Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments
Abstract
:1. Introduction
2. Results
2.1. Identification and Classification of SRPP/REF Gene Family in T. kok-saghyz
2.2. Phylogenetic Analysis of TkSRPP/REF Proteins
2.3. Chromosomal Localization of TkSRPP/REF Genes
2.4. Gene Duplication, and Collinearity Analysis of TkSRPP/REF Genes
2.5. Promoter Analysis of TkSRPP/REF Genes
2.6. Analysis of TkSRPP/REF Expression Patterns and Physiological Indexes
2.7. Subcellular Localization of TkSRPP/REF
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Phytohormone
4.2. Identification and Classification of SRPP/REF Gene Family in TKS
4.3. Phylogenetic Analysis TkSRPP/REF Proteins and Gene Structure, Conserved Domains and Motif Composition of TkSRPP/REF Genes
4.4. Chromosomal Distribution and Duplication Analysis of TkSRPP/REF Genes
4.5. Promoter Analysis of TkSRPP/REF Genes
4.6. Quantitative Real-Time PCR (qRT-PCR) Analysis
4.7. Subcellular Localization of TkSRPP/REFs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, F.; Naghavi, M.R.; Sabokdast, M.; Jariani, P. Taraxacum kok-saghyz L.E. Rodin, as a novel potential source of natural rubber in Iran: A good candidate for commercial use. Iran. Polym. J. 2023, 32, 1257–1269. [Google Scholar] [CrossRef]
- Salehi, M.; Cornish, K.; Bahmankar, M.; Naghavi, M.R. Natural rubber-producing sources, systems, and perspectives for breeding and biotechnology studies of Taraxacum kok-saghyz. Ind. Crops Prod. 2021, 170, 113667. [Google Scholar] [CrossRef]
- Men, X.; Wang, F.; Chen, G.-Q.; Zhang, H.-B.; Xian, M. Biosynthesis of Natural Rubber: Current State and Perspectives. Int. J. Mol. Sci. 2018, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Kang, H.; Shin, D.H.; Yang, J.; Chow, K.S.; Yeang, H.Y.; Wagner, B.; Breiteneder, H.; Han, K.H. Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J. Biol. Chem. 1999, 274, 17132–17138. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.; Ryu, S.B.; Cornish, K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol. J. 2019, 17, 2041–2061. [Google Scholar] [CrossRef] [PubMed]
- Cornish, K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry 2001, 57, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Wei, L.-R.; Guo, D.; Wang, Y.; Zhu, J.-H.; Chen, X.-T.; Peng, S.-Q. HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP. Front. Plant Sci. 2016, 7, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Rousset, A.; Amor, A.; Punvichai, T.; Perino, S.; Palu, S.; Dorget, M.; Pioch, D.; Chemat, F. Guayule (Parthenium argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications. Molecules 2021, 26, 664. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Ding, G.; Zhu, L.; Yu, L.; Yuan, B.; Gao, X.; Wang, D.; Sun, Y.; Liu, Y.; Li, H.; et al. Proteomic Landscape of the Mature Roots in a Rubber-Producing Grass Taraxacum kok-saghyz. Int. J. Mol. Sci. 2019, 20, 2596. [Google Scholar] [CrossRef]
- Mooibroek, H.; Cornish, K. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 2000, 53, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Abdul Ghaffar, M.A.; Meulia, T.; Cornish, K. Laticifer and Rubber Particle Ontogeny in Taraxacum kok-saghyz (Rubber Dandelion) Roots. Microsc. Microanal. 2016, 22, 1034–1035. [Google Scholar] [CrossRef]
- Maryam, S.; Moslem, B.; Mohammad Reza, N. Taraxacum Kok-Saghys as a Strong Candidate Alternative Natural Rubber Crop in Temperate Regions in the Case of Emergency. In Plant Physiology; Annual Volume, 2023; Jen-Tsung, C., Ed.; IntechOpen: Rijeka, Croatia, 2023; p. Ch. 7. [Google Scholar]
- van Beilen, J.B.; Poirier, Y. Guayule and Russian dandelion as alternative sources of natural rubber. Crit. Rev. Biotechnol. 2007, 27, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Ma, J.; Ding, G.; Yuan, B.; Wang, Y.; He, L.; Han, Y.; Cao, A.; Li, R.; Zhang, W. Transcriptomics and proteomics profiles of Taraxacum kok-saghyz roots revealed different gene and protein members play different roles for natural rubber biosynthesis. Ind. Crops Prod. 2022, 181, 114776–114789. [Google Scholar] [CrossRef]
- Wood, D.F.; Cornish, K. Microstructure of Purified Rubber Particles. Int. J. Plant Sci. 2000, 161, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Y.; Chang, L.; Tong, Z.; Xie, Q.; Jin, X.; Zhu, L.; He, P.; Li, H.; Wang, X. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis. J. Proteom. 2018, 182, 53–64. [Google Scholar] [CrossRef]
- Berthelot, K.; Lecomte, S.; Estevez, Y.; Peruch, F. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins. Biochimie 2014, 106, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Fan, M.; Wang, H.; Leng, Y.; Sun, J.; Huang, J.; Zhang, H.; Yan, J. Functional Characterization of TkSRPP Promoter in Response to Hormones and Wounding Stress in Transgenic Tobacco. Plants 2023, 12, 252. [Google Scholar] [CrossRef] [PubMed]
- Collins-Silva, J.; Nural, A.T.; Skaggs, A.; Scott, D.; Hathwaik, U.; Woolsey, R.; Schegg, K.; McMahan, C.; Whalen, M.; Cornish, K.; et al. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism. Phytochemistry 2012, 79, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Pütter, K.M.; van Deenen, N.; Unland, K.; Prüfer, D.; Schulze Gronover, C. Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol. 2017, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Wititsuwannakul, R.; Rukseree, K.; Kanokwiroon, K.; Wititsuwannakul, D. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation. Phytochemistry 2008, 69, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Christian Schulze, G.; Daniela, W.; Dirk, P.F. Natural Rubber Biosynthesis and Physic-Chemical Studies on Plant Derived Latex. In Biotechnology of Biopolymers; Magdy, E., Ed.; IntechOpen: Rijeka, Croatia, 2011; p. Ch. 4. [Google Scholar]
- Priya, P.; Venkatachalam, P.; Thulaseedharan, A. Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Rep. 2007, 26, 1833–1838. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zheng, L.; Xie, R. Effect of pre-harvest application of ethephon on colouration and expression of ripening related genes in citrus fruit. J. Hortic. Sci. Biotechnol. 2020, 96, 514–526. [Google Scholar] [CrossRef]
- Jie, H.; Ma, Y.; Xie, D.-Y.; Jie, Y. Transcriptional and Metabolic Characterization of Feeding Ramie Growth Enhanced by a Combined Application of Gibberellin and Ethrel. Int. J. Mol. Sci. 2022, 23, 12025. [Google Scholar] [CrossRef] [PubMed]
- Coupé, M.; Chrestin, H. Physico-Chemical and Biochemical Mechanisms of Hormonal (Ethylene) Stimulation. In Physiology of Rubber Tree Latex; CRC Press: Boca Raton, FL, USA, 1989; pp. 295–319. [Google Scholar]
- Tong, Z.; Wang, D.; Sun, Y.; Yang, Q.; Meng, X.; Wang, L.; Feng, W.; Li, L.; Wurtele, E.S.; Wang, X. Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Int. J. Mol. Sci. 2017, 18, 958. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-P.; Zhuang, Y.-F.; Guo, X.-L.; Li, Y.-J. Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC Genom. 2016, 17, 257. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yan, J.; Lei, J.; Li, J.; Zhu, J.; Zhang, H. De novo Transcriptome Sequencing of MeJA-Induced Taraxacum koksaghyz Rodin to Identify Genes Related to Rubber Formation. Sci. Rep. 2017, 7, 15697. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Ihsan, Z.; Shah, A.N.; Wu, C.; Yousaf, M.; Nasim, W.; Alharby, H.; et al. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature. Front. Plant Sci. 2016, 7, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Li, H.-L.; Tang, X.; Peng, S.-Q. Molecular and functional characterization of the HbSRPP promoter in response to hormones and abiotic stresses. Transgenic Res. 2014, 23, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Kang, G.; Nie, Z.; Li, Y.; Zeng, R. Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. J. Proteom. 2016, 132, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yang, D.-d.; Yu, X.-c.; Xu, C. Multi-omics-driven development of alternative crops for natural rubber production. J. Integr. Agric. 2023, 22, 959–971. [Google Scholar] [CrossRef]
- Laibach, N.; Hillebrand, A.; Twyman, R.M.; Prüfer, D.; Schulze Gronover, C. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis. Plant J. Cell Mol. Biol. 2015, 82, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Hernandez, M.; Remondegui, N.; Huvenaars, K.; van Dijk, P.; Ritter, E. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers. Sci. Rep. 2016, 6, 31031. [Google Scholar] [CrossRef] [PubMed]
- Horn, P.J.; James, C.N.; Gidda, S.K.; Kilaru, A.; Dyer, J.M.; Mullen, R.T.; Ohlrogge, J.B.; Chapman, K.D. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol. 2013, 162, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Xu, X.; Ruan, J.; Liu, S.; Li, J. Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. Natl. Sci. Rev. 2018, 5, 78–87. [Google Scholar] [CrossRef]
- Ruan, Q.; Wang, Y.; Xu, H.; Wang, B.; Zhu, X.; Wei, B.; Wei, X. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of Whirly (WHY) gene family in Medicago sativa L. Sci. Rep. 2022, 12, 18676–18690. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Xu, X.; Du, H.; Fan, X.; Chen, Q.; Hai, C.; Zhou, Z.; Su, X.; Kou, L.; Gao, Q.; et al. Extensive sequence divergence between the reference genomes of Taraxacum kok-saghyz and Taraxacum mongolicum. Sci. China Life Sci. 2022, 65, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Janack, B.; Sosoi, P.; Krupinska, K.; Humbeck, K. Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40. Plants 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. B Biol. Sci. 1994, 256, 119–124. [Google Scholar]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, Z.; Luo, S.; Li, X.; Lyu, J.; Liu, Z.; Wan, Z.; Yu, J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genom. 2022, 23, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Ponciano, G.; Huo, N.; Gu, Y.; Ilut, D.; McMahan, C. RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Sci. Rep. 2021, 11, 21610–21626. [Google Scholar] [CrossRef] [PubMed]
- Laibach, N.; Schmidl, S.; Müller, B.; Bergmann, M.; Prüfer, D.; Schulze Gronover, C. Small rubber particle proteins from Taraxacum brevicorniculatum promote stress tolerance and influence the size and distribution of lipid droplets and artificial poly(cis-1,4-isoprene) bodies. Plant J. Cell Mol. Biol. 2018, 93, 1045–1061. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Ma, Y.; Xu, T.; Cui, B.; Liu, Y.; Guo, Z.; Yang, D. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS ONE 2013, 8, e72806. [Google Scholar] [CrossRef] [PubMed]
- Jie, H.; He, P.; Zhao, L.; Ma, Y.; Jie, Y. Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses. Plants 2023, 12, 3899. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, J.-W.; Xu, Z.-Z.; Zhou, L.; Li, J.-J.; Yu, Q.; Luo, J.; Chan, Z.-L.; Jongsma, M.A.; Hu, H.; et al. TcMYC2 regulates Pyrethrin biosynthesis in Tanacetum cinerariifolium. Hortic. Res. 2022, 9, uhac178. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaeipour, S.N.; Shiran, B.; Ravash, R.; Niazi, A.; Ebrahimie, E. Comprehensive transcriptomic meta-analysis unveils new responsive genes to methyl jasmonate and ethylene in Catharanthusroseus. Heliyon 2024, 10, e27132. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30 (Suppl. S1), S162–S173. [Google Scholar] [CrossRef] [PubMed]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, M.; Kiefer, F.; Biasini, M.; Bordoli, L.; Schwede, T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 2017, 7, 10480. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
Gene ID | pI | MW (kDa) | aa | ORF/bp | Instability Index | Aliphatic Index | GRAVY | Subcellular | |
---|---|---|---|---|---|---|---|---|---|
TkSRPP1 | GWHGBCHF021617 | 8.54 | 14.61 | 126 | 381 | 43.84 | 79.76 | −0.492 | cyto |
TkSRPP2 | GWHGBCHF026516 | 4.47 | 25.166 | 235 | 708 | 38.78 | 87.87 | −0.245 | cyto |
TkSRPP3 | GWHGBCHF026517 | 4.75 | 24.547 | 228 | 687 | 40.76 | 69.30 | −0.485 | cyto |
TkSRPP4 | GWHGBCHF026520 | 5.35 | 25.351 | 232 | 699 | 47.80 | 76.51 | −0.355 | cyto |
TkSRPP5 | GWHGBCHF026521 | 5.34 | 25.829 | 236 | 711 | 52.70 | 78.52 | −0.330 | cyto |
TkSRPP6 | GWHGBCHF026522 | 5.68 | 25.284 | 232 | 699 | 43.56 | 78.19 | −0.352 | cyto |
TkSRPP7 | GWHGBCHF026523 | 8.79 | 23.174 | 208 | 627 | 39.04 | 89.90 | −0.201 | cyto |
TkSRPP8 | GWHGBCHF026613 | 8.50 | 23.169 | 208 | 627 | 41.82 | 89.42 | −0.206 | cyto |
TkSRPP9 | GWHGBCHF026615 | 5.44 | 25.286 | 232 | 699 | 50.44 | 77.76 | −0.319 | cyto |
TkSRPP10 | GWHGBCHF026616 | 5.35 | 25.351 | 232 | 699 | 47.80 | 76.51 | −0.355 | cyto |
TkREF1 | GWHGBCHF028815 | 4.92 | 44.632 | 409 | 1230 | 28.71 | 102.54 | 0.050 | vacu |
TkREF2 | GWHGBCHF028818 | 8.61 | 75.809 | 706 | 2121 | 29.41 | 97.61 | −0.006 | cyto |
Gene 1 | Gene 2 | Ka-Value | Ks-Value | Ka/Ks-Value |
---|---|---|---|---|
TkSRPP3 | TkSRPP10 | 0.296318810632272 | 1.00829564953446 | 0.293880877864626 |
TkSRPP6 | TkSRPP9 | 0.015665126442706 | 0.08216362065824 | 0.190657693967318 |
TkSRPP2 | TkSRPP9 | 0.376302584848833 | 1.25186786035179 | 0.300592895437931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Wang, J.; Meng, Z.; Dijkwel, P.P.; Du, P.; Shi, S.; Dong, Y.; Li, H.; Xie, Q. Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments. Int. J. Mol. Sci. 2024, 25, 6864. https://doi.org/10.3390/ijms25136864
He H, Wang J, Meng Z, Dijkwel PP, Du P, Shi S, Dong Y, Li H, Xie Q. Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments. International Journal of Molecular Sciences. 2024; 25(13):6864. https://doi.org/10.3390/ijms25136864
Chicago/Turabian StyleHe, Huan, Jiayin Wang, Zhuang Meng, Paul P. Dijkwel, Pingping Du, Shandang Shi, Yuxuan Dong, Hongbin Li, and Quanliang Xie. 2024. "Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments" International Journal of Molecular Sciences 25, no. 13: 6864. https://doi.org/10.3390/ijms25136864
APA StyleHe, H., Wang, J., Meng, Z., Dijkwel, P. P., Du, P., Shi, S., Dong, Y., Li, H., & Xie, Q. (2024). Genome-Wide Analysis of the SRPP/REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments. International Journal of Molecular Sciences, 25(13), 6864. https://doi.org/10.3390/ijms25136864