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Abstract: Anticancer peptides (ACPs) are bioactive compounds known for their selective cytotoxicity
against tumor cells via various mechanisms. Recent studies have demonstrated that in silico machine
learning methods are effective in predicting peptides with anticancer activity. In this study, we
collected and analyzed over a thousand experimentally verified ACPs, specifically targeting peptides
derived from natural sources. We developed a precise prediction model based on their sequence
and structural features, and the model’s evaluation results suggest its strong predictive ability for
anticancer activity. To enhance reliability, we integrated the results of this model with those from other
available methods. In total, we identified 176 potential ACPs, some of which were synthesized and
further evaluated using the MTT colorimetric assay. All of these putative ACPs exhibited significant
anticancer effects and selective cytotoxicity against specific tumor cells. In summary, we present a
strategy for identifying and characterizing natural peptides with selective cytotoxicity against cancer
cells, which could serve as novel therapeutic agents. Our prediction model can effectively screen
new molecules for potential anticancer activity, and the results from in vitro experiments provide
compelling evidence of the candidates’ anticancer effects and selective cytotoxicity.

Keywords: anticancer peptide; antitumor peptide; anticancer activity; selective cytotoxicity; in silico
analysis; in vitro experiments; machine learning

1. Introduction

Cancer remains a significant global health burden in the 21st century, ranking among
the leading causes of death alongside cardiovascular diseases in many countries [1]. Annu-
ally, tens of millions of individuals receive cancer diagnoses worldwide, and nearly half
of them succumb to the disease [2]. While surgical resection is a traditional and effective
therapy for many cancer types, various additional treatments have been developed to
reduce cancer cell growth and progression. These include radiation therapy, chemotherapy,
immunotherapy, hormone therapy, targeted therapy, and other approaches [3]. Among
them, chemotherapy, commonly known as “chemo”, is the most prevalent treatment that
uses drugs to slow cancer growth or eliminate cancer cells [4,5]. Multiple chemotherapy
drugs are in clinical use today due to the tendency of cancer cells to grow and divide faster
than healthy cells, making them ideal targets for these drugs. However, chemotherapy
often damages non-cancerous cells, causing side effects like fatigue, hair loss, lung tissue
damage, cardiac and renal problems, peripheral neuropathy, and infertility [6].
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Anticancer peptides (ACPs), typically consisting of 10–50 amino acids, are bioactive
molecules that induce cytotoxicity against cancer cells by disrupting and penetrating cell
or organelle membranes. Their selective cytotoxicity has been observed in various cancers,
positioning them as potential novel antineoplastic agents [7]. One notable difference
between tumor and healthy cells lies in the membrane’s electrical properties. Tumor
cells secrete large amounts of lactate through glucose and glutamine metabolism, which
results in a negatively charged surface [8,9]. ACPs leverage this difference to disrupt
cancer cell membranes via electrostatic interactions with their anionic components, thereby
selectively lysing cancer cells [10–12]. Compared to antibodies and small molecules, ACPs
are increasingly viewed as effective and safer alternatives to chemotherapy, offering high
selectivity, penetration, and easy modification. With cancer remaining a leading cause of
death globally, ACPs are attracting attention for their clinical potential as a new class of
antineoplastic drugs.

In recent years, in silico approaches have been employed to identify peptides with cy-
totoxicity against cancer cells. In 2013, Tyagi et al. introduced the AntiCP [13] model, which
discriminates between ACPs and non-ACPs based on limited available data. Hajisharifi
et al. later improved ACP prediction by combining Chou’s pseudo-amino acid composition
with other sequence features [14]. Vijayakumar and Lakshmi developed a novel feature
encoding method that identifies apoptotic domains in a peptide, enhancing sensitivity
in ACP detection [15]. Chen et al. created the iACP web tool, using a feature selection
algorithm to identify key features for ACP prediction [16]. Li and Wang investigated the
correlation between anticancer activity and amino acid sequence properties, including
amino acid composition, average chemical shift, and reduced amino acid composition [17].

Other researchers have developed models using genetic algorithms (GAs), SMOTE
(Synthetic Minority Oversampling Technique), and support vector machines (SVMs) to
enhance ACP prediction [18,19]. Wei et al. created ACPred-FL [20] using the minimum re-
dundancy maximum relevance (mRMR) method to select informative features, significantly
improving predictive performance. ACPred [21] used SVMs coupled with amino acid
and amphiphilic pseudo-amino acid compositions, revealing that hydrophobic residues
in the α-helix and cysteine residues in the β-sheet structures correlate with anticancer
activity. mACPpred [22] was created based on selected physicochemical and compositional
properties. Recently, AntiCP 2.0 [23], a refined version of the original model, was trained
using amino acid composition and an ETree classifier, achieving state-of-the-art accuracy.

Despite numerous methods for ACP identification, comprehensive evaluation via
in vitro or in vivo cytotoxicity assays remains limited. Therefore, a robust analysis platform
is needed that provides high-accuracy prediction and experimental validation. In this study,
we aim to develop a strategy for identifying natural peptides with cytotoxicity against
cancer cells through a combined computational and experimental approach.

2. Results

The workflow, outlined in Figure 1, includes several key steps: data collection and
preprocessing, analysis of ACP features, construction of a novel prediction model, evalua-
tion of the model’s performance, identification of natural candidate ACPs through multiple
predictive tools, and validation of ACPs’ selective cytotoxicity against specific cancer cells.
The details of each step are described below.

2.1. Data Collection and Preprocessing of Peptides with Anticancer Activity

As summarized in Table 1, a total of 1462 experimentally verified ACP sequences
were gathered from the literature [14,20,22,24] and public tools and databases including
ACPred [21], ACPred-FL [20], AntiCP [13], AntiCP2 [23], APD3 [25], CAMP [26], Can-
cerPPD [27], DADP [28], dbAMP [29], DRAMP [30], EnACP [24], mACPpred [22], and
SATPdb [31]. An additional 2875 non-ACP sequences were sourced from existing tools
for predicting ACPs, such as ACPred [21], ACPred-FL [20], AntiCP [13], AntiCP2 [23],
EnACP [24], and mACPpred [22].
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Figure 1. Flowchart depicting process for identifying natural peptides with selective cytotoxicity
against cancer cells.

Table 1. Data statistics for the training and testing datasets.

Dataset Number of ACPs Number of Non-ACPs

Raw data 1462 2875
Length 10–50 aa 1344 2361
Training dataset 804 1494

Testing dataset 41,489 natural peptides

To prevent overfitting, where the model becomes too well-suited to the training data,
redundant peptide sequences were removed from both positive and negative datasets.
Only sequences between 10 and 50 residues long were retained. The remaining dataset
comprised 804 ACP sequences and 1494 non-ACP sequences, resulting in a 1:2 ratio of
positive to negative sequences. At the time of analysis, this was the most comprehensive
data available.

To identify potential ACPs derived from natural sources, peptides ranging from 10 to
50 amino acids in length without an anticancer activity annotation were extracted from the
Universal Protein Knowledgebase (UniProtKB) [32], resulting in 41,489 sequences used as
the testing dataset.

2.2. Investigation of Sequence and Structural Features of Anticancer Peptides

Several studies have shown that sequence-based features are highly effective for pre-
dicting protein functions. In this research, amino acid composition (AAC) [33], dipeptides
composition (DPC) [34], and k-spaced amino acid pairs (CKSAAPs) [35] were employed to
differentiate ACPs from non-ACPs. After preprocessing, the occurrence frequencies of the
20 amino acids were calculated to identify consensus motifs in ACP sequences. Figure 2
compares the composition of essential amino acids between ACP and non-ACP sequences,
revealing that aliphatic residues glycine (G) and leucine (L) are enriched in ACPs. Aro-
matic amino acids phenylalanine (F) and tryptophan (W) are also more frequent in ACPs
compared to non-ACPs. Notably, lysine (K), a basic amino acid, shows the most statistically
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significant difference in frequency. This indicates that ACPs primarily interact with cancer
cells through electrostatic interactions with anionic phospholipids in the plasma membrane.
This is a key mechanism through which ACPs disrupt membrane integrity, leading to the
leakage of cellular contents [7,36].
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Additionally, cysteine (C), an amino acid with both polar and hydrophobic properties,
plays a critical role in protein structure and stability and is more frequently found in
ACPs. Studies have shown that cysteine-rich, cationic peptides with antimicrobial activity
also exhibit cytostatic effects against cancer cells [37–40]. Many of these ACPs, including
defensins and bacteriocins, have been reported to show low cytotoxic and hemolytic
effects on normal cells [41]. Conversely, amide and acidic amino acids like asparagine (N),
glutamine (Q), aspartic acid (D), and glutamic acid (E) are polar and negatively charged at
physiological pH. The results show that these amino acids are less prevalent in ACPs.

Analyzing amino acid pairs helps estimate the significance of different combinations
and their characteristics. For each peptide sequence, the composition of amino acid pairs
was measured at k-spaced intervals of zero, one, two, and three residues. Figure 3 shows
the frequency differences of 400 k-spaced amino acid pairs between ACPs and non-ACPs
using 20 × 20 matrices, highlighting enriched and suppressed pairs in red and green,
respectively. At zero spacing (k = 0), the pairs correspond to dipeptides and are enriched
with aliphatic (G, A, V, I, L) and basic (K, R, H) amino acids, such as AK, RR, GG, GL,
GK, LA, LL, LK, KA, KI, KL, and KK. When k = 1, pairs like AxK, GxL, IxK, LxK, KxA,
KxL, and FxK are significantly different between ACPs and non-ACPs. At k = 2, pairs such
as AxxK, GxxC, LxxL, LxxK, KxxA, KxxL, and KxxK show marked differences. At k = 3,
the pairs AxxxA, CxxxC, GxxxK, LxxxA, LxxxL, KxxxK, and FxxxL are enriched in ACPs.
The presence of sulfur-containing cysteine in various combinations across all k-spacings
indicates the importance of these pairs for distinguishing ACPs.



Int. J. Mol. Sci. 2024, 25, 6848 5 of 18

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 18 
 

 

glutamine (Q), aspartic acid (D), and glutamic acid (E) are polar and negatively charged 
at physiological pH. The results show that these amino acids are less prevalent in ACPs. 

Analyzing amino acid pairs helps estimate the significance of different combinations 
and their characteristics. For each peptide sequence, the composition of amino acid pairs 
was measured at k-spaced intervals of zero, one, two, and three residues. Figure 3 shows 
the frequency differences of 400 k-spaced amino acid pairs between ACPs and non-ACPs 
using 20 × 20 matrices, highlighting enriched and suppressed pairs in red and green, re-
spectively. At zero spacing (k = 0), the pairs correspond to dipeptides and are enriched 
with aliphatic (G, A, V, I, L) and basic (K, R, H) amino acids, such as AK, RR, GG, GL, GK, 
LA, LL, LK, KA, KI, KL, and KK. When k = 1, pairs like AxK, GxL, IxK, LxK, KxA, KxL, 
and FxK are significantly different between ACPs and non-ACPs. At k = 2, pairs such as 
AxxK, GxxC, LxxL, LxxK, KxxA, KxxL, and KxxK show marked differences. At k = 3, the 
pairs AxxxA, CxxxC, GxxxK, LxxxA, LxxxL, KxxxK, and FxxxL are enriched in ACPs. The 
presence of sulfur-containing cysteine in various combinations across all k-spacings indi-
cates the importance of these pairs for distinguishing ACPs. 

 
Figure 3. Comparison of frequencies of occurrence of 20 × 20 amino acid pairs separated by k resi-
dues between ACPs and non-ACPs. 

Protein folding, which involves the number, spatial arrangement, and connectivity 
of secondary structure elements, plays a crucial role in biological functions [42]. Using the 
PEP2D tool [43], the secondary structure elements composition (SSEC) was predicted for 
each peptide. Figure 4 compares the secondary structure compositions between ACPs and 
non-ACPs, revealing that ACPs are composed of 56.9% random coils, 31.9% alpha-helices, 

Figure 3. Comparison of frequencies of occurrence of 20 × 20 amino acid pairs separated by k
residues between ACPs and non-ACPs.

Protein folding, which involves the number, spatial arrangement, and connectivity of
secondary structure elements, plays a crucial role in biological functions [42]. Using the
PEP2D tool [43], the secondary structure elements composition (SSEC) was predicted for
each peptide. Figure 4 compares the secondary structure compositions between ACPs and
non-ACPs, revealing that ACPs are composed of 56.9% random coils, 31.9% alpha-helices,
and 11.2% beta-strands. The results show a significant difference in coil structures between
ACPs and non-ACPs, with ACPs showing fewer helices and more beta-strands. Furthermore,
the SSEC of the first and last 10 residues were analyzed separately. The C-terminus of ACPs
contains more beta-strands and fewer helices and coils compared to non-ACPs, while no
significant difference was found at the N-terminus. Studies investigating ACP structure and
biological activity [44–48] suggest that the alpha-helical structure plays a crucial role in the
anticancer effects and selective cytotoxicity of ACPs against cancer cells [49–51].

Finally, the amino acid and structural element compositions at the N- and C-terminus
of ACPs and non-ACPs were compared using the TwoSampleLogo version 1.21 [52]. Fig-
ure 5 shows position-specific AAC and SSEC for the first and last five amino acids. Posi-
tively charged amino acids lysine (K) and arginine (R) are enriched at the C-terminus of
ACPs, while nonpolar residues like phenylalanine (F), leucine (L), tryptophan (W), and
proline (P) are particularly abundant at the N-terminus. Previous studies [13,53] suggest
that the positively charged C-terminus plays a significant role in affecting tumor growth
and progression. In addition, position-specific SSEC analysis indicates a greater prevalence
of C-terminal beta-strands in ACPs compared to non-ACPs.
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N- and C-terminal regions between ACPs and non-ACPs. The uppercase letters in the upper part of
figure represent the amino acids in the peptide sequences, with blue indicating positively charged
amino acids and red indicating negatively charged amino acids. In the lower part, the uppercase
letters represent the secondary structure of the peptide sequences, where H stands for alpha-helix, E
stands for beta-sheet, and C stands for random coil.

Overall, the amino acid compositions and conformations of the C-terminal region
appear to play a critical role in determining a peptide’s ability to suppress cancer cells.

2.3. Construction of Prediction Models Based on Sequence and Structural Features

To evaluate the discrimination capability of the investigated features for distinguish-
ing ACPs from non-ACPs, we trained models using each feature subset and validated
them through five repetitions of five-fold cross-validation. Each peptide sequence was en-
coded using different feature encoding methods, including AAC, DPC, C1SAAP, C2SAAP,
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C3SAAP, SSEC, N-AAC, N-SSEC, C-AAC, and C-SSEC. The LIBSVM tool [54] was used
to build the SVM prediction models. Table 2 presents the results, where the AAC model
achieved satisfactory results, with a sensitivity of 89.00%, specificity of 89.48%, accuracy
of 89.31%, and a Matthews correlation coefficient (MCC) of 0.77 in distinguishing ACPs
from non-ACPs. The models based on CKSAAP features demonstrated exceptional perfor-
mance, with the C1SAAP model delivering the best results, showing a sensitivity of 90.00%,
specificity of 90.09%, accuracy of 90.06%, and an MCC of 0.79.

Table 2. Results from five-fold cross-validation experiments for models trained with single feature sets.

Model Sensitivity (%) Specificity (%) Accuracy (%) MCC *

AAC 89.00 ± 0.0038 89.48 ± 0.0030 89.31 ± 0.0022 0.77 ± 0.0046
DPC 88.71 ± 0.0030 88.96 ± 0.0025 88.87 ± 0.0008 0.76 ± 0.0014

C1SAAP 90.00 ± 0.0017 90.09 ± 0.0035 90.06 ± 0.0022 0.79 ± 0.0042
C2SAAP 89.70 ± 0.0046 89.53 ± 0.0044 89.59 ± 0.0033 0.78 ± 0.0068
C3SAAP 89.10 ± 0.0014 90.58 ± 0.0025 90.06 ± 0.0016 0.79 ± 0.0033

SSEC 62.29 ± 0.0140 64.08 ± 0.0167 63.46 ± 0.0070 0.25 ± 0.0083
N-AAC 73.26 ± 0.0052 74.67 ± 0.0055 74.18 ± 0.0036 0.46 ± 0.0065
N-SSEC 50.92 ± 0.1771 50.67 ± 0.1782 50.76 ± 0.0539 0.02 ± 0.0027
C-AAC 69.18 ± 0.0077 70.08 ± 0.0048 69.77 ± 0.0032 0.38 ± 0.0069
C-SSEC 55.50 ± 0.0997 54.42 ± 0.1230 54.80 ± 0.0468 0.10 ± 0.0344

* MCC: Matthews correlation coefficient. The values represent the mean and standard deviation of all measurements.

Unfortunately, the model trained using SSEC features could not effectively distinguish
ACPs from non-ACPs, resulting in suboptimal performance, with a sensitivity of 62.29%,
specificity of 64.08%, accuracy of 63.46%, and an MCC of 0.25. Additionally, the models
trained on N- or C-terminal amino acid or secondary structure element compositions also
yielded subpar sensitivity values (all below 70%) except for the N-AAC model, which
performed slightly better.

These findings suggest that sequence-based features are valuable for characterizing
peptides with anticancer activity. However, secondary structure elements provide limited
predictive power, possibly because they were approximated as substitutions.

2.4. Performance Evaluation of Model Trained by Hybrid Feature Sets

Based on previous results, models trained using sequence-based features demon-
strated efficient performance in classification on the training dataset. However, according
to prior research [22,23,55], models that incorporate hybrid feature sets generally achieve
higher average accuracy than those utilizing individual features. Consequently, to enhance
predictive capability, these features were combined both additively and in a more integrated
manner and applied to the SVM classifier.

As depicted in Table 3, the models that integrated sequence and structural characteris-
tics showed improved performance. The model utilizing a combination of AAC and DPC
features achieved a sensitivity of 91.02%, a specificity of 90.12%, an accuracy of 90.44%, and
an MCC of 0.80. Remarkably, the model combining AAC, DPC, and CKSAAP delivered the
best overall performance, with a sensitivity of 91.17%, a specificity of 90.83%, an accuracy
of 90.95%, and an MCC of 0.81. Although combining multiple sequence-based features
enhanced classification performance, models that integrated both sequence and structural
features still showed less satisfactory results. Specifically, the model combining AAC, DPC,
and SSEC yielded slightly reduced predictive performance, with a sensitivity of 84.3%,
specificity of 85.07%, accuracy of 84.8%, and an MCC of 0.68. Similar results were observed
when adding CKSAAP and SSEC to the combination.
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Table 3. Results from five-fold cross-validation experiments for models trained with hybrid feature sets.

Model Sensitivity (%) Specificity (%) Accuracy (%) MCC *

AAC + DPC 91.02 ± 0.0025 90.12 ± 0.0047 90.44 ± 0.0037 0.80 ± 0.0074
AAC + DPC +

SSEC 84.30 ± 0.0069 85.07 ± 0.0028 84.80 ± 0.0036 0.68 ± 0.0080

AAC + DPC +
CKSAAP 91.17 ± 0.0037 90.83 ± 0.0032 90.95 ± 0.0021 0.81 ± 0.0043

AAC + DPC +
CKSAAP + SSEC 86.52 ± 0.0047 87.07 ± 0.0033 86.88 ± 0.0015 0.72 ± 0.0030

* MCC: Matthews correlation coefficient. The values represent the mean and standard deviation of all measurements.

Five-fold cross-validation was used, and Figure 6 illustrates the comparison of receiver
operating characteristic (ROC) curves between the SVM models trained using all feature
sets. The area under the ROC curve (AUC) for each model was measured. In summary, the
model trained by combining sequence-based features such as AAC, DPC, and CKSAAP
significantly enhances the predictive performance for distinguishing between ACPs and
non-ACPs.
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2.5. Identification of Natural ACPs by Integrating Multiple Tools

Antimicrobial peptides have been discovered across a broad range of life forms;
however, only a small number of peptides with anticancer activity have been identified and
validated through biological experiments. We propose a strategy for identifying anticancer
peptides derived from the natural environment, which may offer cancer treatment with
fewer complications. To achieve more precise identification, various approaches were used
to predict anticancer activity from the natural peptide dataset sourced from UniProtKB [32].
These tools include ACPred [21], ACPred-FL [20], AntiCP [13], AntiCP2 [23], iACP [16],
mACPpred [22], and our proposed model.

As outlined in the methods section, a peptide was considered a candidate if it was
predicted as a positive case by all the aforementioned tools. In total, 176 natural peptides
out of 41,489 were considered potential ACP candidates (Supplementary Table S1). Table 4
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lists the top 20 candidates with the highest probability, with many of these peptides origi-
nating from plants, notably from species such as Oldenlandia affinis (OLDAF), Chassalia
parviflora (CHAPA), Psychotria brachyceras (PSYBR), and Psychotria leiocarpa (PSYLE) in
the Rubiaceae family, as well as Viola odorata (VIOOD), Viola hederacea (VIOHE), Viola
inconspicua (VIOIN), Melicytus dentatus (MELDN), and Melicytus chathamicus (MELCT)
in the Violaceae family. Additional candidates were identified in amphibians from the
Viperidae family, such as Crotalus durissus ruruima (CRODR), Crotalus viridis (CROW),
and Crotalus durissus terrificus (CRODU), and in species of tree frogs like Phyllomedusa
trinitatis (PHYTB) and Ranoidea caerulea (RANCA), as well as in bees and bacteria.

Furthermore, functional enrichment analysis was performed to identify the biological
themes present in the candidate ACPs. As shown in Figure 7, the results indicated that these
candidates were significantly enriched in Gene Ontology (GO) [56] terms related to defense
responses to bacteria and fungi, the killing of cells from other organisms, cell cytolysis,
degranulation, and hemolysis within the biological process (BP) category. The significantly
enriched GO terms in the cellular component (CC) category included extracellular region
and membrane, and for molecular function (MF), the enriched terms involved toxin and
hormone activity. These findings suggest that these peptides may play a crucial role in
regulating defense responses against various pathogens, likely aiding in the fight against
harmful bacteria and cancer cells.
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Table 4. Top 20 potential natural ACP candidates ranked by probability.

Entry Name Sequence ACPred ACPred-FL AntiCP AntiCP2 iACP mACPpred Our Model

KAB4_OLDAF GLPVCGETCVGGTCNTPGCTCSWPVCTRD 98.60% 98.11% 72.58% 96.00% 99.73% 98.17% 99.60%

CYO22_VIOOD GLPICGETCVGGTCNTPGCTCSWPVCTRN 99.50% 95.12% 71.77% 95.00% 99.90% 98.42% 99.70%

THN2_VISAL KSCCPNTTGRNIYNTCRFGGGSREVCASLSGCKIISASTCPSYPDK 99.50% 99.22% 70.56% 94.00% 99.52% 96.51% 96.60%

CYH3_VIOHE GLPVCGETCFGGTCNTPGCICDPWPVCTRN 98.70% 92.89% 71.77% 95.00% 99.80% 98.80% 99.50%

MYX_CRODR YKQCHKKGGHCFPKEKICIPPSSDFGKMDCRWRWKCCKKGSG 99.60% 99.22% 70.56% 91.00% 99.83% 94.71% 95.10%

KAB10_OLDAF GLPTCGETCFGGTCNTPGCSCSSWPICTRD 99.40% 98.11% 70.56% 90.00% 99.93% 98.48% 99.60%

PROTO_POLPI ILGTILGLLKSL 97.80% 99.22% 95.16% 54.00% 88.85% 98.35% 99.50%

CYO23_VIOOD GLPTCGETCFGGTCNTPGCTCDSSWPICTHN 99.70% 98.11% 70.56% 87.00% 99.93% 98.47% 99.60%

CYPLE_PSYLE SVTPIVCGETCFGGTCNTPGCSCSWPICTK 99.90% 99.22% 68.95% 87.00% 99.97% 96.86% 99.70%

CYPLD_PSYBR GLPVCGESCFGGTCNTPGCSCTWPVCTRD 98.10% 95.12% 72.18% 87.00% 98.28% 98.01% 99.50%

ATOX_PHYTB LTWKIPTRFCGVT 91.90% 99.22% 83.47% 50.00% 96.44% 96.64% 91.10%

CR12_RANCA GLLGVLGSVAKHVLPHVVPVIAEHL 99.30% 98.11% 70.16% 84.00% 99.79% 98.62% 86.10%

KAB14_OLDAF GLPVCGESCFGGTCNTPGCACDPWPVCTRD 88.70% 83.42% 71.77% 86.00% 99.76% 97.94% 99.00%

CYPLC_PSYLE GDLPVCGETCFGGTCNTPGCVCAWPVCTR 95.70% 98.11% 68.15% 83.00% 99.25% 98.21% 99.40%

CYPLB_PSYLE GDLPICGETCFGGTCNTPGCVCAWPVCNR 95.10% 98.11% 67.74% 83.00% 99.43% 97.87% 99.50%

GRAB_GRASX IGGIISFFKRLF 100.00% 99.22% 85.08% 69.00% 82.43% 96.20% 98.90%

CIRF_CHAPA AIPCGESCVWIPCISAAIGCSCKNKVCYR 99.60% 82.67% 75.81% 89.00% 99.80% 98.54% 99.50%

CYVNA_VIOIN GIPVCGETCTLGTCYTAGCSCSWPVCTRN 99.60% 98.11% 71.37% 82.00% 99.80% 98.12% 99.50%

PNG1_PANCL LNWGAILKHIIK 99.90% 99.22% 81.85% 58.00% 99.20% 98.22% 99.00%

PSMA3_STAAN MEFVAKLFKFFKDLLGKFLGNN 98.60% 97.98% 75.81% 82.00% 96.15% 87.97% 85.70%
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2.6. Validating the Selective Cytotoxicity of ACPs against Specific Cancer Cells

Although the anticancer activity of some peptides has been confirmed through in vitro
experiments, previous studies often evaluated the cytotoxic effects in only a few cell lines,
without exploring the underlying mechanisms of action in depth. To validate the anticancer
activity and selective cytotoxicity of the predicted ACPs, we synthesized and tested ten
putative ACPs, labeled 1 to 10, for their effects on inhibiting cell proliferation using over
30 cancer cell lines. This evaluation employed the MTT colorimetric assay and included
a diverse array of cancers such as skin, lung, colon, liver, breast, stomach, endometrial,
ovarian, hypopharyngeal, lymphoma, pancreatic, fibrosarcoma, prostate, brain, oral cavity,
and bone cancer, as summarized in Table 5. Additionally, two peptides, numbered 11
and 12, which were highly ranked in our model but not in others, were synthesized for
comparative analysis.

Table 5. List of putative ACPs selected for validation experiments.

Peptide UniProt ID Length Sequence

ACP1 KAB4_OLDAF 29 GLPVCGETCVGGTCNTPGCTCSWPVCTRD
ACP2 CIRF_CHAPA 29 AIPCGESCVWIPCISAAIGCSCKNKVCYR
ACP3 PSMA3_STAAN 22 MEFVAKLFKFFKDLLGKFLGNN
ACP4 CYMEK_MELDN 31 GSIPCGESCVWIPCISSVVGCACKNKVCYKN
ACP5 CYVNA_VIOIN 29 GIPVCGETCTLGTCYTAGCSCSWPVCTRN
ACP6 CIRB_CHAPA 31 GVIPCGESCVFIPCISTLLGCSCKNKVCYRN
ACP7 THN2_VISAL 46 KSCCPNTTGRNIYNTCRFGGGSREVCASLSGCKIISASTCPSYPDK
ACP8 MYX_CRODR 42 YKQCHKKGGHCFPKEKICIPPSSDFGKMDCRWRWKCCKKGSG
ACP9 CR12_RANCA 25 GLLGVLGSVAKHVLPHVVPVIAEHL

ACP10 CYPLE_PSYLE 30 SVTPIVCGETCFGGTCNTPGCSCSWPICTK
ACP11 UT114_PEA 15 EQQQQQQPQNRRFRE
ACP12 TL11_SPIOL 22 FKGGGPYGQGVTRGQDLSGKDF

As depicted in Figure 8 and Supplementary Table S2, the results confirmed the anti-
cancer effects and selective cytotoxicity of these putative peptides against human cancer
cells. The half-maximal inhibitory concentration (IC50) was calculated to measure the in-
hibitory capacity. Peptides 1 to 5 demonstrated broad cytotoxicity against various cancer
cell lines even at concentrations below 50 µM, impacting cells such as A431, H1299, A549,
HT29, HepG2, HEC-1-A, FaDu, HL-60, Daudi, Panc-1, and DU145. Peptides 6 and 7 showed
notable anticancer effects, particularly on liver and breast cancers, and also affected endome-
trial and hypopharyngeal cancer cells. Peptide 8 was crucial in selectively targeting SKOV-3
ovarian carcinoma, HT1080 fibrosarcoma, DU145 prostate cancer, and DBTRG brain tumor
cells. Peptide 9 was particularly effective against liver cancer cells, especially HepG2 and
Mahlavu, while Peptide 10 showed pronounced cytotoxicity in BT474 cells. Interestingly,
the DBTRG cell line was relatively resistant to these ACPs, except for Peptide 11, which
exhibited specific cytotoxicity against brain tumor cells at a concentration of 32.12 µM.
Peptide 12 also demonstrated anticancer activity not only against the triple-negative breast
cancer cell line MDA-MB-231 but also in the Burkitt lymphoma-derived Daudi cell line.

Additionally, we have generated dose–response curves for the combination of each
ACP and the cancer cell line that exhibited the most significant effect, as shown in
Supplementary Figure S1. The anticancer mechanisms and effects of ACPs can differ sig-
nificantly across various cancer cell lines due to the unique biological characteristics and
microenvironments of these cells. Many studies have demonstrated that ACPs can exert a
range of anticancer activities, such as inhibiting cell migration, suppressing angiogenesis,
displaying antioxidant properties, halting cell proliferation, inducing apoptosis, and exert-
ing cytotoxic effects [57,58]. This diversity in action mechanisms results in ACPs having
selective efficacy against different types of cancer cells.
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For instance, certain ACPs may show higher selectivity for cancer cells with a highly
negatively charged cell membrane due to stronger electrostatic interactions between the
peptides and the cancer cell membrane, leading to the targeted disruption of cancer cell
membranes and the subsequent induction of cell death through necrosis or apoptosis [58].
Furthermore, the anticancer efficacy of ACPs is influenced by their amino acid composi-
tion, structural properties, hydrophobicity, and amphipathic nature, which enhance their
interactions with cancer cell membranes [59].

In summary, the functional diversity and adaptability of ACPs result in varying levels
of effectiveness in different cancer treatments, underscoring their potential for targeted
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cancer therapies. However, further research is necessary to elucidate the mechanisms
driving these reactions. Importantly, we have shown that our model can more accurately
predict peptides that possess anticancer activity.

3. Discussion

In this study, we merged mathematical modeling with in vitro experiments across
various cancer cell lines to investigate the anticancer activity and selective cytotoxicity of
peptides. This approach provided a strategic framework for researchers to identify and
characterize anticancer peptides derived from natural sources. We assembled the largest
collection of experimentally validated ACPs in our training dataset compared to previous
studies. The analysis of sequence features offered insights into the putative functions
of ACPs, particularly through the comparison of k-spaced amino acid pairs between
ACPs and non-ACPs. The cross-validation results from the training dataset confirmed the
effective discrimination capability of the investigated features, with some models achieving
accuracies over 90%.

Furthermore, by integrating the predictions from our model with other bioinformatics
tools, we enhanced the accuracy and reliability of identifying potential ACPs. The func-
tional enrichment analysis suggested that most of the predicted ACPs play a crucial role
in targeting and destroying harmful cells. As noted, the anticancer effects and selective
cytotoxicity of these peptides were substantiated through in vitro experiments involving
numerous human cancer cell lines. Although the mechanisms behind the anticancer prop-
erties of these peptides are not yet fully understood, our findings underscore their potential
to exhibit cytotoxicity against cancer cells, emphasizing the need for further exploration to
fully elucidate their therapeutic capabilities.

4. Materials and Methods
4.1. Redundancy Removal

To minimize overestimation, the CD-HIT V4.8.1 [60] was employed to decrease re-
dundancy in the ACP sequences within the training dataset by applying a cutoff of 80%
similarity. Additionally, to better mimic real-world conditions, homologous sequences
in the non-ACP dataset were also filtered out when their identity exceeded 50%. This
approach ensures a more accurate and reliable dataset for subsequent analyses.

4.2. Feature Investigation

Sequence-based features, including amino acid composition (AAC) [33], dipeptide
composition (DPC) [34], and k-spaced amino acid pairs (CKSAAPs) [35], are widely uti-
lized in analyzing protein functions and developing prediction models. AAC specifically
quantifies the frequency of occurrence of each of the 20 standard amino acids in a protein
sequence, which is essential for feature encoding. This process can be described as follows:

f (i) = ∑ xi
L

(1 ≤ i ≤ 20)

Given a peptide, where i represents each type of amino acid, xi stands the number of
occurrences of each amino acid, and L is the full length of the considered peptide.

The CKSAAP method estimates the frequencies of occurrence of 20 × 20 types of
amino acid pairs in a peptide. These pairs are defined by their separation through a specific
number of other amino acids, known as the gap. The formulation can be expressed as
follows:

f (i, j) =
∑ xi,j

L − k
(1 ≤ i, j ≤ 20)

where i,j represents each amino acid pair, xi,j stands the number of occurrences of each
amino acid pair separated by k amino acids, and L is the full length of the considered
peptide; k = 0, 1, 2, and 3 were considered as features to be applied in the prediction of
anticancer activity.
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Additionally, the composition of secondary structure elements (SSECs) was consid-
ered a primary feature for investigation in this study. The secondary structures of all
peptides were predicted using the PEP2D web tool [43]. This tool uniquely predicts the
secondary structure of peptides based on their amino acid sequences using a method
tailored specifically for peptides rather than proteins.

4.3. Construction of Prediction Models

The support vector machine (SVM) is a supervised machine learning algorithm widely
applied to various biological classification problems. In this study, the SVM algorithm
implemented in LIBSVM [54] was used as the classifier. LIBSVM is a publicly available
SVM tool that employs the radial basis function (RBF) as its kernel function. The flexibility
of the decision boundary, or hyperplane, is determined by two parameters: gamma (γ) and
cost (C). We utilized LIBSVM to construct classification models using feature vectors based
on both sequence and structural characteristics.

4.4. Performance Evaluation

In this study, we used the training data to build the ACP prediction model employing
LIBSVM. To evaluate the model’s performance, we conducted five repetitions of a five-fold
cross-validation procedure. We utilized the following measures to estimate the predictive
performance of the model, encompassing TP (true positive), FN (false negative), TN (true
negative), and FP (false positive):

Sensitivity (Sn) =
TP

TP + FN

Speci f icity (Sp) =
TN

TN + FP

Accuracy (Acc) =
TP + TN

TP + FP + TN + FN

Matthews Correlation Coe f f icient (MCC) =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

4.5. Identification of Candidate ACPs Using Multiple Prediction Tools

Novel natural ACP candidates were predicted using the proposed model alongside six
other existing models, including ACPred [21], ACPred-FL [20], AntiCP [13], AntiCP2 [23],
iACP [16], and mACPpred [22]. Peptide sequences extracted from natural species were
input into these prediction tools in FASTA format. By integrating the results from all seven
prediction tools, we were able to obtain multiple decision-making outcomes. A majority
voting method was adopted to synthesize these results into a final decision. A peptide was
nominated as a candidate only if it received unanimous approval from all seven tools. If
candidates obtained an equal number of votes, they were ranked based on the scores from
the proposed model.

4.6. Functional Enrichment Analysis

Gene Ontology (GO) [56] is a comprehensive resource that describes the functions of
gene products across all living species in three independent categories: cellular component
(CC), molecular function (MF), and biological process (BP). To provide a functional inter-
pretation for the identified peptides, GO annotations for each peptide were obtained from
the Universal Protein Knowledgebase (UniProtKB) [32].

4.7. Evaluation of Anticancer Activity and Selective Cytotoxicity

Cancer cell lines were purchased from BCRC (Hsinchu, R.O.C) and their culture
conditions were created according to BCRC’s suggestion. The culture medium used for
the cancer cell lines included 10% fetal bovine serum (Gibco, Grand Island, NY, USA) and
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1% penicillin/streptomycin (Gibco) in 5% CO2 at 37 ◦C. Cells were seeded into 96-well
tissue culture plates at a concentration of 1 × 104 cells per 200 µL per well and allowed to
settle overnight. The cells were then treated with serial dilutions of various ACPs. After
48 h of incubation, cell viability for each line was assessed using the MTT colorimetric
assay (Sigma-Aldrich, St. Louis, MO, USA). The peptide preparation and dilution in our
anticancer assays are as follows: ACPs (10 mg) were dissolved in 100 µL of DMSO to
generate 100 mg/mL stock solutions. These stock solutions were then diluted 100 times
with a culture medium to obtain a 1 mg/mL solution. Finally, serial dilutions were prepared
in a culture medium containing 1% DMSO to achieve the desired ACP concentrations for
the MTT assay. Cell viability was expressed as a percentage of the untreated control, and
the inhibitory concentration at which 50% of the cells survived (IC50) was determined from
the dose–response curve.

5. Conclusions

The findings of this study significantly advance the development of cancer therapies by
identifying potential anticancer peptides (ACPs) through both computational predictions
and experimental validations. These ACPs exhibit selective cytotoxicity towards cancer
cells, presenting a promising alternative to traditional treatments like chemotherapy and
surgery, which often come with severe side effects. The discovery of these natural peptides
with anticancer properties opens the door to novel, targeted therapies that are both effective
and have fewer side effects.

Moreover, our study demonstrates the effectiveness of integrating computational and
experimental approaches, which pave the way for more efficient discovery and validation
processes for ACPs in future research. This dual approach not only increases the likelihood
of discovering potent therapeutic agents but also positions ACPs as excellent candidates for
the development of new anticancer drugs. By leveraging both computational predictions
and empirical validations, we enhance the potential to identify effective treatments that
could play a crucial role in future cancer therapies.

In conclusion, the strategy outlined in this study, which integrates in silico and in vitro
approaches, offers a comprehensive and reliable platform for the identification and char-
acterization of natural anticancer peptides. This integrated strategy not only facilitates
the discovery of potent therapeutic agents but also establishes a robust framework for
translating these promising peptides into effective cancer treatments.
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