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Abstract: This study examines the impact of zinc, copper, cobalt, iron, and manganese on cancer
development, considering their dual roles as potential promoters or inhibitors within tumorigenesis.
A comprehensive analysis of existing literature and experimental data is conducted to elucidate the
intricate relationship between these trace elements and cancer progression. The findings highlight
the multifaceted effects of zinc, copper, cobalt, iron, and manganese on various aspects of cancer
development, including cell proliferation, angiogenesis, and metastasis. Understanding the nuanced
interactions between these trace elements and cancer could offer crucial insights into tumorigenesis
mechanisms and facilitate the identification of novel biomarkers and therapeutic targets for cancer
prevention and treatment strategies. This research underscores the importance of considering the
roles of essential trace elements in cancer biology and may ultimately contribute to advancements in
precision medicine approaches for combating cancer.
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1. Introduction

Carcinogenesis is a complex and protracted progression characterized by a series
of stages. The conventional understanding posits that the development of cancer com-
prises a triphasic process, encompassing initiation, promotion, and progression stages.
It encompasses genetic mutations, genomic instability, heightened activity of oncogenes,
suppression of tumour suppressor genes, alterations in genetic material, and aberrations in
cellular metabolism [1,2]. The initiation and progression of carcinogenesis are influenced
by exogenous and endogenous factors, coupled with individual elements such as genetic
predisposition [3,4]. It can be inferred that the amalgamation of diverse risk factors exerts
the most significant impact on the evolution of cancer [4].

An extremely important group of exogenous carcinogenesis factors is the group of
heavy metals (HMs). In biological systems, heavy metals have been documented to impact
various cellular organelles and constituents, including the cell membrane, mitochondria,
lysosomes, endoplasmic reticulum, nuclei, and certain enzymes associated with metabolic
processes, detoxification mechanisms, and damage repair pathways. Metal ions have been
identified to engage with cellular components like DNA and nuclear proteins, inducing
DNA damage and structural alterations that can result in carcinogenesis [5,6].

Heavy metals such as arsenic, cadmium, chromium, and nickel are well-documented
carcinogens, but the focus of this article will be on the tumorigenic effects of copper, cobalt,
iron, zinc, and manganese. These metals are not only essential for various biological
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functions but also pose a risk of toxicity and carcinogenesis when present in abnormal
concentrations. Copper is known for its role in angiogenesis and metastasis [7,8], while
cobalt has been implicated in hypoxia signalling pathways that can promote tumour
growth [9]. Iron, through its participation in the Fenton reaction, can generate reactive
oxygen species (ROS) leading to oxidative stress and DNA damage [10,11]. Zinc plays
a crucial role in DNA synthesis and repair but can also influence cancer progression
depending on its concentration and cellular context [12]. Manganese, while essential for
enzymatic functions, has been associated with neurotoxicity and potential carcinogenic
effects through mechanisms that are still being elucidated [13].

The aim of this article is to compare the impact of selected heavy metals on carcinogen-
esis. We will focus on tumorigenesis induced by copper, cobalt, iron, zinc, and manganese.
Our goal is to gather and summarize information on the role of these metals in cancer
development, as they have not been collectively discussed in this context before. This
review seeks to summarize how these essential, yet potentially harmful elements contribute
to the complex process of carcinogenesis.

2. Methods and Search Criteria

To conduct a literature review on carcinogenesis and the relationship with heavy
metals, the following steps were undertaken.

2.1. Defining the Scope and Objectives

The review aimed to interstrand the mechanisms of carcinogenesis, with a particular
focus on the role of heavy metals. Specific heavy metals of interest included: zinc, copper,
cobalt, iron, and manganese.

2.2. Search Strategy

Comprehensive searches were conducted in multiple scientific databases, including
PubMed, Scopus, and Web of Science. Keywords used for the search included combinations
of terms such as: carcinogenesis, heavy metals, cancer, metal toxicity, zinc, copper, cobalt,
iron and manganese.

2.3. Inclusion Criteria

Peer-reviewed articles, studies published within the last 20 years, research focusing on
the biological mechanisms of heavy metals in carcinogenesis, and reviews or meta-analyses
on the topic.

2.4. Exclusion Criteria

Articles not available in English, studies with insufficient data on heavy metals, and
research focused on non-cancerous outcomes.

Each study was assessed for methodological quality including sample size, study
design, statistical analysis, and potential biases. High-quality studies were given more
weight in the synthesis of findings.

Data from the selected studies were synthesized to identify common terms and pat-
terns regarding the role of heavy metals in carcinogenesis. Mechanisms of action, such
as DNA damage, oxidative stress, and disruption of cellular signaling pathways, were
highlighted. Differences in the carcinogenic potential of different heavy metals were
also discussed.

3. The Influence of Specific Heavy Metals on the Carcinogenic Process
3.1. Zinc

The indispensability of zinc (Zn) for human physiology was conclusively determined
in 1963. Over the last five decades, remarkable progress has been witnessed in both the
clinical and fundamental aspects of understanding zinc metabolism in humans [8]. The
human body’s mass contains approximately 2–3 g of zinc, with skeletal muscle and bone
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accounting for around 57% and 29% of the total zinc content, respectively. The heart and
blood plasma are recognized to contain 0.4% and 0.1% of the body’s zinc, respectively.
Insufficient dietary intake, reduced absorption, or elevated zinc loss can lead to a state of
deficiency [10]. Reduced serum zinc levels have been observed in various cancer patients,
encompassing those with breast and prostate cancers [11].

Zinc, a micronutrient essential for all living organisms, plays a crucial role in various
biochemical pathways within human cells. One of these roles is that Zn forms associa-
tions with more than 2500 proteins, representing approximately 10% of the total human
proteome [10] and assumes a vital role as a structural constituent within structural motifs
termed “zinc fingers”, present in diverse RNA and DNA binding proteins. In this capacity,
zinc contributes to the preservation of structural integrity for a substantial portion of these
proteins [10,12]. Zinc is also indispensable for diverse enzyme activities, gene expression,
and critical cellular functions, including cellular proliferation. A noteworthy transcrip-
tion factor activated by zinc is the metal response element-binding transcription factor-1
(MTF-1), a protein featuring six zinc fingers and multiple domains. Metal regulatory tran-
scription factor-1 (MTF-1) functions as a zinc sensor, regulating the expression of genes
pivotal for zinc homeostasis and providing protection against metal toxicity and oxidative
stress (OS) [12]. Oxidative stress and heightened inflammatory cytokines are acknowl-
edged as significant contributing factors in numerous age-associated chronic diseases,
mutagenesis, and cancer [8].

Oxidative stress is characterized by an imbalance between the generation of free
radicals and reactive metabolites, commonly known as oxidants or reactive oxygen species
(ROS), and their removal through protective mechanisms termed antioxidants. Reactive
oxygen species are natural by-products of cellular metabolism, serving essential roles in
activating signaling pathways within animal cells in response to alterations in intra- and
extracellular environmental conditions [13]. In cells experiencing chronic inflammation, the
substantial release of ROS and reactive nitrogen species (RNS) attracts an increased number
of activated immune cells, thereby amplifying dysregulated processes, and culminating in
a preneoplastic state. If the production of cellular ROS/RNS surpasses the endogenous
antioxidant response, irreversible oxidative damage to nucleic acids, lipids, and proteins
may occur, inducing genetic and/or epigenetic alterations that disrupt the regulation of
oncogenes and tumour suppressor genes. The processes of oxidative stress and chronic
inflammation are intricately linked, and the inability to inhibit these processes may result
in genetic/epigenetic changes that initiate carcinogenesis (Figure 1) [14]. This illustrates
how important it is to maintain the correct level of zinc in the body. Physiological levels
of zinc demonstrate an inhibitory effect on the generation of reactive oxygen species,
encompassing superoxide anion (·O−), hydrogen peroxide (H2O2), and hydroxyl radical
(OH·), as well as reactive nitrogen species, including peroxynitrite. The direct antioxidant
function of zinc ions is associated with their interaction with thiol groups, thereby shielding
them from oxidative processes. Zn serves as a cofactor for the antioxidant enzyme Cu, Zn-
superoxide dismutase (SOD1), and its activity is attenuated in conditions of zinc deficiency.
Furthermore, studies indicate that zinc may indirectly modulate the functionality of other
antioxidant enzymes [15].

As mentioned earlier, diminished serum zinc levels have been observed in various
cancer patients, including those with breast, prostate, and endometrial cancers (Table 1) [16].

Due to the increased incidence of cancer in recent years, an attempt was made to
conduct in vitro tests. In the case of gastric cancer, a high frequency of mutations has been
associated with PI3K-Akt-mTOR signaling pathways, and genetic changes in this pathway
have had a direct impact on the progression of many cancers [17]. In the above study, the
created piperine-loaded ZnO nanocomposite (ZnO-Pip-NC) was found to have anticancer
activity in the case of gastric cancer [17].
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Table 1. Characteristics of breast, prostate, and endometrial cancers.

Type of Cancer Characterization Ref.

Breast cancer (BC)

Breast cancer, the most common cancer in women worldwide, has diverse types
based on hormone and human epithelial growth factor receptor 2 (HER2) status:
luminal A/B, HER2-positive, and triple-negative (TNBC). Zinc imbalance is linked
to breast cancer, with low serum zinc but high zinc in cancer tissues. Zinc plays a
crucial role in cancer progression, affecting cell transformation and tumor
aggressiveness by influencing zinc transporters.

[16,18,19]

Prostate cancer (PCa)

Prostate cancer ranks as the second most common cancer in men globally, with
high mortality rates, especially in cases with extracapsular disease. Unlike normal
and benign prostate tissue, malignant prostate tissue shows decreased zinc levels,
indicating a role for zinc alterations in cancer development. Zinc concentrations
drop early in prostate cancer progression, inhibiting citrate oxidation, a key
function of prostate cells. This loss of zinc may remove its inhibitory effects on
cancer cells, potentially promoting prostate cancer initiation and progression.

[20,21]

Endometrial cancer (EC)

Endometrial cancer is a type of cancer that originates in the lining of the uterus
known as the endometrium. Research has examined zinc metabolism in different
cancers, including endometrial cancer. Although a direct link between serum zinc
levels and endometrial cancer risk or progression hasn’t been established, studies
suggest zinc may influence pathways related to cancer development and
progression. Zinc is thought to possess anti-cancer properties by aiding in DNA
repair, regulating cell growth, and impacting immune function. However, further
research is required to comprehensively grasp the connection between zinc levels
and endometrial cancer.

[22]
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3.2. Copper
3.2.1. Copper’s Biological Role

Copper (Cu) plays a crucial role as a vital micronutrient in various fundamental
biological processes [23]. The primary source of copper for individuals is typically through
their diet, with organ meats and shellfish being among the most copper-rich food options.
The recommended daily intake of copper for adults is advised to be within the range of
0.8–2.4 mg/day [24]. Although only small amounts of copper are necessary in our diet, an
ample supply of this metal is essential to support the growth and development of the human
body [25]. It engages in various biological processes, such as lipid metabolism, energy
regulation, and the synthesis of neurotransmitters [26]. In normal conditions, effective
homeostatic mechanisms maintain a low concentration of intracellular copper ions [27].
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However, an imbalance in cellular metal ion levels, whether in excess or deficiency, can
be equally detrimental, as it may lead to an intensified rise in oxidative stress in both
scenarios [28]. An abundance of copper ions induces heightened cellular respiration,
leading to cytotoxic effects and eventual cell death as the levels progressively surpass a
critical threshold [27]. Copper plays a substantial role in altering the function of specific
types of superoxide dismutase (SOD) isoforms and other enzymes, including ceruloplasmin
(CP). These enzymes are either directly or indirectly engaged in maintaining the balance
of redox homeostasis [28]. Ensuring a balance of copper ions in biological systems is
crucial to preventing atherosclerosis and cardiovascular diseases associated with it [29].
Disruption in the regulation of copper levels is also believed to play a role in the process
of carcinogenesis [30]. The concentrations of copper ions can function as a vital indicator
of cancer progression [27]. Irregular accumulation of copper is noticeable in various
malignant tumours, and a connection has been identified between increased copper levels
in both serum and tissues and the development of multiple types of cancers [31]. Studies
on lung cancer, prostate cancer, breast cancer, stomach cancer, and thyroid cancers have
identified a notable elevation in serum copper ion levels among tumour patients compared
to those without tumours [32]. Additionally, a substantial increase in copper concentration
was detected in the serum, bile, and gallbladder tissue of individuals diagnosed with
gallbladder carcinoma [33].

3.2.2. Copper in Cancer

A growing body of preclinical studies suggests that copper is crucial for the ad-
vancement of metastatic cancer. Copper’s involvement may extend to tumour growth,
proliferation, epithelial–mesenchymal transition, and the formation of both the tumour
microenvironment and the pre-metastatic niche [34]. Copper was thought to exert a piv-
otal function in signalling pathways associated with receptor tyrosine kinase (RTK). The
activated RTK then triggers the phosphorylation of downstream proteins like extracel-
lular regulated protein kinases (ERK) and agammaglobulinemia tyrosine kinase (ATK),
ultimately resulting in migration and proliferation of cancer cells [35]. Moreover, copper-
induced ATK activation can subsequently accelerate the phosphorylation and redistribution
within the cell of forehead box O1a (FoxO1a) and forehead box O4 (FoxO4). This process
promotes tumour growth [32]. Furthermore, the amassment of this ion has been found to
correlate with cancer angiogenesis [27]. It is showed that copper exhibits precise spatial
regulation, moving from perinuclear regions of the cell towards the ends of extending
filopodia and traversing the cell membrane into the extracellular space during angiogenic
processes [36]. It has been shown that inflammatory cytokines, such as IL-17, drive copper
uptake by cells through the induction of the metalloreductase six-transmembrane epithe-
lial antigen of prostate-4 (STEAP4). IL-17-induced intracellular copper elevation leads to
the activation of ubiquitin (E3) ligase and X-linked inhibitor of apoptosis protein (XIAP).
Tumour metastasis is initiated by the copper uptake facilitated by STEAP4. Moreover
colitis-associated colon tumorigenesis is also facilitated by the promotion of STEAP4 [37].
It needs to be added that the absorption of copper through high affinity copper uptake
protein-1 (CTR1) triggers allosteric activation of mitogen-activated protein kinase (MEK1),
enhancing oncogenic signalling through the mitogen-activated protein kinase (MAP kinase)
pathway (Figure 2) [25]. Copper has the capacity to provoke oxidative stress (reactive
oxygen species, ROS) by generating highly reactive hydroxyl radicals through the Fenton-
like reactions [38]. Enhanced mitochondrial ROS production induced by copper leads to
complete autophagy, thereby promoting cancer cell survival. This phenomenon has been
confirmed by both in vitro and in vivo studies on cervical cancer [39]. Copper homeostasis
is also controlled, among other factors, by the Golgi-localized ATPases transporting Cu,
ATP7A, and ATP7B. Expanding tumours actively absorb copper and utilize ATP7A/B to
control the presence of this metal for oncogenic enzymes like LOX and LOX-like proteins,
enhancing the invasiveness of malignant cells. Additionally, the activity and movement
of ATP7A/B enable tumour cells to detoxify certain drugs used in the chemotherapy
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of various solid tumours [40]. In recent research, a newly discovered type of cell death
termed cuproptosis, dependent on copper, has been identified. This mechanism is distinct
from all previously known pathways leading to cell death [41]. Cuproptosis takes place
when copper binds to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, resulting
in the aggregation of proteins, proteotoxic stress, and, ultimately, cancer cell death [42].
Nevertheless, the influence of cuproptosis on malignant tumours remains incompletely
comprehended from a clinical standpoint [30]. In investigations concerning the anticancer
efficacy of copper (II) complexes and other metallic coordination compounds on breast
and lung cancer cells, the copper (II) complex displayed encouraging cytotoxic potency. Its
comparable toxicity to cisplatin, the standard chemotherapeutic agent, indicates its poten-
tial as an alternative anticancer therapeutic. Moreover, the copper (II) complex exhibited
significant cytotoxicity against cancer cells, underscoring its potential utility in anticancer
interventions [43]. Recent in vitro and in vivo studies have further elucidated that the
anticancer activity of metal compounds, such as copper (II) complexes via intercalative
mechanisms, is characterized by their ability to recognize, bind, and induce DNA damage
in lung cancer cells treated with complex (2), thereby prompting apoptosis-mediated cell
death [43,44]. Furthermore, the combination of the copper (II) complex with cisplatin,
another chemotherapeutic agent, manifested synergistic effects, suggesting the promise of
this combination as an efficacious anticancer therapeutic strategy [43,45].
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Int. J. Mol. Sci. 2024, 25, 6842 7 of 17

3.3. Cobalt

Cobalt (Co) is a vital trace element for the human body, existing in both organic and
inorganic forms [46]. The main purpose of cobalt in the human body revolves around its
involvement in cobalamin (Cbl), also known as vitamin B12 [12]. That is why cobalt plays
a vital role in the regulation of red blood cell production and why it is crucial to uphold
adequate levels of cobalt in the human body, as a deficiency in this element can result in
anaemia [47]. It also plays a significant role in the synthesis of amino acids and certain
proteins in nerve cells and contributes to the production of neurotransmitters essential
for the proper functioning of the body [46]. Cobalt is most recognized for its essential
involvement in alkylcorrinoid cofactors, leveraging the distinctive characteristics of the
cobalt-carbon bond to facilitate chemically intricate biotransformation’s [48]. It serves as
the coenzyme for many crucial enzymes e.g., methylmalonic-CoA mutase or methionine
synthase. These enzymes in humans play vital roles in maintaining health [12]. On the
other hand, inorganic cobalt in ion form is toxic to the human body, and prolonged retention
can lead to increasingly detrimental changes in cells [46]. Being exposed to it can result
in conditions such as asthma, hard metal lung disease, contact allergy, and an elevated
susceptibility to cancer [49]. Cobalt is commonly found in natural surroundings and can be
generated because of human-related activities [46]. The primary route of cobalt absorption
is through the respiratory system, although absorption through the skin is also possible [49].
People may encounter exposure to cobalt or its compounds in occupational settings where
cobalt is used or manufactured, through cobalt-containing orthopaedic joint replacements,
and from environmental sources [50]. Cobalt serves as the primary constituent in metal
prostheses used in hip arthroplasty. Research indicates that metal particles, predominantly
consisting of cobalt nanoparticles (CoNPs), can induce both systemic and local harmful
reactions, attributed to various physical and chemical factors [51]. Biological toxicity was
observed in cobalt nanoparticles, manifesting as the inhibition of osteoclast differentiation
and proliferation across various concentrations [52]. Moreover, the study showed that
nanoparticles of cobalt oxide have an impact on the electromechanical behaviour of heart
muscle cells (cardiomyocytes) and the regulation of intracellular calcium. It needs to be
added that these nanoparticles trigger the production of reactive oxygen species (ROS),
resulting in oxidative stress. This oxidative stress may be linked to DNA damage and
could negatively affect the functionality of cardiomyocytes [53]. Exposure of experimental
animals to metallic cobalt or cobalt compounds resulted in tumours in rats and/or mice
through various exposure routes and in several different tissue locations. Inhalation
exposure to metallic cobalt or cobalt sulphate led to tumours in the lungs, pancreas, adrenal
glands, and the hematopoietic system [50]. Alveolar/bronchiolar carcinomas in rodents,
whether occurring spontaneously or due to chemical exposure, bear resemblance to a
specific subtype of lung adenocarcinomas observed in humans. Oxidative stress is a key
factor in pulmonary carcinogenesis induced by cobalt metal dust (CMD) in rodents, and
these discoveries may have implications for understanding human lung cancers as well [54].
The impact of CoCl2 was also examined on numerous histone modifications at a global level.
It was found that in both human lung cancer cells (A549) and human bronchial epithelial
cells (Beas-2B), exposure to CoCl2 for 24 h increased the trimethylation of H3K4 and H3K27
through the activation of methyltransferases. Additionally, it elevated the trimethylation of
H3K9 and H3K36 by inhibiting the histone demethylation process. It has been shown that
cobalt ions disrupt the cellular epigenetic balance. Such changes could potentially result
in modified gene expression patterns and contribute to carcinogenesis [55]. Moreover, it
has been proven that the hypoxia-mimicking substance cobalt chloride (CoCl2) induces
an elevation in the expression of chemokine (C-C motif) ligand-18 (CCL18) [56]. CCL18
serves as an indicator of the M2 macrophage subset, contributing to the immunosuppressive
characteristics of the tumour microenvironment and playing a crucial role in cancer immune
evasion. As a result, higher levels of CCL18 in both the bloodstream and the tumour are
correlated with a poorer prognosis for the patient [57]. Furthermore, it has been confirmed
that CCL18 also promotes the migration of endothelial cells and angiogenesis in breast
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cancer [58]. It has been noted that the available data from studies on humans are insufficient
to assess the association between cancer in humans and exposure to cobalt and cobalt
compounds. However, there is sufficient evidence of carcinogenicity from experimental
animal studies and evidence from studies on the mechanisms of carcinogenesis, indicating
that the release of cobalt ions is a crucial event influencing carcinogenicity (Figure 3) [50].
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3.4. Iron

Iron (Fe) stands as the most plentiful metal within the human body, and no au-
tonomous life forms on Earth can thrive without it [59]. It is the predominant metal found
in the human brain and a vital trace element that governs various cellular processes [60].
Most of the iron in the human body is found in red blood cells. Despite the high amount of
iron in food, many individuals globally experience anaemia. Insufficient iron leads to a
hindered synthesis of iron-containing proteins and hampers cell growth [61]. Iron is also
necessary for the cellular proliferation as a cofactor of many enzymes [62]. While iron
is essential for supporting cell growth and fundamental functions, it can also pose harm
and carcinogenic risks [63]. Many medical disorders, like hemochromatosis, prolonged
infections with hepatitis B and C, viruses and the presence of endometriosis, are identified
as factors associated with an excess of iron, which increases the risk of developing cancer in
humans [64]. Moreover, an environment with an excess of iron encourages cellular evolu-
tion to become resistant to ferroptosis, constituting a significant factor in the development
of cancer [62]. Epidemiological research has shown a link between surplus iron levels
and higher rates of cancer occurrence and susceptibility. Meanwhile, laboratory investi-
gations have suggested that iron plays a role in the onset of cancer and fuelling tumour
expansion [65]. Iron is essential in the advancement and spread of tumours, primarily
because of its critical role in promoting the survival of tumour cells and restructuring the
microenvironment within the tumour [66].

An abundance of iron is closely linked to the development of tumours in various hu-
man cancer types, operating through diverse mechanisms. These mechanisms encompass
impacting signal transduction in cancer cells, influencing DNA replication, repair, and cell
cycle advancement, catalysing the creation of mutagenic hydroxyl radicals, and serving
as a vital nutrient for the growth of proliferating tumour cells [67]. It was discovered that
accumulation of iron facilitated by mitochondria contributes to the development of cancer
and the Warburg effect in osteosarcoma cells [68]. The Warburg Effect is characterized by
an elevated rate of glucose consumption and the preferential generation of lactate, even
when oxygen is present [69]. Simultaneously, inducing a deficiency of iron could emerge as
an innovative and effective approach in treating osteosarcoma [68]. Findings also revealed
that exposing colorectal cancer (CRC) cells to iron also stimulated the Warburg effect by
triggering reactive oxygen species (ROS) and activating nuclear factor erythroid 2-related
factor 2 (NRF2). Furthermore, this iron exposure demonstrated an increased resilience of
CRC cells to ferroptosis [70]. It was also found that excessive iron accumulation in the liver
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resulting from F-box and leucine-rich repeat protein-5 (FBXL5) ablation increases the risk of
hepatocellular carcinoma (HCC) progression. This condition triggers oxidative stress, tissue
damage, inflammation, and compensatory proliferation of hepatocytes [71]. Other studies
showed that an abundance of iron saturates the binding capacity of transferrin, leading
to the formation of non-transferrin-bound iron (NTBI). This NTBI can initiate free-radical
reactions, potentially contributing to oxidant-induced breast carcinogenesis. Additionally,
the surplus iron and the disturbance of iron metabolism by local oestrogen in the breast
contribute to the production of reactive oxygen species [72]. The data collected from the
National Health and Nutrition Examination Survey I and the National Health Evaluation
Follow-Up Study showed that increased iron consumption was linked to a heightened
risk of colon cancer across the entire colon in both males and females [73], while in other
sources we can find that the development of lung cancer is facilitated by iron-dependent
cyclin-dependent kinase-1 (CDK-1) activity through the activation of the GP130/STAT3
signalling pathway [74].

Macrophages also play a pivotal role in maintaining iron balance; they capture it
through the engulfment of aging red blood cells and serve as a significant reservoir of
accessible iron in the body [75]. Considering the various ways in which macrophages have
developed mechanisms to acquire, transport, store, and release iron, it can be hypothesized
that tumour cells may influence or instruct these macrophages to provide iron, thereby
facilitating the growth of the tumour [76]. Elevated concentrations of ferrous (Fe2+) iron
have the potential to produce reactive oxygen species through Fenton chemistry reactions.
These heightened levels can result in harm to mitochondria and genomic DNA, ultimately
fostering the development of cancer [60]. It should be noted that accumulation of iron has
been observed in tissues as they age and in diseases associated with the aging process [77].
This induction of senescence in the cancer microenvironment due to therapy is acknowl-
edged as one of the factors that propel tumour advancement [78]. Additionally, an excess
of iron might arise unintentionally in specific cancer patients, stemming from the treatment
of symptomatic anaemia through inappropriate iron-restoration therapies. This occurs
without prior assessment of the body’s iron status, and both conditions collaboratively
contribute to the exacerbation of the tumour [79]. Moreover, various infections can also
increase the risk of cancer development. Reactive oxygen/nitrogen species produced
during inflammation not only harm DNA but also impact other large biological molecules
like proteins and lipids, leading to impaired functionality. Transferrin, when oxidatively
damaged, releases iron ions that can potentially initiate Fenton reactions, producing more
reactive oxygen species in the process [80].

To support their growth, cancer cells demonstrate a heightened requirement for iron
when compared to normal, non-cancerous cells. This reliance on iron renders cancer cells
more susceptible to iron-induced cell death, known as ferroptosis [81]. It is a recently
identified type of controlled necrotic cell death and has been shown to be significant
in various conditions [82]. Ferroptosis is implicated in cancer development and could
potentially serve as a valuable approach for anti-cancer treatment. Various pieces of
evidence indicate that ferroptosis is pivotal in inhibiting tumorigenesis [59].

Moreover, the discussion on the role of Fe should include the function of the transferrin
receptor and its overexpression in cancer cells, which meets the heightened Fe demand in
these cells. Additionally, it should address the efforts to target this receptor for anticancer
therapy. Malignant cells frequently overexpress TfR1 due to its pivotal role in cancer cell
pathology, and this heightened expression is often linked to poor prognosis across various
cancer types. The increased TfR1 levels on malignant cells, combined with its extracellular
availability, capacity for internalization, and crucial role in cancer pathology, render this
receptor a promising target for antibody-mediated therapy [83].

Furthermore, new research has provided insights into the involvement of iron metabolism
in cancer stem cells (CSC). These findings propose that selectively addressing iron metabolism
in CSCs could enhance the effectiveness of cancer therapy [84]. The important role in anti-
cancer therapy is also played by iron chelators, which have exhibited strong anti-cancer
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properties in various types of cancers, as evidenced in both laboratory cell culture studies
and clinical trials [85].

3.5. Manganese

Manganese (Mn) is a vital metal found abundantly in the environment and is crucial for
various essential processes within the human body. Its importance lies in being incorporated
into protein structures, acting as a necessary cofactor. Without manganese, crucial functions
such as immune response, energy regulation, growth, blood clotting, and the body’s ability
to manage oxidative stress by-products would be greatly compromised [86,87]. Manganese
in its divalent form (Mn(II)), acting as a cofactor for mitochondrial superoxide dismutase
(MnSOD), helps eliminate oxygen free radicals like superoxide and hydroxyl radicals.
This role is vital for maintaining a balance between oxidative and antioxidative processes,
shielding against oxidative stress and its harmful effects. Additionally, studies suggest that
at lower concentrations, Mn(II) may protect against the toxic effects of cadmium (Cd) by
virtue of its antioxidative properties and its ability to hinder the uptake of this heavy metal
into cells [88].

Within cells, free radicals form naturally as part of cellular functions like mitochondrial
processes, alongside being generated by external factors such as exposure to ionizing
radiation. An imbalance between the creation of free radicals and the body’s capacity to
counteract them with antioxidants leads to oxidative stress, causing harm to vital cellular
structures—a phenomenon termed oxidative damage. This interplay of free radicals,
oxidative stress, and oxidative damage is widely acknowledged in various diseases, notably
cancer. Beyond their traditional role in cancer development via DNA mutation and genomic
instability, free radicals activate pathways that support cell growth, survival, and blood
vessel formation, all of which contribute to tumour progression [89]. Manganese superoxide
dismutase (MnSOD) significantly influences cancer development owing to its capability
to scavenge reactive oxygen species (ROS) [90]—manganese superoxide dismutase serves
as the initial defence mechanism against reactive oxygen species ROS by facilitating the
conversion of two superoxide molecules into oxygen and hydrogen peroxide (H2O2) [91,92].
This process involves a cyclic exchange of reduction and oxidation reactions at the active
metal site [91].

MnSOD has the capacity to directly influence several signalling pathways leading to
cell death in cancer, such as apoptosis, proptosis, and autophagy. Elevated levels of MnSOD
expression are linked to increased resistance to chemotherapy and radiation therapy across
various cancer types. Recently, the focus has shifted towards exploring posttranslational
modifications of MnSOD, particularly its acetylation at lysine residue 68, shedding light on
its crucial roles in advancing cancer progression. As the significance of the immune system
in cancer development garners increased attention, the role of MnSOD in the tumour’s
immune microenvironment has emerged as a crucial focus. Growing evidence suggests
that immune cells infiltrating tumours play a pivotal role in cancer progression, and their
activity is closely linked to MnSOD expression across various cancer types. A positive
correlation was discovered between MnSOD expression, CXCL8 levels, and neutrophil
infiltration, indicating the involvement of the “MnSOD-CXCL8-neutrophil recruitment”
pathway in cancer advancement. Additionally, studies have revealed a positive association
between MnSOD expression and the infiltration of CD68+ macrophages, potentially indi-
cating unfavourable outcomes in inflammation-induced lung adenocarcinoma. Moreover,
heightened MnSOD expression has been noted in aggressive triple-negative breast cancer
(TNBC) cases, suggesting it as an adverse prognostic indicator [93]. Assessing the levels of
SOD and peroxide-eliminating enzymes is vital for comprehending cellular variations in
response to vectors promoting SOD overexpression. Additionally, longstanding evidence
indicates that malignant cell lines typically exhibit lower MnSOD levels compared to their
normal or non-malignant counterparts [94]. Furthermore, there is ongoing exploration into
nanoparticles with potential applications in cancer detection. For instance, in a study con-
ducted by Du et al. (2020), a bi-modal nanopericle-targeted probe for prostate cancer was
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developed. This probe demonstrated specific accumulation within prostate cancer cells and
tumour tissues using optical imaging and MRI in a preclinical model. In vitro and in vivo
imaging outcomes suggest that Mn-Msn-Cy7 nanoprobes, which target prostate-specific
membrane antigen (PSA), hold promise for detecting prostate cancer [95].

As previously mentioned, at lower concentrations, Mn(II) may protect against the
toxic effects of cadmium (Cd) by virtue of its antioxidative properties and its ability to
hinder the uptake of this heavy metal into cells [88]. Prior exposure to small amounts of
Mn(II) has been shown to increase resistance to cadmium (Cd)−related fatalities and liver
damage in both mice and rats. Studies conducted on rat liver mitochondria exposed to
cadmium suggest that Mn(II) ions might shield against Cd-triggered lipid peroxidation
and the suppression of antioxidant enzymes [96]. Cadmium (Cd) pollution has emerged
as a significant worldwide issue, given its extensive presence and severe toxicity, posing
a serious risk to both human and animal well-being [97]. According to the International
Agency for Research on Cancer (IARC), cadmium falls under the category of Group I
carcinogens. Numerous epidemiological studies have consistently identified Cd as a
significant risk factor for the development of lung cancer [98]. Nevertheless, the relationship
between cadmium exposure and the emergence of tumours in alternate locations like
the kidney, breast, and prostate may also hold considerable importance. Moreover, the
heightened likelihood of cancer may extend beyond occupations characterized by elevated
exposure levels and could also manifest due to environmental factors, such as proximity
to locales involved in the processing of heavy metals [99]. Information demonstrates the
crucial role of Mn(II) and its protective effect against the Cd−inducted cytotoxic impacts
and carcinogenesis (Figure 4).
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3.6. Other Heavy Metals

Many other metals share certain common mechanisms of tumour formation, yet each
also possesses distinct pathways of its own. Many metal carcinogens such as arsenic, cad-
mium, beryllium or mercury have been observed to generate reactive oxygen species (ROS)
and elevate oxidative stress levels [5]. Additionally, cadmium and arsenic similarly induce
many processes that may stimulate carcinogenesis. They disrupt the action of antioxidants
such as glutathione (GSH), aggravating the cellular antioxidant capacity [5,100]. It should
be noted that these elements competitively interact with or substitute crucial metals like
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zinc and calcium within proteins, serving as a primary mechanism of cytotoxicity within
the cell [5,101]. Moreover, they inhibit cell autophagy, which is critical for tumour suppres-
sion. Arsenic reduces SLBP levels and subsequently leads to aberrant polyadenylation of
canonical histone mRNA, thus promoting carcinogenesis. Research revealed that Nickel
(Ni) also triggered a reduction in SLBP through a similar mechanism [5,100–102]. Ni is also
primarily observed to stimulate hypoxia-induced signalling pathways by competing with
iron in prolyl hydroxylase [5,103]. Studies have shown that arsenic can induce genotoxicity
by disrupting DNA repair and causing chromosomal instability in the cell, which may lead
to mutation of tumour suppressor genes such as p53 [104]. It also causes double strand
breaks, leading to chromosomal aberrations. On the other hand, the analysis indicated that
beryllium metal is improbable to function as a conventional non-threshold mutagen. While
effects on DNA repair and cellular transformation were noted, their significance in vivo
requires additional investigation. The correlation between beryllium exposure and its po-
tential to cause cancer is still being debated within the scientific community, with ongoing
research efforts underway [5,105]. Exposure to mercury is linked to cancer risk, although
conflicting data exist. Both cancerous and healthy tissues accumulate mercury differently,
potentially contributing to tumour development. Mercury’s influence on cell proliferation
and its impact on various signalling pathways suggest mechanisms for promoting carcino-
genesis. Additionally, the oxidative DNA damage, genotoxicity, and epigenetic effects of
mercury may play roles in cancer development [106,107]. There is a possibility that metals
may also potentially instigate tumorigenesis through a confluence of their impacts. A
thorough grasp of the mechanisms underlying the onset of metal-induced cancer can offer
valuable perspectives for therapeutic strategies targeting molecular pathways involved in
metal-induced carcinogenesis.

4. Conclusions

Heavy metals play a significant role in cancer formation. Numerous evidence suggests
that exposure to heavy metals, may contribute to cancer initiation and progression through
various mechanisms. Heavy-metal-induced carcinogenesis itself involves a complex inter-
action of genetic, epigenetic, and molecular mechanisms. These pathways often intersect
and interact, leading to increased carcinogenicity.

It is essential to underscore the critical role of chemical speciation in the biological ac-
tivity of metals. For instance, Cr (VI) is recognized as a human carcinogen, whereas Cr (III),
once thought to be an essential element, likely has no distinct biological function [108].
Metal salts, such as chlorides, used in cell and animal experiments are quickly transformed
in biological media into mixtures of complexes with biological ligands, including proteins,
which significantly alters their activity [109]. Furthermore, metal speciation in the environ-
ment dictates their bioavailability and toxicity to living organisms, including humans [110].
It is also crucial to note that the mechanisms of pro- or anti-cancer activities of soluble metal
complexes are likely very different from those of metal nanoparticles [111]. Research on
the connections between metal nanoparticles and cancer is rapidly advancing, though this
topic is largely beyond the scope of this review.

The carcinogenic potential of heavy metals is dose-dependent, with higher levels of
exposure correlating with increased cancer risk. Long-term exposure, even at low con-
centrations, can cumulatively increase the risk of cancer. Given the widespread presence
of heavy metals in the environment and industrial processes, limiting exposure is critical
to cancer prevention. This includes implementing stringent regulations, adopting safer
industrial practices, and promoting public awareness of potential sources of exposure. Like
early detection, due to the latency period between heavy metal exposure and cancer mani-
festation, early detection strategies are essential to ensure timely intervention and treatment.
Surveillance programs targeting high-risk populations can facilitate early diagnosis and
improve outcomes.

It is also important to note that metals play a crucial role not only in cancer develop-
ment but also in the formation of metastases. Metals significantly influence the metastatic
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process by affecting the function of various proteins and enzymes. Notably, an excess of
essential metals such as iron and copper are frequently linked to both carcinogenesis and
metastatic disease [112].

It is important to distinguish that essential trace elements (Fe, Cu, Zn, Mn, Co, Mo)
naturally contribute to cancer prevention or can promote cancer development when their
metabolism is dysregulated, which is the primary focus of this article. Conversely, metal
compounds can also cause cancer through environmental or industrial exposure. However,
this latter topic has been extensively covered in the literature, unlike the specific area we
have chosen to examine.

Although significant progress has been made in understanding the carcinogenicity
of heavy metals, knowledge gaps remain, particularly regarding the molecular mecha-
nisms underlying their carcinogenic effects. Further research is needed to elucidate these
mechanisms and develop targeted interventions for cancer prevention and treatment.

In summary, solving the problem related to the impact of heavy metals on carcinogen-
esis processes requires a multi-faceted approach including:

(1) Continuous monitoring of environment with increased levels of harmful substances
for humans;

(2) Standard use of protective equipment in accordance with procedures outlined by legal
regulations and public health initiatives;

(3) Ongoing monitoring of the health of individuals exposed to the harmful effects of
various factors (harmful elements) present in the environment, conducting periodic
(standard and additional) examinations;

(4) Early implementation of medical procedures to prevent disease development, limiting
the possibility of metastasis;

(5) Establishing a procedural algorithm depending on the diagnosed disease and the
impact of the harmful compound on the human body.

The above review of the literature on carcinogenesis provides a detailed overview
of the current knowledge on the role of heavy metals in carcinogenesis. Additionally,
it highlights areas where research is lacking or where results are inconsistent. Suggests
potential directions for future research to address these gaps. Informs you about risk
assessments and regulatory guidance on heavy metals.

It is a valuable source of information for researchers, professionals, and students
wishing to understand the relationship between heavy metals and cancer.

5. Study Limitations

Although a comprehensive review of carcinogenesis provides valuable insights, it also
has several limitations. The vast amount of research available may make it impossible to
comprehensively cover all relevant research, so the authors focused on specific aspects. Car-
cinogenesis involves many interacting factors, which makes it difficult to isolate the specific
impact of heavy metals. Genetic and environmental differences among individuals may in-
fluence susceptibility to heavy metal-induced carcinogenesis, complicating generalizations.
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