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Abstract: The significance of physical activity in sports is self-evident. However, its importance
is becoming increasingly apparent in the context of public health. The constant desire to improve
health and performance suggests looking at genetic predispositions. The knowledge of genes related
to physical performance can be utilized initially in the training of athletes to assign them to the
appropriate sport. In the field of medicine, this knowledge may be more effectively utilized in the
prevention and treatment of cardiometabolic diseases. Physical exertion engages the entire organism,
and at a basic physiological level, the organism’s responses are primarily related to oxidant and
antioxidant reactions due to intensified cellular respiration. Therefore, the modifications involve
the body adjusting to the stresses, especially oxidative stress. The consequence of regular exercise
is primarily an increase in antioxidant capacity. Among the genes considered, those that promote
oxidative processes dominate, as they are associated with energy production during exercise. What is
missing, however, is a look at the other side of the coin, which, in this case, is antioxidant processes
and the genes associated with them. It has been demonstrated that antioxidant genes associated with
increased physical performance do not always result in increased antioxidant capacity. Nevertheless,
it seems that maintaining the oxidant–antioxidant balance is the most important thing in this regard.
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1. Introduction
1.1. Exercise—Health Implications

Physical exercise/effort (PE) is currently an important issue in the context of public
health. A sedentary lifestyle is considered a significant pathological factor of many civiliza-
tion diseases, i.e., cardiometabolic [1] and neurodegenerative diseases, as well as mental
disorders (e.g., diabetes, heart attack, Alzheimer’s disease, depression) [2]. PE improves
mood and physical performance, delays aging, and ameliorates cognitive function. Phys-
ically, PE is associated with increased oxygen consumption (VO2), which strictly affects
the oxidant–antioxidant (redox) balance. Intensified cellular respiration in mitochondria
increases the production of reactive oxygen species (ROSs), escalating oxidation reactions.
Appropriately intensive PE may lead to a state of oxidative stress, the risk of cell damage,
and, thus, inflammation. The effect of exercise depends on the intensity and duration
of the effort. “Small” negative post-exercise changes can contribute to positive adaptive
effects, such as increased antioxidant capacity (primarily higher activity of antioxidant
enzymes) [2].

The effects of exercise on an organism are being increasingly utilized in the rehabil-
itation of heart diseases [3]. Moreover, PE is regarded as the most significant predictor
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of cardiometabolic diseases. The absence of PE is the most significant risk factor for the
development of such diseases. Regular exercise is the most effective means of enhancing
cardiorespiratory and metabolic health. The entire organism—all organs and physiological
systems—is involved in PE [4]. Therefore, all possible kinds of genes are activated in
response to the effort. This covers particularly protein genes, such as those of structural,
enzymatic, and signaling proteins (muscle proteins, enzymes, receptors, cytokines, and
hormones). The fundamental differences result only from the type of exercise bout (ratio of
aerobic versus anaerobic efforts, endurance vs. resistance) [5]. There are parameters that
connect the fields of sports and healthcare. For instance, the maximal fat oxidation rate is a
predictor of metabolic flexibility, body weight loss, and endurance performance. It can be
evaluated and defined not only on the basis of physical and biochemical parameters but
also on the basis of genetic parameters. This is because, as is well known, everything has
its origin in the genes [6].

1.2. Sports Genomics and the Redox Balance

It appears that the pinnacle of the human body’s capabilities has been reached in many
sports. Nevertheless, the pursuit of improvement in top results remains constant. The
level of professionalism in sports is on the rise, accompanied by a concurrent growth in
knowledge. This has always included technique and technology, while a relatively new
field of study is athletic genetics, which has significant potential for development. This is
an increasingly prominent area of sports theory, representing one of many avenues in the
pursuit of enhanced sports performance. For example, the use of athletic genetics could
facilitate the assignment of a novice athlete to a sport discipline that is most suited to their
abilities at an early stage of training. This would obviate the necessity for the athlete to un-
dergo the arduous process of searching for a suitable sport through the conventional means
of sports testing, thus allowing the athlete to be trained more expeditiously and effectively.

A study that involved monozygotic and dizygotic twins revealed that DNA may be
responsible for approximately 66% of the interindividual variance in terms of sports predis-
position (microsatellite variations and single nucleotide polymorphisms, SNPs) [7], and
over 200 genes may even be closely related to sports performance [8]. A recent review of the
literature indicates that 128 genetic markers, distributed virtually across the entire genome,
may be associated with professional athletes. These include 41 polymorphisms related
to endurance performance, 45 polymorphisms related to power, and 42 polymorphisms
related to strength [9].

The first papers that appeared at the end of the twentieth century focused on only
one gene that potentially strongly determines physical performance. One of the first ones
was the gene for angiotensin-converting enzyme (ACE) [10]. Presently, a genome-wide
association study (GWAS) is a method for evaluating genetic predisposition for sports. This
is based on determining several hundred thousand to 5 million loci in one DNA sample
(no assumptions regarding loci that are potentially related to the trait of interest) [11].
Sports genomics are primarily concerned with the following genes: ACE, α-actininin-3
(ACTN3), peroxisome proliferator-activated receptors (PPARs) α/γ/δ, hypoxia-inducible
factor-1α (HIF1α), and endothelial nitric oxide synthase (eNOS) [5,12,13]. ACE is an indirect
prooxidant enzyme, since angiotensin II, which ACE produces, increases superoxide anion
radical (O2˙−) production through the activation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX) [14]. ACTN3 is a protein filament of muscle fiber
involved in contraction; thus, it is not associated with the redox balance [5]. PPARs, in turn,
may indirectly promote antioxidant signaling through transcriptional or post-translational
activities [15]. HIF1α is a crucial subunit for transcriptional hypoxia-inducible factor, while
hypoxia is a state associated with oxidative stress [16]. Likewise, eNOS, which is a source
of nitric oxide (˙NO), is a kind of reactive nitrogen species (RNS) with a potent vasodilatory
effect that produces peroxynitrite (ONOO−) in contact with O2˙−. In turn, ONOO− is an
ROS with a greatly strong oxidizing and vasoconstricting effect [17]. Table 1 presents a list
of loci for which there is reliable evidence of a beneficial effect on physical performance.
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Table 1. Alleles that have been demonstrated to enhance physical performance [9].

Gene Locus Alleles Type of Benefit

AMPD1 (Adenosine Monophosphate Deaminase 1) 1p13 rs17602729 C/T endurance/power (C allele)

CDKN1A (Cyclin-Dependent Kinase Inhibitor 1A) 6p21.2 rs236448 A/C endurance (A allele)/power
(C allele)

HFE (Homeostatic Iron Regulator) 6p21.3 rs1799945 C/G endurance (G allele)

MYBPC3 (Myosin Binding Protein C3) 11p11.2 rs1052373 A/G endurance (G allele)

NFIA-AS2 (NFIA antisense RNA 2) 1p31.3 rs1572312 C/A endurance (C allele)

PPARA (Peroxisome Proliferator Activated Receptor A) 22q13.31 rs4253778 G/C endurance (G allele)

PPARGC1A (Peroxisome Proliferative Activated Receptor Γ
coactivator 1 A) 4p15.1 rs8192678 G/A endurance (G allele)

ACTN3 (Actinin A 3) 11q13.1 rs1815739 C/T power/strength (C allele)

CPNE5 (Copine V) 6p21.2 rs3213537 G/A power (G allele)

GALNTL6 (Polypeptide N-acetylgalactosaminyltransferase
Like 6) 4q34.1 rs558129 T/C power (T allele)

IGF2 (Insulin-Like Growth Factor 2) 11p15.5 rs680 A/G power (G allele)

IGSF3 (Immunoglobulin Superfamily
Member 3) 1p13.1 rs699785 G/A power (A allele)

NOS3 (Nitric Oxide Synthase 3) 7q36 rs2070744 T/C power (T allele)

TRHR (Thyrotropin-Releasing Hormone Receptor 8q23.1 rs7832552 C/T power (T allele)

AR (Androgen Receptor) Xq12 CAG repeats strength (allele of ≥21 CAG
repeats)

LRPPRC (Leucine-Rich Pentatricopeptide Repeat
Cassette) 2p21 rs10186876 A/G strength (A allele)

MMS22L (Methyl Methanesulfonate-Sensitivity
Protein 22-Like) 6q16.1 rs9320823 T/C strength (T allele)

PHACTR1 (Phosphate and Actin Regulator 1) 6p24.1 rs6905419 C/T strength (C allele)

PPARG (Peroxisome Proliferator Activated Receptor Γ) 3p25.2 rs1801282 G/C strength (G allele)

The existing literature indicates a growing interest in the field of sports genetics.
However, genes that have a direct impact on physical performance are still poorly under-
stood. Antioxidant genes are an especially new approach to this issue, while antioxidant
capacity is an essential part of post-exercise adaptation changes. Therefore, we decided to
review the knowledge about genes responsible for antioxidant defense in the context of
physical performance.

2. Body Functions during Physical Exercise

It is important to know the general physiological variations in the human organism
during PE for this article. The body adjusts its physiological functions to accommodate
the increased demand for energy and oxygen during physical activity. These changes
include increased body temperature, respiration rate, heart rate, and blood pressure, while
at a molecular level, hydrolysis and recovery of adenosine triphosphate (ATP) are intensi-
fied [18].

2.1. Energy Metabolism

ATP hydrolysis and recovery are essential to maintain body functions during physical
activity. The energy required for muscle contractions, enabling movement, is produced
through ATP hydrolysis in muscle mitochondria. For aerobic exertion, this includes the
following metabolic pathways of cellular respiration: glycolysis, pyruvate oxidation, the
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tricarboxylic acid cycle, and oxidative phosphorylation [18]. Anaerobic bouts of exercise
involve oxygen-free mechanisms such as anaerobic glycolysis and the phosphagen system
(phosphocreatine utilization) based on muscle stores. The anaerobic activity involves the
very rapid production of ATP, faster than under aerobic conditions, but ATP is quickly
depleted because the stores of glucose and phosphocreatine in muscles are rapidly used
up. Hence, anaerobic efforts allow for the generation of high power output; however, they
do not last longer than 6 s. The consequence of anaerobic glycolysis is lactate production.
Very intense PE with about 100% maximal VO2, lasting 15–30 s, involves the rapid use of
glycogen stores in skeletal muscles and maximally intensified oxidative phosphorylation.
The availability of O2 during endurance exercise and the lower intensity of the exercise
allow one to continue the effort over a much longer time. Up to approximately 2 h, apart
from muscle glycogen reserves, plasma glucose, plasma free fatty acids, and muscle triglyc-
erides are used for energy production, while in addition to muscles, many other organs
and body systems are involved in this process. Endurance exercise bouts of longer than 2 h
are associated with a metabolic shift from carbohydrate oxidation to lipid oxidation [19].

2.2. Energy Resources

Physical exertion may be referred to as a stressor because it causes a reduction in fatty
acid oxidation and increases glucose metabolism to cover energy demand. In contrast, fatty
acid oxidation is the primary source of energy flow when resting. An instant source of
energy is produced when glycogenolysis converts glycogen stored in muscle and liver cells
into glucose. When the glucose concentration is too low (consumption of glycogen stores
and lack of current supply of simple sugars), ATP is produced using the β-oxidation of fatty
acids [18]. However, specific alterations must be considered in relation to exercise intensity
and diet. Moderate-intensity exercise (40–55% VO2max) results in the oxidation of both
lipids and carbohydrates. Hepatic glycogen stores are then mainly used, but they can also
be recovered if glucose is available from digested food/drink (small intestine). An increase
in the intensity of exercise results in greater involvement of skeletal muscles. PE above
75% VO2max is primarily related to the consumption of muscle glycogen, which is used up
very quickly during maximal and supramaximal efforts [19]. A diet rich in carbohydrates,
particularly polysaccharides, can result in a high glycogen concentration within 24 to 36 h.
However, a continuous supply of monosaccharides, disaccharides, and oligosaccharides is
essential for prolonged endurance exercise. Interestingly, a low-carbohydrate high-fat diet
increases glycogen stores but impairs aerobic metabolism and, thus, endurance exercise
performance [20].

Glycogen is a glucose polymer and the main carbohydrate used for energy produc-
tion. The conversion of glycogen into glucose is catalyzed by glycogen phosphorylase,
which completely decomposes the glucose polymer in conjunction with a debranching
enzyme [19]. To produce energy, glycogen cooperates with specific cellular components in
skeletal muscles, e.g., mitochondria, myofilaments, and the sarcoplasmic reticulum. The
complex of glycogen and the sarcoplasmic reticulum has been well described in fast-twitch
skeletal muscle. It is believed that phosphorylase-mediated glycogen decomposition pro-
vides the availability of glucose-1-phosphate for glycolytic ATP production at this complex.
Moreover, glycolytic ATP supply may facilitate Ca2+ reuptake into the sarcoplasmic reticu-
lum, ensuring muscle relaxation during the contractile cycle. This is possible thanks to the
interaction of glycolytic enzymes with calcium ATPases in the reticulum [21].

Depending on exercise intensity, duration, and nutritional status, adipose-derived fatty
acids can be a significant or dominant origin of energy during PE. Fatty acid absorption
within the cell initiates the process, while the absorption may depend on particular muscle
proteins. The first step is activating fatty acid molecules with acyl-CoA synthetase found
in the endoplasmic reticulum and on the surface of the outer mitochondrial membrane.
The enzyme uses coenzyme A to perform ATP-dependent thioesterification of fatty acid
molecules. Fatty acid combined with coenzyme A (long-chain acyl-CoA) additionally con-
nects with a molecule of carnitine and, in this form, enters the mitochondrion. Eventually,
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the fatty acid undergoes oxidation inside the mitochondrion, which involves the deletion
of two carbon atoms called beta and gamma (detachment of acetyl-CoA at the carboxyl
end—β-oxidation of fatty acid) [22].

3. The Effect of Physical Exercise on the Redox Balance

The other important part of this article’s topic is the redox balance in humans, as it is
a crucial part of human homeostasis during exercise. As mentioned in the introduction,
changes in an organism caused by exercise result mainly from the impact on this part of
the organism’s functions.

3.1. Mitochondrial Respiratory Chain and ROS Production

The solubility of molecular oxygen (O2) is up to eight-fold higher in organic solvents
than in water [23]. The oxygen concentration within a cell may locally differ. Generally, the
highest O2 concentration occurs near cellular membranes, which have physical properties
similar to those of organic solvents. Mitochondria are characterized by the lowest O2
concentration compared to other cellular organelles, as they are central oxygen consumers.
Molecular oxygen reacts with organic compounds and oxidizes them by acquiring their
electrons. The complete reduction of O2 to water is problematic because it requires the
double acquisition of two electrons (and two protons; four electrons and four protons in
total) from the molecule being oxidized, and the overwhelming majority of them have
paired electrons. Therefore, oxygen reacts with many compounds in the one-electron
way to form O2˙− [24]. In aerobic cells, a complete reduction of oxygen occurs in the
mitochondrial respiratory chain. However, 1–4% of the oxygen consumed by mitochondria
is converted into O2˙− [24,25]. In vivo, O2˙− reacts predominantly with iron–sulfur centers
and transition metal ions. The protonated form of O2˙−, i.e., hydroperoxyl radical (HO˙2),
which is devoid of an electric charge, penetrates cellular membranes more easily and stays
longer in their hydrophobic interior (inaccessible to O2˙−), where it can initiate a reaction
of lipid peroxidation. It should be noted that lipid peroxidation is an element of normal
cell metabolism. Increased exposure to ROSs enhances it but does not initiate it. The
attachment of another electron (and two protons) to O2˙− produces hydrogen peroxide
(H2O2). This weak oxidant reacts mainly with the thiol group of protein cysteine residues
(e.g., protein tyrosine phosphatases, G proteins, some ion channels, and some transcription
factors) and transition metal ions (Fe2+/Cu+). The latter group of reactions leads to the
formation of the most reactive oxygen species in biological systems: hydroxyl radical
(˙OH), the product of the attachment of three electrons to molecular oxygen. In the body,
˙OH reacts non-specifically with biomolecules of all major classes (low-molecular-mass
compounds, proteins, lipids, carbohydrates, nucleic acids). In contrast, O2˙− and H2O2
mainly react with enzymes that specifically break them down [26]. The enzymes catalase
(CAT) and superoxide dismutase (SOD) catalyze the dismutation reaction of H2O2 and
O2˙−, respectively. Peroxidases consume H2O2 to oxidize their substrates. The activity of
these enzymes determines the protection of eukaryotic cells against O2˙− and H2O2. The
protection against ˙OH is mainly based on preventing its formation [24].

3.2. The Components of Oxidant–Antioxidant Balance

The emergence of one ROS entails the generation of others. As a result of the
decomposition of O2˙−, H2O2 is formed. That, in turn, in the presence of transition
metal ions, creates the possibility of the formation of ˙OH in the Haber–Weiss reaction
(H2O2 + O2˙− + Fe2+/Fe3+ → ˙OH + OH− + O2) or other ROSs. Physical factors such as ion-
izing radiation, ultraviolet radiation, photochemical reactions, and ultrasound are sources
of ROSs with marginal biological significance. Intracellular sources of ROSs are much
more important; they result primarily from the one-electron oxidation of reduced forms
of many compounds (such as cysteine, glutathione (GSH), glucose, flavins, quinones, and
nucleotides—FMNH2, FADH2, and catecholamines) by O2. Another source of ROSs in cells
is specific enzymatic reactions. Two enzymes generating O2˙− are particularly important
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here: xanthine oxidase (peroxisomes) and NOX, which are present in the plasma membrane
of phagocytic cells. O2˙− is also generated by the smooth endoplasmic reticulum and
lysosomal redox chain. The reaction of O2˙− with ˙NO produces ONOO−, a strong oxidant
with a bactericidal effect. However, the most important cellular source of ROSs is the
mitochondrial respiratory chain composed of large protein complexes: NADH-ubiquinone
oxidoreductase (complex I), ubiquinone-cytochrome c oxidoreductase (complex III), and
cytochrome c oxidase (complex IV). Succinate dehydrogenase (complex II) does not pump
protons but provides reduced ubiquinone [24,27–29]. Electrons enter the chain from NADH
via complex I and from succinate via complex II. Complexes I, III, and IV pump protons
across the inner mitochondrial membrane, which flow back into the matrix via the ATP
synthase, driving the rotor to produce ATP [29].

In living cells, oxidative damage caused by ROSs generated in the environment and
during aerobic metabolism may lead to DNA mutations, protein inactivation, and cell
death. On the other hand, ROSs may exert beneficial effects for proper cellular develop-
ment and proliferation. For instance, they take part in signaling pathways, imitate and
enhance the action of growth factors, or have mitogenic effects [26]. Thus, cells should
have a dynamic balance between the rate of ROS formation and the decomposition rate
(Figure 1). To maintain this redox balance, aerobic cells evolved defense mechanisms, which
include prevention (counteracting ROS reactions with biologically important compounds),
intervention (terminating free radical chain reactions), and elimination or repair (removing
the products of ROS reactions with biomolecules). These mechanisms may complement
and replace each other. For instance, mammalian tissues contain glutathione peroxidases
(GPXs), which catalyze the reaction between GSH and H2O2, forming the oxidized form
of GSH—glutathione disulfide. This disulfide may ultimately lead to protein inactivation
by oxidizing the thiol groups in proteins and forming disulfide bridges (forming mixed
disulfides with proteins containing thiol groups). Fortunately, GPX enzymes cooperate
with glutathione reductase (GR), which recreates the reduced form of glutathione at the ex-
pense of NADPH oxidation. NADPH is regenerated by, for example, glucose-6-phosphate
dehydrogenase or isocitrate dehydrogenase [24].

A heme-containing enzyme, cytochrome c peroxidase, located in the intermembrane
space of mitochondria, decomposes H2O2 generated by mitochondrial SOD (MnSOD) with
the use of the reduced form of cytochrome c. Under certain conditions, other hemoproteins
(hemoglobin, myoglobin) may also protect cells against ROSs through their pseudoperoxi-
dase activity in cooperation with low-molecular-mass antioxidants (e.g., ascorbate) [30,31].
Unfortunately, reactive ferryl forms of hemoproteins may then be formed. Flavins seem
to be safer substrates for hemoproteins because their oxidized forms can be reduced by
NADPH-dependent methemoglobin reductase (i.e., flavin reductase) [32].

Iron ions do not occur in free form inside or outside cells. They remain firmly bound
to specific proteins (ferritin of the intestinal mucosa, transferrin—a plasma protein trans-
porting iron, lactoferrin—a neutrophil protein) and are maintained in oxidized form—ferric
ions, which cannot initiate the Fenton reaction. Haptoglobin (Hp) strongly binds free
hemoglobin, while hemopexin binds heme, thus preventing lipid peroxidation catalyzed
by hemoglobin and heme [24].

Copper ions in blood plasma are bound to a specific protein—ceruloplasmin—and
in small amounts by albumin, transcuprein, and amino acids [33]. Intracellular copper
ions are bound by metallothionein and GSH [34]. Ceruloplasmin demonstrates low SOD
and ferroxidase activities, oxidizing Fe2+ ions to Fe3+ ions with the complete reduction
of oxygen.

The primary role of metallothioneins is to bind and detoxify heavy metal ions (cad-
mium, mercury). Still, they are also involved in the homeostasis of metals necessary for
organisms (zinc and copper). A typical mammalian metallothionein protein contains ap-
proximately 20 cysteinyl residues out of 61 amino acid residues [35]. They can, therefore,
react quickly with O2˙− and ˙OH. In addition to their primary functions, some highly
concentrated proteins may also act as antioxidants. For example, albumin in blood plasma



Int. J. Mol. Sci. 2024, 25, 6915 7 of 15

binds fatty acids (potential peroxidation substrates), copper, and heme and reacts with
ROSs, thereby protecting more critical macromolecules of an organism. Damaged albumin
molecules undergo proteolysis and are replaced by new ones. Similarly, GSH serves as a
protective target for H2O2 in cells. GPX directs the attack of H2O2 on GSH. Thus, it protects
thiol groups of enzymes and prevents H2O2 from participating in the Fenton reaction.
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Figure 1. Maintaining a dynamic equilibrium between the formation and elimination of reactive
oxygen species in eukaryotic cells. CAT: catalase; GPX: glutathione peroxidase; GR: glutathione
reductase: GSH/GSSG: reduced/oxidized form of glutathione; H2O2: hydrogen peroxide; MRC:
mitochondrial respiratory chain; NADPH/NADP+: reduced/oxidized form of nicotinamide adenine
dinucleotide phosphate; ˙NO: nitric oxide; NOX: NADPH oxidase; O2: molecular oxygen; O2˙−:
superoxide anion radical; ˙OH, hydroxyl radical; ONOO−: peroxynitrite; SOD 1–3: superoxide
dismutases 1–3.

The fundamental differences in the physical properties of polar and non-polar cellu-
lar environments entail the existence of water-soluble antioxidants, i.e., ascorbate, GSH,
uric acid, bilirubin, glucose, and pyruvate, as well as lipid-soluble antioxidants, i.e., α,
γ-tocopherol, α, β-carotene, lycopene, lutein, reduced coenzyme Q, and retinol. The re-
actions of low-molecular-mass antioxidants with ROSs and free organic radicals are less
specific than enzymatic reactions, which is not a disadvantage. These compounds are
more universal defenders of the body and can play different roles. They can react with
the fraction of O2˙− and H2O2 molecules that escaped the action of antioxidant enzymes,
reducing the chance of hydroxyl radical formation [24,26].

3.3. Exercise-Induced Changes in the Redox Balance

PE can induce changes in the concentration/activity of oxidative stress markers re-
sulting from the increased generation of ROSs. Increased ROS generation during exercise
results from enhanced oxygen demand, mainly in skeletal muscles [2,36]. Large amounts
of ROSs can also be released by phagocytes that infiltrate tissue at sites of muscle dam-
age [37]. Exercise-induced ROS generation has been shown to have both positive and
negative physiological effects [37,38]. High levels of ROSs can lead to damage to cellular
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structures and cell death. On the other hand, ROSs play an essential role in cell signaling,
for example, during muscles’ adaptation to exercise [39]. It is common knowledge that
physical training improves physical fitness. Myokines, among others, are involved in this
process; these are cytokines produced and released from skeletal muscles during exercise
that affect metabolic and cellular processes in various tissues and organs. Some of them can
affect the oxidant–antioxidant balance [40]. It has also been demonstrated that ROS-linked
pathways can participate in myokine induction [39].

Numerous studies confirm the effects of exercise on the redox balance. However, the
effects of this influence vary depending on the nature of changes in individual markers of
the balance. ROS overproduction depends mainly on the intensity or volume of exercise [41].
For example, cycling with intensities of 50%, 60%, and 70% of the maximal VO2 for 10,
20, and 30 min has enhanced oxidative stress and antioxidant activities in men who lead
sedentary lifestyles. However, the changes in individual oxidative stress markers observed
by the researchers varied and depended on the duration of PE. SOD activity in erythrocytes,
for example, increased immediately after exercise of all intensities and durations, except for
an intensity of 70% of the maximal VO2 for 30 min, when SOD activity decreased. In the
case of GPX, the only statistically significant changes consisted of a decrease in the activity
of this enzyme after 20 and 30 min at all intensity levels [42]. Other studies, in turn, showed
no statistically significant changes in the serum malondialdehyde (MDA) and GPX4 levels
of 20 healthy young adults (men and women) and a lack of regular exercise habits after
aerobic exercise at moderate intensity on a power bike (five times per week for 4 weeks).
The SOD levels, on the other hand, decreased in a statistically significant manner [43]. After
a 12 week maximum fat oxidation intensity exercise, however, there was a decrease in CAT
activity and MDA levels and an increase in serum SOD activity in obese patients (men
and women) with nonalcoholic fatty liver disease (all junior students without physical
education courses). The GPX activity and total antioxidant capacity did not change in a
statistically significant manner [44]. There were no changes in MnSOD, CAT, GPX, and
hemeoxygenase-1 in muscle biopsy material after a 4 week training intervention consisting
of high-intensity interval training in healthy volunteers [45]. A specific training program
was shown to improve elite karate athletes’ oxidant–antioxidant balance. After 3 months of
karate training, the authors observed an increase in SOD and CAT activity, while the MDA
concentrations decreased [46].

Studies confirm that suitable exercise maintains physiological levels of ROSs, which
allows skeletal muscle to function properly and facilitates adaptation to exercise [46,47].
Among other things, regular PE induces adaptive changes in endogenous antioxidant
mechanisms [17,37,48,49]. These changes can involve both enzymatic and non-enzymatic
antioxidants. It has been shown that oxidants can affect gene expression. Changes in gene
expression involving ROSs have been demonstrated at the level of transcription, mRNA
stability, and signal transduction. Under the influence of exercise, changes occur in SOD
activity, among other things [50]. Comparing the mRNA levels of antioxidant enzymes
before and after physical training, the authors showed, for example, an increase in the
mRNA levels of SOD1 in peripheral blood mononuclear cells after completing a 2 week
training period (jogging for 30 min 5 days per week) in healthy subjects. The mRNA levels
of SOD1 and SOD2 were also found to be higher in a statistically significant manner two
weeks after the completion of the training program. Before exercise, the SOD2 mRNA levels
were higher in those with exercise habits compared to those without [51]. It is considered
that regular exercise induces so-called “oxidative eustress” [52]. This type of oxidative
stress, in contrast with “oxidative distress”, helps maintain redox homeostasis. This is
possible, among other means, through the activation of transcription factors including
erythroid-related nuclear factor 2 (NRF2) [52], which is considered a key regulator of antiox-
idant defense [53,54]. This factor regulates the expression of GR, SOD, GPX, thioredoxin
reductase, hemeoxygenase-1, peroxiredoxin, metallothionein, and thioredoxin, among
others. Numerous studies confirm NRF2 activation in response to exercise [55,56].
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4. Genes Responsible for the Production of Antioxidant Capacity in the Context of
Athletic Performance
4.1. Polymorphisms of Antioxidant Genes and Physical Performance

There are not many publicly available papers on research about the direct impact
of antioxidant genes on physical performance (Table 2). Interestingly, the investigated
antioxidant gene polymorphisms are not associated with improved antioxidant capacity.
This covers changes leading to a weakening of the antioxidant barrier. Several SNPs of
antioxidant enzyme genes have been noted to cause a decrease in the levels or activities of
antioxidant enzymes. They include, among others, a valine/alanine substitution at position
9 of the amino acid chain in the mitochondrial targeting sequence (MTS) of MnSOD (Val-
9Ala: NCBI, refSNP ID: rs1799725), adenine/thymine substitution at position 21 of the
promoter region of the CAT gene (21A/T: NCBI, refSNP ID: rs7943316), and proline/leucine
substitution at position 198 of the amino acid chain in GPX1 (Pro-198Leu: NCBI, refSNP ID:
rs1050450) [57].

Table 2. Polymorphisms of antioxidant parameters assessed for their relationships with physical
performance.

Parameter Genotypes (Single-Nucleotide
Polymorphisms)

Relationship with
Physical

Performance
References

Manganese superoxide dismutase (SOD 2,
EC 1.15.1.1) Val/Val, Ala/Val, Ala/Ala Yes [57–59]

Catalase (CAT, EC 1.11.1.6) AA, AT, TT No [57]
Glutathione peroxidase 1 (GPX 1, EC

1.11.1.9) Pro/Pro, Pro/Leu, Leu/Leu No [57]

Haptoglobin (Hp) 1F-1F, 1F-1S, 1S-1S, 1F-2, 1S-2, 2-2 Yes [57]

Glutathione S-transferase (GST, EC 2.5.1.18)
GSTM1-, GSTM1+, GSTT1-, GSTT1+,
GSTM1-T1-, GSTM1+T1-, GSTM-T+,

GSTM+T+
No [57]

Val: valine; Ala: alanine; A: adenine; T: thymine; Pro: proline; Leu: leucine.

Ben-Zaken et al. [58] proved that the Ala allele in the MnSOD gene polymorphism
occurs more often than the Val allele in professional athletes (N = 195) in both endurance
and resistance in comparison with healthy controls (N = 240). The frequency of this
allele compared to the Val allele also increases with the athlete’s training level (higher in
athletes at the Olympic level than in athletes at the national level) but is not influenced
by the essential type of PE (aerobic/endurance or anaerobic/resistance). MTS directs the
primary translation product of MnSOD to the mitochondrion; therefore, the replacement of
valine with alanine causes a change in the spatial conformation of MTS from an α-helix
to a β-sheet, impairs the transport of the enzyme, and ultimately reduces the antioxidant
capacity in mitochondria. The authors suggest that increased physical performance in
this way results from angiogenesis, mitochondrial biosynthesis, and muscle hypertrophy,
which are intensified due to higher ROS concentrations [58]. A point mutation in the
MnSOD gene with a similar redox effect was also investigated by Ahmetov et al. [59].
Specifically, this is about the Ala16Val polymorphism (rs4880 C/T), which is concerned
with a substitution of cytosine for thymine, resulting in a substitution of alanine for valine at
position 16 of the amino acid chain in MTS. Consequently, a reduction in the mitochondrial
antioxidant capacity is observed as a result of the inefficient transport of MnSOD across the
mitochondrial membrane. In contrast to the findings of Ben-Zaken et al. [58], the authors
of this study demonstrated that the genotype associated with reduced MnSOD antioxidant
capacity is less prevalent among athletes. However, this refers only to strength athletes
(N = 524), as no differences were observed between endurance athletes (N = 180) and
controls (N = 917). The mentioned antioxidant gene polymorphisms were also evaluated in
the context of physical performance by Akimoto et al. [57]. They examined long-distance
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runners (135 individuals in total, 82 men and 53 women aged 15–58 years) with the
following gene polymorphisms: Val/Val, Ala/Val, and Ala/Ala genotypes of MnSOD, AA,
AT, and TT genotypes of CAT, and Pro/Pro, Pro/Leu, and Leu/Leu genotypes of GPX1. The
DD, ID, and II genotypes of ACE were also evaluated. The impact of a given genotype on
endurance performance was assessed. This was done using the parameters of post-exercise
damage in venous blood serum: aspartate aminotransferase, alanine aminotransferase,
creatine kinase, thiobarbituric acid reactive substances (TBARSs, mainly MDA), as well
as using a comet assay of nucleated blood cells (leukocytes). The runners were tested
with a single run over a distance of 4–21 km. The study shows that only the MnSOD
polymorphisms are related to aerobic capacity. The authors found statistically significant
lower serum activity of creatine kinase in runners with the Ala/Ala MnSOD genotype
compared to the enzyme activities in runners with the other MnSOD genotypes. The study
by Ahmetov et al. suggests an opposing relationship. In their study, elevated creatine kinase
activity (women) and creatinine concentration (men and women) were positively correlated
in professional athletes with the MnSOD polymorphism, which results in a reduction in
mitochondrial antioxidant capacity [59]. Akimoto et al. [57] were also the first researchers
to examine glutathione S-transferase (GST) in the context of physical performance. They
studied cytosolic GST-µ and GST-θ, which are encoded by the glutathione S-transferase
M1 and T1 genes, respectively. The family of those isoenzymes (EC 2.5.1.18) plays a
key role in redox neutralization (reduction) of potentially harmful metabolic products
using GSH. These mainly include a wide spectrum of xenobiotics and oxidative stress
products [60]. It has been found that polymorphisms of these genes, which are based
on allelic deletion (null genotype), result in a higher prevalence of neoplasm [60,61], and
these are the loci that the authors examined, but they found no relation between them and
endurance performance [57]. Moreover, Akimoto et al. [57] revealed that haptoglobin, a
serum glycoprotein that is a type of acute-phase protein, may also be involved in endurance
performance. The serum TBARS concentration was lower in runners with the 1S-1S Hp
genotype than in runners with the 1F-1S and 1S-2 genotypes (no statistically significant
differences compared to the other genotypes: 1F-1F, 1F-2, and 2-2). Hp is responsible for
binding free hemoglobin in the bloodstream, which prevents oxidative stress resulting
from the Fenton reaction [62]. Hp dysfunctions are associated with a higher incidence
and clinical stage of many inflammatory and autoimmune diseases [63]. For instance, the
2-2 genotype is associated with an increased risk of developing vascular complications in
patients suffering from diabetes. This results from the fact that heme iron combined with
this type of Hp is more susceptible to redox reactions than other Hp complexes with heme
iron, which results in higher concentrations of oxidized lipids and, thus, increased levels of
dysfunctional lipoproteins [64].

4.2. Antioxidant Adaptation as a Result of Exercise

As mentioned in the previous section, regular PE has been widely shown to increase
the ability to alleviate inflammation and oxidative stress by inducing an adaptive response
in the endogenous antioxidant system. This is manifested by, among other things, the
positive impact of exercise on ˙NO bioavailability in the endothelium. It has been found that
the ˙NO concentration increases as a result of regular physical activity in both young and
elderly individuals [65], which may be accompanied at the same time by the maintained
redox balance (correspondingly higher plasma antioxidant capacity) and eventually proper
cutaneous microcirculatory functions in older people [66]. Another research study also
points to this; 36 older (47–74 years) professional long-distance runners had better regula-
tion of blood circulation (endothelium function) and higher plasma antioxidant capacity
than 36 controls (sex-matched, untrained people aged 46–77 years, with no cardiovascular
disease or any risk factors of the disease). Blood flow in the hands and feet was examined
in the participants under conditions of increased temperature (44 ◦C), as well as ischemia
and hyperemia (3 min of brachial artery occlusion), using a laser Doppler flowmetry and
biochemical parameters in venous blood (left cephalic vein). Higher plasma concentrations
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of ˙NO in the form of its metabolites (nitrites and nitrates), mRNA of PGC-1α (PPARγ
coactivator-1 α), total antioxidant capacity, and sirtuin 1, as well as higher miR29 concentra-
tions in mononuclear cells of the blood, were found in the athletes [67]. The increase in the
eNOS activity and phosphorylation of serine at the 1177 position of its amino acid chain is
most probably an adaptive and vasoprotective effect of PE. The molecular changes also
include increased levels of integrins (cell membrane proteins) and H2O2 in the endothelium.
Exercise-induced eNOS activation is transient and reversible and is regulated in redox
reactions, including the upregulation of SOD (SOD1 and SOD3) and downregulation of
NOX [68].

The same can be said of myokines, which, as previously stated, play a role in the phys-
iological adaptations that occur during exercise. The induction and release of myokines
are, in part, mediated by the muscles’ production of ROSs [39]. At the same time, some
myokines exhibit considerable antioxidant potential and the capacity to regulate the redox
balance. For example, under ischemia/reperfusion-induced oxidative stress in the heart,
brain-derived neurotrophic factor (BDNF) has been shown to reduce the concentration of
H2O2, while leukemia inhibitory factor (LIF) and fibroblast growth factor 21 (FGF-21) have
been demonstrated to result in a lower concentration of O2˙−. A similar effect regarding
O2˙− has been found for interleukin-6 (IL-6) in the brain and regarding ONOO− for fibrob-
last growth factor 2 (FGF-2) in the kidneys. Concurrently, the same or other myokines
contribute to the higher activities of antioxidant enzymes (SOD, GPX) and/or oxidant
enzymes (NOS, NOX) [40]. In general, myokines are signaling molecules that act in a
number of ways—inside muscle cells (“in situ”), including in an autocrine manner, as well
as in paracrine and endocrine manners on other tissues throughout the body. They may
protect against oxidative stress while also acting as modulators of metabolism via redox
reactions in both physiological and pathological conditions (e.g., PE and aging, as well as
cardiometabolic diseases and cancer, respectively). For example, irisin, a recently identified
myokine, appears to possess the ability to mitigate and even repair oxidative damage to
muscle tissue caused by the aging process in individuals who engage in regular exercise.
Myokines are also involved in the regulation of muscle tissue reconstruction. In satellite
cells, the Pax genes are activated, and the sequential expression of myogenic regulatory
factors occurs as follows: MyoD, Myf5, myogenin, and MRF4. The result is the proliferation,
differentiation, and fusion of satellite cells into new multinucleated muscle cells, processes
that are dependent on a transient increase in the concentration of ROSs [68]. Further-
more, numerous animal and in vitro studies have corroborated these findings [40,68]. For
instance, cardiomyocyte culture and adult mice subjected to a pro-inflammatory agent
(lipopolysaccharide) have been shown to enhance the cardiac concentration of FGF-21,
which resulted in increased expression of antioxidant genes (SOD-2 and uncoupling protein
3, UCP-3) and capacity via an autocrine manner [69].

Finally, sometimes, a gene seemingly unrelated to the oxidant–antioxidant balance
can affect it. An example is the MYBPC3 gene, in which SNPs are associated with either
the phenotype of an elite athlete’s heart or hypertrophy cardiomyopathy, depending
on the gene allele. MYBPC3 encodes myosin-binding protein C3. Phosphorylation of
this structural protein increases cardiac contraction, and its isoforms are also present in
skeletal muscles. The polymorphisms of the gene present in professional athletes are
probably related to theophylline, quinate, and decanoylcarnitine, metabolites whose level
increases with aerobic capacity and that increase antioxidant capacity (theophylline and
decanoylcarnitine). In turn, hypertrophy cardiomyopathy, a condition characterized by
oxidative stress, is associated with ursodeoxycholate [70].

5. Conclusions and Future Perspectives
5.1. Conclusions

The importance of physical exertion in healthcare is increasingly being recognized,
with evidence indicating that it is an effective means of improving metabolic and cardiores-
piratory health. In this context, exercise is accorded particular attention with regard to
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the prevention and treatment of metabolic syndrome and its associated diseases [3,4]. In
contrast, in the field of sports, novel approaches to enhancing performance are consistently
being investigated. Therefore, investigating the origin of an organism’s characteristics,
specifically its genes, can facilitate the realization of health benefits that extend beyond the
primary objective [6].

The literature in the field of sports genomics is mainly focused on genes that regulate
muscle functions during physical exertion and genes of structural proteins in muscles,
especially those responsible for contraction. Most of these genes are directly or indirectly
related to oxidant processes, not antioxidant ones [5,9,12–17]. Another issue is inconsistent
conclusions regarding the impact of exercise on the redox balance. On the one hand, the
human body needs free radicals for effective PE, as they are signal conductors between
cells/tissues. In any case, the consequence of this effort is the augmented generation of free
radicals. ROSs and RNSs can also potentially threaten an organism in excessive concentra-
tions. They may contribute to severe oxidative damage of cellular components and lead
to pathological changes, starting with inflammation. However, this is not the case with
exercise, as the effects of PE on an organism remain within the parameters of physiological
responses. The consequences of free radicals, oxidative-stress-induced microdamage, and
inflammation as a result of exercise are adaptive changes in the body, which are expressed
in higher antioxidant capacity. This is a condition that an organism can cope with and ulti-
mately benefit from [36–39]. The entire effect of exercise on the human redox equilibrium
depends on the intensity, type, and duration of an exercise bout. The physical fitness of
a given individual is also important, as well as whether an individual is a healthy or sick
person [42–46]. In general, however, an organism’s reactions tend to maintain the redox
balance in each condition (keeping the system’s self-regulation). This should be remem-
bered when concluding research studies on antioxidant genes in the context of physical
performance. On the one hand, it has been demonstrated that the frequency of prooxidant
modification in the MnSOD gene (Ala allele) is strongly and positively correlated with
the training level without an association with the type of exercise [57,58]. On the other
hand, there are alleles of antioxidant genes that increase antioxidant capacity and, thereby,
physical performance (e.g., 1S-1S allele of the Hp gene) [57]. Maintenance of the redox
balance—the cooperation between oxidants and antioxidants in an organism to keep its
proper functions—is well illustrated by the endothelium’s already-mentioned regulation
of blood pressure. For appropriate endothelium function, both oxidants (˙NO, H2O2) and
antioxidants (higher total plasma antioxidant capacity) are required [65–68]. A comparable
redox effect is observed in the case of myokines [40,69].

5.2. Future Perspectives

It should be remembered that genes interact in many different ways. Thus, an ex-
amination of particular genes in one research experiment may provide different results
in another, depending on the subjects, i.e., on the genotypes included in a study. The
entire genotype shapes the phenotype. SNPs are not the only possible origin of differences.
Many other genetic markers should also be considered (e.g., rare mutations), as well as
epigenetic features. Future studies should also involve genes linked to other sport-related
predispositions, in addition to those representing exercise physiology and anatomy. For
instance, genes involved in shaping personality and mental traits should be included.
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