Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedure for the Synthesis of N-Tosyl Imines 1
3.2. General Procedure for the Synthesis of α-Succinimide-Substituted Allenoate 2
3.3. General Procedure for the Isomerization Cascade γ′-Addition Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panov, A.A.; Simonov, A.Y.; Lavrenov, S.N.; Lakatosh, S.A.; Trenin, A.S. 3,4-Disubstituted maleimides: Synthesis and biological activity. Chem. Heterocycl. Comp. 2018, 54, 103–113. [Google Scholar] [CrossRef]
- Anizon, F.; Golsteyn, R.M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. A three-step synthesis from rebeccamycin of an efficient checkpoint kinase 1 inhibitor. Eur. J. Med. Chem. 2009, 44, 2234–2238. [Google Scholar] [CrossRef] [PubMed]
- Merkel, A.L.; Meggers, E.; Ocker, M. PIM1 kinase as a target for cancer therapy. Expert. Opin. Investig. Drugs. 2012, 21, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.; Buffet, M.; Fenwick, A.E.; Haigh, D.; Lfe, R.J.; Saunders, M.; Slingsby, B.P.; Stacey, R.; Ward, R.W. 3-Anilino-4-arylmaleimides: Potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett. 2001, 11, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Sivaprakasam, P.; Xie, A.; Doerksen, R.J. Probing the physicochemical and structural requirements for glycogen synthase kinase-3α inhibition: 2D-QSAR for 3-anilino-4-phenylmaleimides. Bioorg. Med. Chem. 2006, 14, 8210–8218. [Google Scholar] [CrossRef] [PubMed]
- Sortino, M.; Garibotto, F.; Filho, V.; Gupta, M.; Enriz, R.; Zacchina, S. Antifungal, cytotoxic and SAR studies of a series of N-alkyl, N-aryl and N-alkylphenyl-1,4-pyrrolediones and related compounds. Bioorg. Med. Chem. 2011, 19, 2823–2834. [Google Scholar] [CrossRef] [PubMed]
- Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Schächtele, C.; Marmé, D.; Brenk, R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. Design, Synthesis, and Biological Evaluation of 3,4-Diarylmaleimides as Angiogenesis Inhibitors. J. Med. Chem. 2006, 49, 1271–1281. [Google Scholar] [CrossRef]
- Guo, H.C.; Fan, Y.C.; Sun, Z.H.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049–10293. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.Z.; Chan, W.-L.; Lu, Y.X. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. [Google Scholar] [CrossRef]
- Fan, Y.C.; Kwon, O. Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs. Chem. Commun. 2013, 49, 11588–11619. [Google Scholar] [CrossRef]
- Wei, Y.; Shi, M. Recent Advances in Organocatalytic Asymmetric Morita–Baylis–Hillman/aza-Morita–Baylis–Hillman Reactions. Chem. Rev. 2013, 113, 6659–6690. [Google Scholar] [CrossRef] [PubMed]
- Basavaiah, D.; Reddy, B.S.; Badsara, S.S. Recent Contributions from the Baylis–Hillman Reaction to Organic Chemistry. Chem. Rev. 2010, 110, 5447–5674. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shi, M. Multifunctional Chiral Phosphine Organocatalysts in Catalytic Asymmetric Morita–Baylis–Hillman and Related Reactions. Acc. Chem. Res. 2010, 43, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Aroyan, C.E.; Miller, S.J. Enantioselective Rauhut–Currier Reactions Promoted by Protected Cysteine. J. Am. Chem. Soc. 2007, 129, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Menon, R.S.; Sreekanth, A.R.; Abhilash, N.; Biju, A.T. Engaging Zwitterions in Carbon–Carbon and Carbon–Nitrogen Bond–Forming Reactions: A Promising Synthetic Strategy. Acc. Chem. Res. 2006, 39, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Methot, J.L.; Roush, W.R. Nucleophilic Phosphine Organocatalysis. Adv. Synth. Catal. 2004, 346, 1035–1050. [Google Scholar] [CrossRef]
- Lu, X.Y.; Zhang, C.M.; Xu, Z.R. Reactions of Electron-Deficient Alkynes and Allenes under Phosphine Catalysis. Acc. Chem. Res. 2001, 34, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Yamada, K.; Uraguchi, D.; Ooi, T. Unique site-selectivity control in asymmetric Michael addition of azlactone to alkenyl dienyl ketones enabled by P-spiro chiral iminophosphorane catalysis. Chem. Commun. 2017, 53, 5495–5498. [Google Scholar] [CrossRef] [PubMed]
- Li, E.Q.; Jin, H.X.; Jia, P.H.; Dong, X.L.; Huang, Y. Bifunctional-Phosphine-Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Poly-heterocycle Rings. Angew. Chem. Int. Ed. 2016, 55, 11591–11594. [Google Scholar] [CrossRef]
- Ziegler, D.T.; Riesgo, L.; Ikeda, T.; Fujiwara, Y.; Fu, G.C. Biphenyl-Derived Phosphepines as Chiral Nucleophilic Catalysts: Enantioselective [4+1] Annulations To Form Functionalized Cyclopentene. Angew. Chem. Int. Ed. 2014, 53, 13183–13187. [Google Scholar] [CrossRef]
- Gicquel, M.; Gomez, C.; Retailleau, P.; Voituriez, A.; Marinetti, A. Synthesis of 3,3′-Spirocyclic Oxindoles via Phosphine Catalyzed [4+2] Cyclizations. Org. Lett. 2013, 15, 4002–4005. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Wang, Y.Q.; Zhong, F.R.; Lu, Y.X. Enantioselective [3+2] Cycloaddition of Allenes to Acrylates Catalyzed by Dipeptide-Derived Phosphines: Facile Creation of Functionalized Cyclopentenes Containing Quaternary Stereogenic Centers. J. Am. Chem. Soc. 2011, 133, 1726–1729. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ye, S. Diastereoselective Synthesis of 6-Trifluoromethyl-5,6-dihydropyrans via Phosphine-Catalyzed [4+2] Annulation of α-Benzylallenoates with Ketones. Org. Lett. 2010, 12, 4168–4171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.M.; Yang, L.; Tong, X.F. 2-(Acetoxymethyl)buta-2,3-dienoate, a Versatile 1,4-Biselectrophile for Phosphine-Catalyzed (4+n) Annulations with 1,n-Bisnucleophiles (n = 1, 2). J. Am. Chem. Soc. 2010, 132, 2550–2551. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.K.; Fu, G.C. Phosphine-Catalyzed Enantioselective Synthesis of Oxygen Heterocycle. Angew. Chem. Int. Ed. 2009, 48, 2225–2227. [Google Scholar] [CrossRef] [PubMed]
- Wurz, R.P.; Fu, G.C. Catalytic Asymmetric Synthesis of Piperidine Derivatives through the [4+2] Annulation of Imines with Allenes. J. Am. Chem. Soc. 2005, 127, 12234–12235. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-F.; Lan, J.; Kwon, O. An Expedient Phosphine-Catalyzed [4+2] Annulation: Synthesis of Highly Functionalized Tetrahydropyridines. J. Am. Chem. Soc. 2003, 125, 4716–4717. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Li, C.-J. Novel “Umpolung” in C-C Bond Formation Catalyzed by Triphenylphosphine. J. Am. Chem. Soc. 1994, 116, 3167–3168. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, X. Umpolung Addition Reaction of Nucleophiles to 2,3-Butadienoates Catalyzed by a Phosphine. Synlett 1995, 6, 645–646. [Google Scholar] [CrossRef]
- Lu, C.; Lu, X.Y. Unexpected results in the reaction of active methylene compounds with phenylsulfonyl-1,2-propadiene triggered by triphenylphosphine. Tetrahedron 2004, 60, 6575–6579. [Google Scholar] [CrossRef]
- Li, E.Q.; Xie, P.Z.; Yang, L.H.; Liang, L.; Huang, Y. Tuning Catalysts to Tune the Products: Phosphine-Catalyzed Aza-Michael Addition Reaction of Hydrazones with Allenoates. Chem. Asian J. 2013, 8, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Gandi, V.R.; Lu, Y.X. Phosphine-catalyzed regioselective Michael addition to allenoates. Chem. Commun. 2015, 51, 16188–16190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.-F.; Zhang, K.; Cai, L.C.; Kwon, O. Phosphine-Catalyzed Intramolecular Cyclizations of α-Nitroethylallenoates Forming (Z)-Furanone Oximes. Org. Lett. 2016, 18, 2954–2957. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.S.; Yang, X.Q.; Yang, F.L.; Lu, T.; Zhou, Q.F. Phosphine-Catalyzed Domino β/γ-Additions of Benzofuranones with Allenoates: A Method for Unsymmetrical 3,3-Disubstituted Benzofuranones. Org. Lett. 2017, 19, 3524–3527. [Google Scholar] [CrossRef] [PubMed]
- Szeto, J.; Sriramurthy, V.; Kwon, O. Phosphine-Initiated General Base Catalysis: Facile Access to Benzannulated 1,3-Diheteroatom Five-Membered Rings via Double-Michael Reactions of Allenes. Org. Lett. 2011, 13, 5420–5423. [Google Scholar] [CrossRef] [PubMed]
- Vaishanv, N.K.; Zaheer, M.K.; Kant, R.; Mohanan, K. Phosphine-Catalyzed β-Selective Conjugate Addition of α-Fluoro-β-ketoamides to Allenic Esters. Eur. J. Org. Chem. 2019, 35, 6138–6142. [Google Scholar] [CrossRef]
- Martin, T.J.; Vakhshori, V.G.; Tran, Y.S.; Kwon, O. Phosphine-Catalyzed β′-Umpolung Addition of Nucleophiles to Activated α-Alkyl Allenes. Org. Lett. 2011, 13, 2586–2589. [Google Scholar] [CrossRef]
- Guan, X.-Y.; Wei, Y.; Shi, M. Phosphane-Catalyzed Umpolung Addition Reaction of Nucleophiles to Ethyl 2-Methyl-2,3-butadienoate. Eur. J. Org. Chem. 2011, 2011, 2673–2677. [Google Scholar] [CrossRef]
- Feng, J.X.; Huang, Y. Phosphine-Catalyzed Remote 1,7-Addition for Synthesis of Diene Carboxylates. ACS Catal. 2020, 10, 3541–3547. [Google Scholar] [CrossRef]
- Wang, D.; Song, Z.-F.; Wang, W.-J.; Xu, T. Highly Regio- and Enantioselective Dienylation of p-Quinone Methides Enabled by an Organocatalyzed Isomerization/Addition Cascade of Allenoates. Org. Lett. 2019, 21, 3963–3967. [Google Scholar] [CrossRef]
- Wu, L.L.; Chen, K.H.; Huang, Y.; Li, E.-Q. Phosphine-Catalyzed δ-Addition Reaction of γ-Substituted Allenoates with Isatin Derivatives. Asian J. Org. Chem. 2020, 9, 1179–1182. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, X.; Xie, L.; Wang, X.; Wang, S.; Liu, H.; Guo, H. Phosphine-Catalyzed [4+2] Annulation of Allenoates Bearing Acidic Hydrogen with 1,1-Dicyanoalkenes. J. Org. Chem. 2024, 89, 7169–7174. [Google Scholar] [CrossRef] [PubMed]
- Crystallographic Datas for 3da Has Been Deposited with the Cambridge Crystallographic Data Centre as Deposition Number CCDC 2258229. [CrossRef]
- Morales, S.; Guijarro, F.G.; Ruano, J.G.; Cid, M.B. A general aminocatalytic method for the synthesis of aldimines. J. Am. Chem. Soc. 2014, 136, 1082. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.Y.; Pei, C.K.; Guan, X.Y.; Shi, M. Enantioselective Intermolecular Rauhut–Currier Reaction of Electron-Deficient Allenes with Maleimides. Adv. Synth. Catal. 2011, 353, 1973–1979. [Google Scholar] [CrossRef]
Entry | PR3 | Solvent | Additive | t/h | Yield (%) b |
---|---|---|---|---|---|
1 | PBu3 | DCM | - | 6 | 40 |
2 | PMe3 | DCM | - | 6 | 37 |
3 | MePPh2 | DCM | - | 6 | 43 |
4 | EtPPh2 | DCM | - | 6 | 55 |
5 | PrPPh2 | DCM | - | 6 | 48 |
6 | EtPPh2 | DCE | - | 6 | 44 |
7 | EtPPh2 | THF | - | 6 | trace |
8 | EtPPh2 | toluene | - | 6 | 39 |
9 | EtPPh2 | CH3CN | - | 6 | trace |
10 | EtPPh2 | EtOAc | - | 6 | 23 |
11 | EtPPh2 | DCM | PhOH | 6 | 60 |
12 | EtPPh2 | DCM | BzOH | 6 | 68 |
13 | EtPPh2 | DCM | 4-NO2BzOH | 6 | 70 |
14 | EtPPh2 | DCM | 3,5-(OH)2BzOH | 6 | 73 |
15 c | EtPPh2 | DCM | 3,5-(OH)2BzOH | 8 | 81 |
Entry | R1 in 1 | R2 in 2 | 3 | Yield (%) b |
---|---|---|---|---|
1 | H (1a) | Bn (2a) | 3aa | 81 |
2 | 2-Me (1b) | Bn (2a) | 3ba | 83 |
3 | 3-Me (1c) | Bn (2a) | 3ca | 77 |
4 | 4-Me (1d) | Bn (2a) | 3da | 75 |
5 | 2-OMe (1e) | Bn (2a) | 3ea | 78 |
6 | 3-OMe (1f) | Bn (2a) | 3fa | 73 |
7 | 4-OMe (1g) | Bn (2a) | 3ga | 86 |
8 | 4-iPr (1h) | Bn (2a) | 3ha | 72 |
9 | 2,5-2OMe (1i) | Bn (2a) | 3ia | 84 |
10 c | 2-F (1j) | Bn (2a) | 3ja | 51 |
11 c | 3-F (1k) | Bn (2a) | 3ka | 54 |
12 | 4-F (1l) | Bn (2a) | 3la | 67 |
13 | 4-Cl (1m) | Bn (2a) | 3ma | 65 |
14 c | 2-Br (1n) | Bn (2a) | 3na | 49 |
15 d | Cyclohexyl (1o) | Bn (2a) | 3oa | NR |
16 c | H (1a) | 2-MeCH2C6H4 (2b) | 3ab | 59 |
17 c | H (1a) | 4-MeCH2C6H4 (2c) | 3ac | 65 |
18 c | H (1a) | 4-OMeCH2C6H4 (2d) | 3ad | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zhou, X.; Nie, B.; Lu, H.; Chen, X.; Wu, J.; Wang, X.; Li, L. Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines. Int. J. Mol. Sci. 2024, 25, 6916. https://doi.org/10.3390/ijms25136916
Gao Z, Zhou X, Nie B, Lu H, Chen X, Wu J, Wang X, Li L. Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines. International Journal of Molecular Sciences. 2024; 25(13):6916. https://doi.org/10.3390/ijms25136916
Chicago/Turabian StyleGao, Zhenzhen, Xiaoming Zhou, Baoshen Nie, Hanchong Lu, Xiaotong Chen, Jiahui Wu, Xuekun Wang, and Lei Li. 2024. "Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines" International Journal of Molecular Sciences 25, no. 13: 6916. https://doi.org/10.3390/ijms25136916
APA StyleGao, Z., Zhou, X., Nie, B., Lu, H., Chen, X., Wu, J., Wang, X., & Li, L. (2024). Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ′-Addition with Aryl Imines. International Journal of Molecular Sciences, 25(13), 6916. https://doi.org/10.3390/ijms25136916