTTCTTC | ACTTGCCACCAGTGCCATTATG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, L.; Marschner, R.A.; de Freitas, L.B.R.; de Bona, L.R.; Behrens, L.; Pereira, M.H.M.; de Souza, V.E.G.; Leonhard, L.C.; Zanettini, G.; Pinzon, C.E.; et al. Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties. Int. J. Mol. Sci. 2024, 25, 6839. https://doi.org/10.3390/ijms25136839
Longo L, Marschner RA, de Freitas LBR, de Bona LR, Behrens L, Pereira MHM, de Souza VEG, Leonhard LC, Zanettini G, Pinzon CE, et al. Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties. International Journal of Molecular Sciences. 2024; 25(13):6839. https://doi.org/10.3390/ijms25136839
Chicago/Turabian StyleLongo, Larisse, Rafael Aguiar Marschner, Laura Bainy Rodrigues de Freitas, Laura Renata de Bona, Luiza Behrens, Matheus Henrique Mariano Pereira, Valessa Emanoele Gabriel de Souza, Luiza Cecília Leonhard, Giulianna Zanettini, Carlos Eduardo Pinzon, and et al. 2024. "Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties" International Journal of Molecular Sciences 25, no. 13: 6839. https://doi.org/10.3390/ijms25136839
APA StyleLongo, L., Marschner, R. A., de Freitas, L. B. R., de Bona, L. R., Behrens, L., Pereira, M. H. M., de Souza, V. E. G., Leonhard, L. C., Zanettini, G., Pinzon, C. E., Lima, G. J. S. P., Schmidt Cerski, C. T., Uribe-Cruz, C., Wajner, S. M., & Álvares-da-Silva, M. R. (2024). Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties. International Journal of Molecular Sciences, 25(13), 6839. https://doi.org/10.3390/ijms25136839