A Reduction in the Readily Releasable Vesicle Pool Impairs GABAergic Inhibition in the Hippocampus after Blood–Brain Barrier Dysfunction
Abstract
:1. Introduction
2. Results
2.1. Spontaneous GABAergic Release Is Less Frequent and Decays Faster in CA1 Pyramidal Cells after BBBd
2.2. Increased Paired-Pulse Ratio in the Fast Gamma Frequency Range of Evoked Presynaptic GABA Release
2.3. GABAergic Inhibition with a Smaller Readily Releasable Pool after BBBd
3. Discussion
4. Materials and Methods
4.1. Photothrombotic Stroke Induction
4.2. Slice Preparations
4.3. Electrophysiological Recordings
4.4. Data Analysis
4.5. Statistical Analysis
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herman, S.T. Epilepsy after Brain Insult: Targeting Epileptogenesis. Neurology 2002, 59, S21–S26. [Google Scholar] [CrossRef] [PubMed]
- Marchi, N.; Granata, T.; Janigro, D. Inflammatory Pathways of Seizure Disorders. Trends Neurosci. 2014, 37, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood-Brain Barrier Breakdown as a Therapeutic Target in Traumatic Brain Injury. Nat. Rev. Neurol. 2010, 6, 393–403. [Google Scholar] [CrossRef]
- Bladin, C.F.; Alexandrov, A.V.; Bellavance, A.; Bornstein, N.; Chambers, B.; Coté, R.; Lebrun, L.; Pirisi, A.; Norris, J.W. Seizures after Stroke: A Prospective Multicenter Study. Arch. Neurol. 2000, 57, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Schoknecht, K.; Prager, O.; Vazana, U.; Kamintsky, L.; Harhausen, D.; Zille, M.; Figge, L.; Chassidim, Y.; Schellenberger, E.; Kovács, R.; et al. Monitoring Stroke Progression: In Vivo Imaging of Cortical Perfusion, Blood-Brain Barrier Permeability and Cellular Damage in the Rat Photothrombosis Model. J. Cereb. Blood Flow. Metab. 2014, 34, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef] [PubMed]
- Feyissa, A.M.; Hasan, T.F.; Meschia, J.F. Stroke-Related Epilepsy. Eur. J. Neurol. 2019, 26, 18-e3. [Google Scholar] [CrossRef] [PubMed]
- Oby, E.; Janigro, D. The Blood-Brain Barrier and Epilepsy. Epilepsia 2006, 47, 1761–1774. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, K.; Kamintsky, L.; Kim, S.Y.; Lublinsky, S.; Prager, O.; Nichtweiss, J.F.; Salar, S.; Kaufer, D.; Heinemann, U.; Friedman, A. Epileptiform Activity and Spreading Depolarization in the Blood-Brain Barrier-Disrupted Peri-Infarct Hippocampus Are Associated with Impaired GABAergic Inhibition and Synaptic Plasticity. J. Cereb. Blood Flow. Metab. 2017, 37, 1803–1819. [Google Scholar] [CrossRef]
- Milikovsky, D.Z.; Weissberg, I.; Kamintsky, L.; Lippmann, K.; Schefenbauer, O.; Frigerio, F.; Rizzi, M.; Sheintuch, L.; Zelig, D.; Ofer, J.; et al. Electrocorticographic Dynamics as a Novel Biomarker in Five Models of Epileptogenesis. J. Neurosci. 2017, 37, 4450–4461. [Google Scholar] [CrossRef]
- Vera, J.; Lippmann, K. Post-Stroke Epileptogenesis Is Associated with Altered Intrinsic Properties of Hippocampal Pyramidal Neurons Leading to Increased Theta Resonance. Neurobiol. Dis. 2021, 156, 105425. [Google Scholar] [CrossRef] [PubMed]
- Buzśaki, G.; Wang, X.J. Mechanisms of Gamma Oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef] [PubMed]
- Colgin, L.L.; Moser, E.I. Gamma Oscillations in the Hippocampus. Physiology 2010, 25, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Schlingloff, D.; Káli, S.; Freund, T.F.; Hájos, N.; Gulyás, A.I. Mechanisms of Sharp Wave Initiation and Ripple Generation. J. Neurosci. 2014, 34, 11385–11398. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.; Vida, I.; Jonas, P. Synaptic Mechanisms of Synchronized Gamma Oscillations in Inhibitory Interneuron Networks. Nat. Rev. Neurosci. 2007, 8, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Colgin, L.L. Rhythms of the Hippocampal Network. Nat. Rev. Neurosci. 2016, 17, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Hutcheon, B.; Yarom, Y. Resonance, Oscillation and the Intrinsic Frequency Preferences of Neurons. Trends Neurosci. 2000, 23, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.; Alcayaga, J.; Sanhueza, M. Competition between Persistent Na+ and Muscarine-Sensitive K+ Currents Shapes Perithreshold Resonance and Spike Tuning in CA1 Pyramidal Neurons. Front. Cell Neurosci. 2017, 11, 61. [Google Scholar] [CrossRef]
- Pike, F.G.; Goddard, R.S.; Suckling, J.M.; Ganter, P.; Kasthuri, N.; Paulsen, O. Distinct Frequency Preferences of Different Types of Rat Hippocampal Neurones in Response to Oscillatory Input Currents. J. Physiol. 2000, 529, 205–213. [Google Scholar] [CrossRef]
- Kang, Y.J.; Clement, E.M.; Sumsky, S.L.; Xiang, Y.; Park, I.H.; Santaniello, S.; Greenfield, L.J.; Garcia-Rill, E.; Smith, B.N.; Lee, S.H. The Critical Role of Persistent Sodium Current in Hippocampal Gamma Oscillations. Neuropharmacology 2020, 162, 107787. [Google Scholar] [CrossRef]
- Hu, H.; Gan, J.; Jonas, P. Fast-Spiking, Parvalbumin+ GABAergic Interneurons: From Cellular Design to Microcircuit Function. Science 2014, 345, 1255263. [Google Scholar] [CrossRef] [PubMed]
- Freund, T.F.; Katona, I. Perisomatic Inhibition. Neuron 2007, 56, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Senatorov, V.V.; Morrissey, C.S.; Lippmann, K.; Vazquez, O.; Milikovsky, D.Z.; Gu, F.; Parada, I.; Prince, D.A.; Becker, A.J.; et al. TGFβ Signaling Is Associated with Changes in Inflammatory Gene Expression and Perineuronal Net Degradation around Inhibitory Neurons Following Various Neurological Insults. Sci. Rep. 2017, 7, 7711. [Google Scholar] [CrossRef]
- Karetko-Sysa, M.; Skangiel-Kramska, J.; Nowicka, D. Disturbance of Perineuronal Nets in the Perilesional Area after Photothrombosis Is Not Associated with Neuronal Death. Exp. Neurol. 2011, 231, 113–126. [Google Scholar] [CrossRef]
- Favuzzi, E.; Marques-Smith, A.; Deogracias, R.; Winterflood, C.M.; Sánchez-Aguilera, A.; Mantoan, L.; Maeso, P.; Fernandes, C.; Ewers, H.; Rico, B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron 2017, 95, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Balmer, T.S. Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons. Eneuro 2016, 3. [Google Scholar] [CrossRef]
- Yamada, J.; Ohgomori, T.; Jinno, S. Perineuronal Nets Affect Parvalbumin Expression in GABAergic Neurons of the Mouse Hippocampus. Eur. J. Neurosci. 2015, 41, 368–378. [Google Scholar] [CrossRef]
- Fawcett, J.W.; Fyhn, M.; Jendelova, P.; Kwok, J.C.F.; Ruzicka, J.; Sorg, B.A. The Extracellular Matrix and Perineuronal Nets in Memory. Mol. Psychiatry 2022, 27, 3192–3203. [Google Scholar] [CrossRef]
- Kann, O. The Interneuron Energy Hypothesis: Implications for Brain Disease. Neurobiol. Dis. 2016, 90, 75–85. [Google Scholar] [CrossRef]
- Kann, O.; Papageorgiou, I.E.; Draguhn, A. Highly Energized Inhibitory Interneurons Are a Central Element for Information Processing in Cortical Networks. J. Cereb. Blood Flow. Metab. 2014, 34, 1270–1282. [Google Scholar] [CrossRef]
- Huchzermeyer, C.; Albus, K.; Gabriel, H.J.; Otáhal, J.; Taubenberger, N.; Heinemann, U.; Kovács, R.; Kann, O. Gamma Oscillations and Spontaneous Network Activity in the Hippocampus Are Highly Sensitive to Decreases in PO2 and Concomitant Changes in Mitochondrial Redox State. J. Neurosci. 2008, 28, 1153–1162. [Google Scholar] [CrossRef]
- Takács, V.T.; Szőnyi, A.; Freund, T.F.; Nyiri, G.; Gulyás, A.I. Quantitative Ultrastructural Analysis of Basket and Axo-Axonic Cell Terminals in the Mouse Hippocampus. Brain Struct. Funct. 2015, 220, 919–940. [Google Scholar] [CrossRef]
- Li, S.; Sheng, Z.H. Energy Matters: Presynaptic Metabolism and the Maintenance of Synaptic Transmission. Nat. Rev. Neurosci. 2021, 23, 4–22. [Google Scholar] [CrossRef]
- Lu, Z.; Chouhan, A.K.; Borycz, J.A.; Lu, Z.; Rossano, A.J.; Brain, K.L.; Zhou, Y.; Meinertzhagen, I.A.; Macleod, G.T. High-Probability Neurotransmitter Release Sites Represent an Energy-Efficient Design. Curr. Biol. 2016, 26, 2562–2571. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.; Shields, L.Y.; Mendelsohn, B.A.; Haddad, D.; Lin, W.; Gerencser, A.A.; Kim, H.; Brand, M.D.; Edwards, R.H.; Nakamura, K. The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling. J. Biol. Chem. 2015, 290, 22325–22336. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.P.; Reiffurth, C. The Stroke-Migraine Depolarization Continuum. Neuron 2015, 86, 902–922. [Google Scholar] [CrossRef]
- Lapilover, E.G.; Lippmann, K.; Salar, S.; Maslarova, A.; Dreier, J.P.; Heinemann, U.; Friedman, A. Peri-Infarct Blood-Brain Barrier Dysfunction Facilitates Induction of Spreading Depolarization Associated with Epileptiform Discharges. Neurobiol. Dis. 2012, 48, 495–506. [Google Scholar] [CrossRef]
- Dreier, J.P.; Lemale, C.L.; Kola, V.; Friedman, A.; Schoknecht, K. Spreading Depolarization Is Not an Epiphenomenon but the Principal Mechanism of the Cytotoxic Edema in Various Gray Matter Structures of the Brain during Stroke. Neuropharmacology 2018, 134, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Zawar, C.; Neumcke, B. Differential Activation of ATP-Sensitive Potassium Channels during Energy Depletion in CA1 Pyramidal Cells and Interneurones of Rat Hippocampus. Pflugers Arch. 2000, 439, 256–262. [Google Scholar] [CrossRef]
- Griesemer, D.; Zawar, C.; Neumcke, B. Cell-Type Specific Depression of Neuronal Excitability in Rat Hippocampus by Activation of ATP-Sensitive Potassium Channels. Eur. Biophys. J. 2002, 31, 467–477. [Google Scholar] [CrossRef]
- Zawar, C.; Plant, T.D.; Schirra, C.; Konnerth, A.; Neumcke, B. Cell-Type Specific Expression of ATP-Sensitive Potassium Channels in the Rat Hippocampus. J. Physiol. 1999, 514, 327–341. [Google Scholar] [PubMed]
- Burkart, M.-E.; Kurzke, J.; Jacobi, R.; Vera, J.; Ashcroft, F.M.; Eilers, J.; Lippmann, K. KATP Channel Mutation Disrupts Hippocampal Network Activity and Nocturnal Gamma Shifts. Brain 2024, awae157. [Google Scholar] [CrossRef] [PubMed]
- Saviane, C.; Silver, R.A. Fast Vesicle Reloading and a Large Pool Sustain High Bandwidth Transmission at a Central Synapse. Nature 2006, 439, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Valera, A.M.; Poulain, B.; Barbour, B.; Isope, P.; Cellulaires, N. Adaptation of Granule Cell to Purkinje Cell Synapses to High-Frequency Transmission. J. Neurosci. 2012, 32, 3267–3280. [Google Scholar] [CrossRef]
- Heinemann, U.; Kaufer, D.; Friedman, A. Blood-Brain Barrier Dysfunction, TGFβ Signaling, and Astrocyte Dysfunction in Epilepsy. Glia 2012, 60, 1251–1257. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B. V Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Shetty, A.K.; Mishra, V.; Kodali, M.; Hattiangady, B. Blood Brain Barrier Dysfunction and Delayed Neurological Deficits in Mild Traumatic Brain Injury Induced by Blast Shock Waves. Front. Cell Neurosci. 2014, 8, 232. [Google Scholar] [CrossRef]
- Goswami, S.P.; Bucurenciu, I.; Jonas, P. Miniature IPSCs in Hippocampal Granule Cells Are Triggered by Voltage-Gated Ca2+ Channels via Microdomain Coupling. J. Neurosci. 2012, 32, 14294–14304. [Google Scholar] [CrossRef]
- Caillard, O.; Moreno, H.; Schwaller, B.; Llano, I.; Celio, M.R.; Marty, A. Role of the Calcium-Binding Protein Parvalbumin in Short-Term Synaptic Plasticity. Proc. Natl. Acad. Sci. USA 2000, 97, 13372–13377. [Google Scholar] [CrossRef]
- Kohus, Z.; Káli, S.; Rovira-Esteban, L.; Schlingloff, D.; Papp, O.; Freund, T.F.; Hájos, N.; Gulyás, A.I. Properties and Dynamics of Inhibitory Synaptic Communication within the CA3 Microcircuits of Pyramidal Cells and Interneurons Expressing Parvalbumin or Cholecystokinin. J. Physiol. 2016, 594, 3745–3774. [Google Scholar] [CrossRef]
- Neher, E.; Brose, N. Dynamically Primed Synaptic Vesicle States: Key to Understand Synaptic Short-Term Plasticity. Neuron 2018, 100, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Neher, E. Interpretation of Presynaptic Phenotypes of Synaptic Plasticity in Terms of a Two-Step Priming Process. J. Gen. Physiol. 2024, 156, e202313454. [Google Scholar] [CrossRef] [PubMed]
- Kusick, G.F.; Chin, M.; Raychaudhuri, S.; Lippmann, K.; Adula, K.P.; Hujber, E.J.; Vu, T.; Davis, M.W.; Jorgensen, E.M.; Watanabe, S. Synaptic Vesicles Transiently Dock to Refill Release Sites. Nat. Neurosci. 2020, 23, 1329–1338. [Google Scholar] [CrossRef]
- Eggermann, E.; Jonas, P. How the “slow” Ca2+ Buffer Parvalbumin Affects Transmitter Release in Nanodomain-Coupling Regimes. Nat. Neurosci. 2012, 15, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Imig, C.; Min, S.W.; Krinner, S.; Arancillo, M.; Rosenmund, C.; Südhof, T.C.; Rhee, J.S.; Brose, N.; Cooper, B.H. The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones. Neuron 2014, 84, 416–431. [Google Scholar] [CrossRef]
- Ting, J.T.; Lee, B.R.; Chong, P.; Soler-Llavina, G.; Cobbs, C.; Koch, C.; Zeng, H.; Lein, E. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-Glucamine Protective Recovery Method. J. Vis. Exp. 2018, 132, 1–13. [Google Scholar] [CrossRef]
- Lichter, K.; Paul, M.M.; Pauli, M.; Schoch, S.; Kollmannsberger, P.; Stigloher, C.; Heckmann, M.; Sirén, A.L. Ultrastructural Analysis of Wild-Type and RIM1α Knockout Active Zones in a Large Cortical Synapse. Cell Rep. 2022, 40, 111382. [Google Scholar] [CrossRef]
- Rothman, J.S.; Silver, R.A. Neuromatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data. Front. Neuroinform. 2018, 12, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lippmann, K. A Reduction in the Readily Releasable Vesicle Pool Impairs GABAergic Inhibition in the Hippocampus after Blood–Brain Barrier Dysfunction. Int. J. Mol. Sci. 2024, 25, 6862. https://doi.org/10.3390/ijms25136862
Lippmann K. A Reduction in the Readily Releasable Vesicle Pool Impairs GABAergic Inhibition in the Hippocampus after Blood–Brain Barrier Dysfunction. International Journal of Molecular Sciences. 2024; 25(13):6862. https://doi.org/10.3390/ijms25136862
Chicago/Turabian StyleLippmann, Kristina. 2024. "A Reduction in the Readily Releasable Vesicle Pool Impairs GABAergic Inhibition in the Hippocampus after Blood–Brain Barrier Dysfunction" International Journal of Molecular Sciences 25, no. 13: 6862. https://doi.org/10.3390/ijms25136862
APA StyleLippmann, K. (2024). A Reduction in the Readily Releasable Vesicle Pool Impairs GABAergic Inhibition in the Hippocampus after Blood–Brain Barrier Dysfunction. International Journal of Molecular Sciences, 25(13), 6862. https://doi.org/10.3390/ijms25136862