Correlation between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients
Abstract
:1. Introduction
2. Results
2.1. Patient Demographic and Clinical Characteristics
2.2. Comparison of the Neurotransmitters, PNI, GPS, and SIR Markers in CR-NET and CRC Groups
2.3. Comparing the PNI and GPS Groups’ Clinical Features between the Study Groups
2.4. Comparing Clinical Features of Different TNM Stages in CR-NET and CRC Groups
2.5. Correlations between Neurotransmitters, PNI, and SIR Markers in CR-NET Group
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Sample Collection
4.3. Calculation of Systemic Inflammatory Response Markers
4.4. Immunological Assessment
4.5. Calculation of Prognostic Nutritional Index and Glasgow Prognostic Score
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tran, C.G.; Sherman, S.K.; Howe, J.R. Small Bowel Neuroendocrine Tumors. Curr. Probl. Surg. 2020, 57, 100823. [Google Scholar] [CrossRef]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Ondicova, K.; Mravec, B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 2010, 11, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.W.; Auyeung, K.K.; Bian, Z.X.; Ko, J.K. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis. Curr. Neuropharmacol. 2016, 14, 842–856. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Shahzad, M.M.; Lin, Y.G.; Armaiz-Pena, G.; Mangala, L.S.; Han, H.D.; Kim, H.S.; Nam, E.J.; Jennings, N.B.; Halder, J.; et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clin. Cancer Res. 2009, 15, 2695–2702. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.K.; Bhatty, R.; Kamat, A.A.; Landen, C.N.; Han, L.; Thaker, P.H.; Li, Y.; Gershenson, D.M.; Lutgendorf, S.; Cole, S.W. Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res. 2006, 12, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.V.; Sood, A.K.; Chen, M.; Li, Y.; Eubank, T.D.; Marsh, C.B.; Jewell, S.; Flavahan, N.A.; Morrison, C.; Yeh, P.E.; et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006, 66, 10357–10364. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.Z.; Han, B.S.; Di, J.M.; Liu, W.Y.; Tang, Q. Role of the brain-gut axis in gastrointestinal cancer. World J. Clin. Cases 2019, 7, 1554–1570. [Google Scholar] [CrossRef] [PubMed]
- Rubí, B.; Maechler, P. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: Let’s seek the balance. Endocrinology 2010, 151, 5570–5581. [Google Scholar] [CrossRef]
- De Ponti, F. Pharmacology of serotonin: What a clinician should know. Gut 2004, 53, 1520–1535. [Google Scholar] [CrossRef]
- Grin, A.; Streutker, C.J. Neuroendocrine tumors of the luminal gastrointestinal tract. Arch. Pathol. Lab. Med. 2015, 139, 750–756. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, L.; Zhang, M.; Shang, L.; Zhang, P.; Wang, W.; Fang, C.; Li, J.; Xu, T.; Tan, H.; et al. Clinicopathological features and prognostic validity of WHO grading classification of SI-NENs. BMC Cancer 2017, 17, 521. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, L.; Wang, W.; Xu, H.; Jin, K.; Wu, C.; Qi, Z.; Zhang, S.; Liu, C.; Xu, J.; et al. Novel recurrence risk stratification of resected pancreatic neuroendocrine tumor. Cancer Lett. 2018, 412, 188–193. [Google Scholar] [CrossRef]
- Merola, E.; Rinzivillo, M.; Cicchese, N.; Capurso, G.; Panzuto, F.; Delle Fave, G. Digestive neuroendocrine neoplasms: A 2016 overview. Dig. Liver Dis. 2016, 48, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, P.; Shi, X.; Zhao, A.; Zhang, L.; Zhou, L. Clinicopathological features and prognosis of gastroenteropancreatic neuroendocrine neoplasms in a Chinese population: A large, retrospective single-centre study. BMC Endocr. Disord. 2017, 17, 39. [Google Scholar] [CrossRef]
- Panzuto, F.; Merola, E.; Rinzivillo, M.; Partelli, S.; Campana, D.; Iannicelli, E.; Pilozzi, E.; Mercantini, P.; Rossi, M.; Capurso, G.; et al. Advanced digestive neuroendocrine tumors: Metastatic pattern is an independent factor affecting clinical outcome. Pancreas 2014, 43, 212–218. [Google Scholar] [CrossRef]
- Lawrence, B.; Gustafsson, B.I.; Chan, A.; Svejda, B.; Kidd, M.; Modlin, I.M. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol. Metab. Clin. N. Am. 2011, 40, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Foubert, F.; Salimon, M.; Dumars, C.; Regenet, N.; Girot, P.; Venara, A.; Senellart, H.; Heymann, M.F.; Matysiak-Budnik, T.; Touchefeu, Y. Survival and prognostic factors anal-ysis of 151 intestinal and pancreatic neuroendocrine tumors: A single center experience. J. Gastrointest. Oncol. 2019, 10, 103–111. [Google Scholar] [CrossRef]
- Bai, X.; Feng, L. Correlation between Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response, and TNM Staging in Colorectal Cancer Patients. Nutr. Cancer 2020, 72, 1170–1177. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, L.; Zheng, Y.; Jiang, W.; Zhao, P.; Fang, W.; Wang, W. Predictive value of preoperative peripheral blood neutrophil/lymphocyte ratio for lymph node metastasis in patients of resectable pancreatic neuroendocrine tumors: A nomogram-based study. World J. Surg. Oncol. 2017, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, H.; Ning, Z.; Xu, L.; Zhuang, L.; Wang, P.; Meng, Z. Prognostic nutritional index serves as a predictive marker of survival and associates with systemic inflammatory response in metastatic intrahepatic cholangiocarcinoma. Onco Targets Ther. 2016, 9, 6417–6423. [Google Scholar] [CrossRef] [PubMed]
- Roncolato, F.T.; Berton-Rigaud, D.; O’Connell, R.; Lanceley, A.; Sehouli, J.; Buizen, L.; Okamoto, A.; Aotani, E.; Lorusso, D.; Donnellan, P.; et al. Validation of the modified Glasgow Prognostic Score (mGPS) in recurrent ovarian cancer (ROC)—Analysis of patients enrolled in the GCIG Symptom Benefit Study (SBS). Gynecol. Oncol. 2018, 148, 36–41. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Cai, J.; Chen, L.; Yao, J.; Zhang, Y.; Xu, W.; Geng, L.; Yang, M.; Chen, P.; et al. Prognostic Value of the Glasgow Prognostic Score or Modified Glasgow Prognostic Score for Patients with Colorectal Cancer Receiving Various Treatments: A Systematic Review and Meta-Analysis. Cell Physiol. Biochem. 2018, 51, 1237–1249. [Google Scholar] [CrossRef]
- Tong, T.; Guan, Y.; Xiong, H.; Wang, L.; Pang, J. A Meta-Analysis of Glasgow Prognostic Score and Modified Glasgow Prognostic Score as Biomarkers for Predicting Survival Outcome in Renal Cell Carcinoma. Front. Oncol. 2020, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, S.; Ohtani, Y.; Sakamoto, I.; Hosoda, A.; Ihara, A.; Naitoh, T. Systemic Immune-Inflammation Index Predicts Tumor Recurrence after Radical Resection for Colorectal Cancer. Tohoku J. Exp. Med. 2023, 261, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Komiyama, H.; Kojima, Y.; Goto, M.; Tomiki, Y.; Sakamoto, K. Glasgow prognostic score as a prognostic factor in patients undergoing curative surgery for colorectal cancer. Dig. Surg. 2012, 29, 503–509. [Google Scholar] [CrossRef]
- Shibutani, M.; Maeda, K.; Nagahara, H.; Ohtani, H.; Iseki, Y.; Ikeya, T.; Sugano, K.; Hirakawa, K. The prognostic significance of a postoperative systemic inflammatory response in patients with colorectal cancer. World J. Surg. Oncol. 2015, 13, 194. [Google Scholar] [CrossRef]
- Chen, Q.; Li, G.L.; Zhu, H.Q.; Yu, J.D.; Chen, Z.P.; Wu, J.Y.; Lin, Z.Y.; Wan, Y.L. The neutrophil-to-lymphocyte ratio and lactate dehydrogenase combined in predicting liver metastasis and prognosis of colorectal cancer. Front. Med. 2023, 10, 1205897. [Google Scholar] [CrossRef]
- Turri, G.; Caligola, S.; Ugel, S.; Conti, C.; Zenuni, S.; Barresi, V.; Ruzzenente, A.; Lippi, G.; Scarpa, A.; Bronte, V.; et al. Pre-diagnostic prognostic value of leukocytes count and neutrophil-to-lymphocyte ratio in patients who develop colorectal cancer. Front. Oncol. 2023, 13, 1148197. [Google Scholar] [CrossRef]
- Hasirci, I.; Şahin, A. Importance of the neutrophil-lymphocyte ratio and systemic immune-inflammation index in predicting colorectal pathologies in fecal occult blood-positive patients. J. Clin. Lab. Anal. 2023, 37, e24878. [Google Scholar] [CrossRef] [PubMed]
- Gawiński, C.; Mróz, A.; Roszkowska-Purska, K.; Sosnowska, I.; Derezińska-Wołek, E.; Michalski, W.; Wyrwicz, L. A Prospective Study on the Roles of the Lymphocyte-to-Monocyte Ratio (LMR), Neutrophil-to-Lymphocyte Ratio (NLR), and Platelet-to-Lymphocyte Ratio (PLR) in Patients with Locally Advanced Rectal Cancer. Biomedicines 2023, 11, 3048. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, N.; Felekouras, E.; Karavokyros, I.; Alexandrou, A.; Pikoulis, E.; Griniatsos, J. Neutrophils to lymphocytes ratio as a useful prognosticator for stage II colorectal cancer patients. BMC Cancer 2018, 18, 1202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Miao, Y.C. Prognostic evaluation of preoperative systemic immune inflammatory index in patients with colorectal cancer. Front. Oncol. 2023, 13, 1260796. [Google Scholar] [CrossRef] [PubMed]
- Salman, T.; Kazaz, S.N.; Varol, U.; Oflazoglu, U.; Unek, I.T.; Kucukzeybek, Y.; Alacacioglu, A.; Atag, E.; Semiz, H.S.; Cengiz, H.; et al. Prognostic Value of the Pretreatment Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Patients with Neuroendocrine Tumors: An Izmir Oncology Group Study. Chemotherapy 2016, 61, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.K.; Swain, S.K.; Munikrishnan, V.; Jameel JK, A. Can the Inflammatory Cell Ratio NLR and PLR be Used as a Reliable Marker in Colon Cancer? A Prospective Study. Euroasian J. Hepatogastroenterol. 2023, 13, 61–65. [Google Scholar] [PubMed]
- Ouyang, H.; Xiao, B.; Huang, Y.; Wang, Z. Baseline and early changes in the neutrophil-lymphocyte ratio (NLR) predict survival outcomes in advanced colorectal cancer patients treated with immunotherapy. Int. Immunopharmacol. 2023, 123, 110703. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, T.; Nonaka, T.; Oyama, S.; Takamura, Y.; Hashimoto, S.; Shiraishi, T.; Sawai, T.; Nagayasu, T. Efficacy of Neutrophil-to-Lymphocyte Ratio for Cancer-Specific Survival in Elderly Patients with Localized Colon Cancer: A Single Center Propensity Score-Matched Analysis. Clin. Exp. Gastroenterol. 2023, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Naszai, M.; Kurjan, A.; Maughan, T.S. The prognostic utility of pre-treatment neutrophil-to-lymphocyte-ratio (NLR) in colorectal cancer: A systematic review and meta-analysis. Cancer Med. 2021, 10, 5983–5997. [Google Scholar] [CrossRef]
- Jia, W.; Yuan, L.; Ni, H.; Xu, B.; Zhao, P. Prognostic value of platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, and lymphocyte-to-white blood cell ratio in colorectal cancer patients who received neoadjuvant chemotherapy. Technol. Cancer Res. Treat. 2021, 20, 15330338211034291. [Google Scholar] [CrossRef]
- Dong, M.; Shi, Y.; Yang, J.; Zhou, Q.; Lian, Y.; Wang, D.; Ma, T.; Zhang, Y.; Mi, Y.; Gu, X.; et al. Prognostic and clinicopathological significance of systemic immune-inflammation index in colorectal cancer: A meta-analysis. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937425. [Google Scholar] [CrossRef] [PubMed]
- Pozza, A.; Pauletti, B.; Scarpa, M.; Ruffolo, C.; Bassi, N.; Massani, M. Prognostic role of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with midgut neuroendocrine tumors undergoing resective surgery. Int. J. Color. Dis. 2019, 34, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, K.H.; Shim, H.J.; Hwang, E.C.; Choi, Y.D.; Bang, H.; Cho, S.H.; Chung, I.J.; Hwang, J.E.; Lee, M.A.; et al. Prognostic Significance of the Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio in Neuroendocrine Carcinoma. Chonnam Med. J. 2022, 58, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kulahci, O.; Koseci, T. The Correlation of the Neutrophil-Lymphocyte Ratio and the Platelet-Lymphocyte Ratio with Pathological Findings in Neuroendocrine Tumors. Cureus 2021, 13, e17164. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Liu, C.; Cheng, H.; Jin, K.; Guo, M.; Lu, Y.; Long, J.; Xu, J.; Ni, Q.; Chen, J.; et al. Neutrophil-lymphocyte ratio predicts survival in pancreatic neuroendocrine tumors. Oncol. Lett. 2017, 13, 2454–2458. [Google Scholar] [CrossRef]
- Cao, L.L.; Lu, J.; Lin, J.X.; Zheng, C.H.; Li, P.; Xie, J.W.; Wang, J.B.; Chen, Q.Y.; Lin, M.; Tu, R.H.; et al. A novel predictive model based on preoperative blood neutrophil-to-lymphocyte ratio for survival prognosis in patients with gastric neuroendocrine neoplasms. Oncotarget 2016, 7, 42045–42058. [Google Scholar] [CrossRef] [PubMed]
- Arima, K.; Okabe, H.; Hashimoto, D.; Chikamoto, A.; Nitta, H.; Higashi, T.; Kaida, T.; Yamamura, K.; Kitano, Y.; Komohara, Y.; et al. Neutrophil-to-lymphocyte ratio predicts metachronous liver metastasis of pancreatic neuroendocrine tumors. Int. J. Clin. Oncol. 2017, 22, 734–739. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Hanoun, M.; Maryanovich, M.; Arnal-Estapé, A.; Frenette, P.S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 2015, 86, 360–373. [Google Scholar] [CrossRef]
- Yoo, B.B.; Mazmanian, S.K. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017, 46, 910–926. [Google Scholar] [CrossRef]
- Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019, 140, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.D.; Wang, X.Y.; Zou, F.; Qu, M.; Liu, S.; Fei, G.; Xia, Y.; Needleman, B.J.; Mikami, D.J.; Wood, J.D. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G855–G863. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ghia, J.E.; Wang, H.; McClemens, J.; Cote, F.; Suehiro, Y.; Mallet, J.; Khan, W.I. Serotonin activates dendritic cell function in the context of gut inflammation. Am. J. Pathol. 2011, 178, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Ghia, J.E.; Li, N.; Wang, H.; Collins, M.; Deng, Y.; El-Sharkawy, R.T.; Côté, F.; Mallet, J.; Khan, W.I. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009, 137, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Motomura, Y.; Ghia, J.E.; Wang, H.; Akiho, H.; El-Sharkawy, R.T.; Collins, M.; Wan, Y.; McLaughlin, J.T.; Khan, W.I. Enterochromaffin cell and 5-hydroxytryptamine responses to the same infectious agent differ in Th1 and Th2 dominant environments. Gut 2008, 57, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin. Ther. 2015, 37, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Holzer, P.; Farzi, A. Neuropeptides and the microbiota-gut-brain axis. Adv. Exp. Med. Biol. 2014, 817, 195–219. [Google Scholar] [PubMed]
- Basu, S.; Dasgupta, P.S. Decreased dopamine receptor expression and its second-messenger cAMP in malignant human colon tissue. Dig. Dis. Sci. 1999, 44, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.M.; Zhang, Y.G.; Jia, J.; Zhu, R.W. Potentiation of treatment efficacy against colon cancer of dopamine via elevating KLF2 expression in tumor vascular endothelial cells. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4860–4866. [Google Scholar]
- Mu, J.; Xu, H.; Yang, Y.; Huang, W.; Xiao, J.; Li, M.; Tan, Z.; Ding, Q.; Zhang, L.; Lu, J.; et al. Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer. Oncol. Rep. 2014, 31, 2107–2114. [Google Scholar] [CrossRef]
- Chakroborty, D.; Sarkar, C.; Mitra, R.B.; Banerjee, S.; Dasgupta, P.S.; Basu, S. Depleted dopamine in gastric cancer tissues: Dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin. Cancer Res. 2004, 10, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Coufal, M.; Invernizzi, P.; Gaudio, E.; Bernuzzi, F.; Frampton, G.A.; Onori, P.; Franchitto, A.; Carpino, G.; Ramirez, J.C.; Alvaro, D.; et al. Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma. Int. J. Cancer 2010, 126, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Bakadlag, R.; Jandaghi, P.; Hoheisel, J.D.; Riazalhosseini, Y. The potential of dopamine receptor D2 (DRD2) as a therapeutic target for tackling pancreatic cancer. Expert. Opin. Ther. Targets 2019, 23, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Jandaghi, P.; Najafabadi, H.S.; Bauer, A.S.; Papadakis, A.I.; Fassan, M.; Hall, A.; Monast, A.; von Knebel Doeberitz, M.; Neoptolemos, J.P.; Costello, E.; et al. Expression of DRD2 Is Increased in Human Pancreatic Ductal Adenocarcinoma and Inhibitors Slow Tumor Growth in Mice. Gastroenterology 2016, 151, 1218–1231. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Li, J.; Luo, Z.; Zhang, S.; Xue, S.; Wang, K.; Shi, Y.; Zhang, C.; Chen, H.; Li, Z. Roles of dopamine receptors and their antagonist thioridazine in hepatoma metastasis. OncoTargets Ther. 2015, 8, 1543–1552. [Google Scholar]
- Proctor, M.J.; Talwar, D.; Balmar, S.M.; O’Reilly, D.S.; Foulis, A.K.; Horgan, P.G.; Morrison, D.S.; McMillan, D.C. The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study. Br. J. Cancer 2010, 103, 870–876. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.; Shi, H.; Han, X.; Liu, W.; Tian, X.; Zeng, X. Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation. Tumour Biol. 2016, 37, 5397–5404. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, J.; Yasuda, K.; Kawai, K.; Sunami, E.; Nagawa, H. Circulating lymphocyte is an important determinant of the effectiveness of preoperative radiotherapy in advanced rectal cancer. BMC Cancer 2011, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Cézé, N.; Thibault, G.; Goujon, G.; Viguier, J.; Watier, H.; Dorval, E.; Lecomte, T. Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother. Pharmacol. 2011, 68, 1305–1313. [Google Scholar] [CrossRef]
- Zhou, B.; Zhan, C.; Wu, J.; Liu, J.; Zhou, J.; Zheng, S. Prognostic Significance of Preoperative Neutrophil-to-Lymphocyte Ratio in Surgically Resectable Pancreatic Neuroendocrine Tumors. Med. Sci. Monit. 2017, 23, 5574–5588. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Classification of Tumours Editorial Board. In Digestive System Tumors, 5th ed.; International Agency for Research on Cancer (IARC) Press: Lyon, France, 2019; Volume 1. [Google Scholar]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Available online: https://radiologyreviewarticles.com/radiology-calculators/prognostic-nutritional-index/ (accessed on 30 April 2024).
- Forrest, L.M.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Dunlop, D.J. Comparison of an inflammation-based prognostic score (GPS) with performance status (ECOG) in patients receiving platinum-based chemotherapy for inoperable non-small-cell lung cancer. Br. J. Cancer 2004, 90, 1704–1706. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CR-NET Group (n = 25) | CRC Group (n = 60) |
---|---|---|
Age (yrs) (mean ± SD) | 64.52 ± 11.13 | 68.75 ± 8.46 |
Gender, Female/Male (n) | 11/14 | 29/31 |
Area of residence, Rural/Urban (n) | 10/15 | 31/29 |
Tumor extension (pT) (n) | ||
T1 | 7 | 12 |
T2 | 9 | 18 |
T3 | 6 | 20 |
T4 | 3 | 10 |
Regional lymph node metastasis (pN) (n) | ||
N0 | 13 | 38 |
N1 | 12 | 22 |
Distant metastasis (pM) (n) | ||
M0 | 25 | 60 |
M1 | 0 | 0 |
TNM Stage of WHO Classification of Tumors 2019 (n) | ||
I | 6 | 12 |
II | 7 | 14 |
III | 12 | 34 |
Tumor grade (G) (n) | WHO classification of GI NETs 2017 | WHO classification of Tumors 2019 |
G1 NET—14 | G1—34 | |
G2 NET—11 | G2—26 | |
Locations of tumor (n) | ||
Appendix | 5 | - |
Cecum | - | 6 |
Ascending colon | 4 | 9 |
Hepatic flexure | 4 | 6 |
Transverse colon | 3 | 3 |
Splenic flexure | 2 | 8 |
Descending colon | - | 4 |
Sigmoid colon | 5 | 19 |
Rectosigmoid junction | 2 | 3 |
Rectum | - | 2 |
Complications (n) | ||
Hemorrhage | 2 | 7 |
Obstruction | 4 | 12 |
Perforation | 2 | 8 |
Parameter (Mean ± SD) | CR-NET Group (n = 25) | CRC Group (n = 60) | p-Value from Student’s t-Test |
---|---|---|---|
DA (pg/mL) | 871.53 ± 411.93 | 796.09 ± 588.48 | 0.043 * |
NE (pg/mL) | 8.02 ± 3.54 | 7.19 ± 5.92 | 0.138 |
EPI (pg/mL) | 765.48 ± 308.38 | 733.71 ± 366.64 | 0.246 |
ST (ng/mL) | 724.62 ± 396.01 | 477.36 ± 358.60 | 0.021 * |
Hb (g/dL) | 10.64 ± 2.38 | 10.49 ± 2.09 | 0.875 |
WBC (×103/μL) | 9.91 ± 2.24 | 8.60 ± 1.96 | 0.046 * |
NEU (×103/μL) | 6.30 ± 1.84 | 5.77 ± 1.74 | 0.048 * |
LYM (×103/μL) | 2.82 ± 0.67 | 1.98 ± 0.79 | 0.039 * |
MON (×103/μL) | 0.54 ± 0.22 | 0.61 ± 0.23 | 0.124 |
PLT (×103/μL) | 291.52 ± 80.98 | 284.6 ± 78.06 | 0.334 |
NLR | 3.22 ± 1.82 | 3.44 ± 2.18 | 0.204 |
PLR | 136.77 ± 59.76 | 165.80 ± 82.24 | 0.031 * |
LMR | 4.97 ± 2.28 | 3.73 ± 1.86 | 0.045 * |
ESR (mm/1st h) | 58.48 ± 27.64 | 45.17 ± 31.42 | 0.003 * |
GPS (n) | |||
0–1 | 16 | 39 | - |
2 | 9 | 21 | - |
Parameter [median (range)] | |||
CRP (mg/dL) | 40.00 (20.00–81.00) | 18.50 (7.50–61.20) | 0.027 * |
ALB (g/dL) | 4.70 (3.30–6.30) | 4.80 (3.20–5.80) | 0.392 |
PNI | 47.00 (33.01–63.02) | 48.00 (32.01–58.02) | 0.511 |
Variables | CR-NET Group | CRC Group | |||||||||||||
All Patients | PNI | GPS | All Patients | PNI | GPS | ||||||||||
PNI < 47 | PNI ≥ 47 | p | 1 | 2 | p | PNI < 48 | PNI ≥ 48 | p | 1 | 2 | p | ||||
Patients (n) | 25 | 12 | 13 | 16 | 9 | 60 | 34 | 26 | 39 | 21 | |||||
Age (yrs) | 64.52 ± 11.13 | 61.83 ± 10.96 | 67.00 ± 11.33 | 0.271 | 66.06 ± 11.98 | 61.78 ± 9.44 | 0.136 | Age (yrs) | 68.75 ± 8.46 | 68.32 ± 8.74 | 69.50 ± 5.22 | 0.671 | 69.15 ± 8.15 | 68.00 ± 8.78 | 0.572 |
<66 | 12 | 6 | 6 | 7 | 5 | <69 | 19 | 16 | 3 | 16 | 11 | ||||
≥66 | 13 | 6 | 7 | 9 | 4 | ≥69 | 41 | 18 | 23 | 23 | 10 | ||||
Gender, Female/Male (n) | 11/14 | 4/8 | 7/6 | 9/7 | 2/7 | 29/31 | 19/15 | 10/16 | 18/21 | 11/10 | |||||
Area of residence, Rural/Urban (n) | 10/15 | 3/8 | 7/7 | 8/8 | 2/7 | 31/29 | 15/19 | 16/10 | 22/17 | 9/12 | |||||
TNM stages (n) | |||||||||||||||
I | 6 | 1 | 5 | 6 | - | 12 | 7 | 5 | 7 | 5 | |||||
II | 7 | 1 | 6 | 7 | - | 14 | 7 | 7 | 12 | 2 | |||||
III | 12 | 10 | 2 | 3 | 9 | 34 | 20 | 14 | 20 | 14 | |||||
GPS (n) | |||||||||||||||
0–1 | 16 | 3 | 13 | - | - | 39 | 13 | 26 | - | - | |||||
2 | 9 | 9 | 0 | - | - | 21 | 21 | 0 | - | - | |||||
NLR (mean ± SD), (n) | 3.22 ± 1.82 | 2.83 ± 0.48 | 1.95 ± 0.68 | 0.044 * | 1.95 ± 0.38 | 2.47 ± 0.61 | 0.008 * | 3.44 ± 2.18 | 3.18 ± 1.43 | 3.78 ± 2.88 | 0.538 | 2.75 ± 1.11 | 3.81 ± 2.51 | 0.041 * | |
<2.58 | 15 | 5 | 10 | 13 | 2 | <2.95 | 28 | 20 | 8 | 23 | 5 | ||||
≥2.58 | 10 | 7 | 3 | 3 | 7 | ≥2.95 | 32 | 14 | 18 | 16 | 16 | ||||
PLR (mean ± SD), (n) | 136.77 ± 59.76 | 101.51 ± 29.17 | 113.71 ± 37.18 | 0.225 | 110.10 ± 36.28 | 102.09 ± 28.86 | 0.729 | 165.80 ± 82.24 | 132.48 ± 75.72 | 176.12 ± 91.49 | 0.021 * | 168.50 ± 56.87 | 135.45 ± 74.45 | 0.039 * | |
<118.67 | 16 | 8 | 8 | 10 | 6 | <148.38 | 31 | 23 | 8 | 19 | 12 | ||||
≥118.67 | 9 | 4 | 5 | 6 | 3 | ≥148.38 | 29 | 11 | 18 | 20 | 9 | ||||
LMR (mean ± SD), (n) | 4.97 ± 2.28 | 5.34 ± 1.78 | 4.62 ± 2.28 | 0.054 * | 5.48 ± 1.67 | 6.23 ± 2.53 | 0.058 * | 3.73 ± 1.86 | 3.04 ± 1.87 | 3.11 ± 1.89 | 0.984 | 3.04 ± 1.58 | 3.19 ± 1.15 | 0.729 | |
<4.31 | 8 | 4 | 4 | 5 | 3 | <3.48 | 30 | 15 | 15 | 24 | 6 | ||||
≥4.31 | 17 | 8 | 9 | 11 | 6 | ≥3.48 | 30 | 19 | 11 | 15 | 15 | ||||
DA (pg/mL) (mean ± SD), (n) | 871.53 ± 411.93 | 972.36 ± 311.02 | 770.62 ± 352.34 | 0.026 * | 822.96 ± 459.32 | 920.60 ± 299.93 | 0.034 * | 796.09 ± 588.48 | 812.90 ± 471.57 | 784.80 ± 555.40 | 0.452 | 738.10 ± 577.20 | 854.20 ± 512.22 | 0.741 | |
<814.13 | 12 | 5 | 7 | 9 | 3 | <618.63 | 30 | 17 | 13 | 22 | 8 | ||||
≥814.13 | 13 | 7 | 6 | 7 | 6 | ≥618.63 | 30 | 17 | 13 | 17 | 13 | ||||
NE (pg/mL) (mean ± SD), (n) | 8.02 ± 3.54 | 8.32 ± 3.23 | 7.72 ± 3.63 | 0.102 | 7.62 ± 3.48 | 8.43 ± 3.09 | 0.094 | 7.19 ± 5.92 | 8.13 ± 4.14 | 6.26 ± 5.85 | 0.068 | 6.91 ± 5.77 | 6.48 ± 5.56 | 0.725 | |
<7.22 | 12 | 6 | 6 | 7 | 5 | <4.64 | 26 | 15 | 11 | 19 | 7 | ||||
≥7.22 | 13 | 6 | 7 | 9 | 4 | ≥4.64 | 34 | 19 | 15 | 20 | 14 | ||||
EPI (pg/mL) (mean ± SD), (n) | 765.48 ± 308.38 | 780.78 ± 278.85 | 751.36 ± 344.19 | 0.635 | 756.98 ± 322.53 | 780.57 ± 279.76 | 0.647 | 733.71 ± 366.64 | 725.70 ± 376.00 | 742.30 ± 362.80 | 0.594 | 747.30 ± 350.60 | 717.10 ± 391.50 | 0.569 | |
<632.56 | 12 | 5 | 7 | 8 | 4 | <545.39 | 30 | 18 | 12 | 20 | 10 | ||||
≥632.56 | 13 | 7 | 6 | 8 | 5 | ≥545.39 | 30 | 16 | 14 | 19 | 11 | ||||
ST (ng/mL) (mean ± SD), (n) | 724.62 ± 396.01 | 829.77 ± 211.56 | 618.33 ± 314.35 | 0.032 * | 606.11 ± 408.53 | 842.60 ± 504.20 | 0.045 * | 477.36 ± 358.60 | 518.97 ± 307.10 | 439.40 ± 334.30 | 0.052 | 458.76 ± 349.40 | 500.64 ± 332.33 | 0.101 | |
<713.38 | 12 | 5 | 7 | 9 | 3 | <403.58 | 28 | 16 | 12 | 18 | 10 | ||||
≥713.38 | 13 | 7 | 6 | 6 | 7 | ≥403.58 | 32 | 18 | 14 | 21 | 11 | ||||
Hb (g/dL) (mean ± SD) | 10.64 ± 2.38 | 10.41 ± 2.23 | 10.86 ± 2.58 | 0.611 | 10.95 ± 2.17 | 10.10 ± 1.72 | 0.972 | 10.49 ± 2.09 | 10.56 ± 2.00 | 10.42 ± 2.26 | 0.777 | 10.32 ± 2.07 | 10.83 ± 2.15 | 0.382 | |
WBC (×103/μL) (mean ± SD) | 9.91 ± 2.24 | 10.33 ± 2.01 | 9.53 ± 2.45 | 0.656 | 9.75 ± 1.85 | 10.00 ± 2.48 | 0.318 | 8.60 ± 1.96 | 8.44 ± 2.03 | 8.81 ± 1.88 | 0.372 | 7.98 ± 2.09 | 8.93 ± 1.83 | 0.238 | |
NEU (×103/μL) (mean ± SD) | 6.30 ± 1.84 | 7.08 ± 1.69 | 5.53 ± 1.76 | 0.027 * | 5.77 ± 1.32 | 6.60 ± 2.06 | 0.042 * | 5.77 ± 1.74 | 7.36 ± 1.58 | 5.89 ± 2.04 | 0.041 * | 5.91 ± 1.95 | 7.55 ± 10.26 | 0.048 * | |
LYM (×103/μL) (mean ± SD) | 2.82 ± 0.67 | 3.05 ± 0.49 | 2.62 ± 0.76 | 0.158 | 2.72 ± 0.73 | 3.00 ± 0.54 | 0.222 | 2.00 ± 0.79 | 2.10 ± 1.82 | 1.65 ± 0.76 | 0.180 | 1.67 ± 0.72 | 2.13 ± 1.95 | 0.220 | |
MON (×103/μL) (mean ± SD) | 0.54 ± 0.22 | 0.58 ± 0.24 | 0.51 ± 0.21 | 0.534 | 0.54 ± 0.20 | 0.56 ± 0.26 | 0.826 | 0.61 ± 0.35 | 0.69 ± 0.43 | 0.53 ± 0.20 | 0.105 | 0.55 ± 0.21 | 0.69 ± 0.46 | 0.230 | |
PLT (×103/μL) (mean ± SD) | 291.52 ± 81.00 | 281.87 ± 83.47 | 301.98 ± 80.51 | 0.596 | 294.00 ± 48.38 | 290.14 ± 96.13 | 0.996 | 284.6 ± 78.06 | 278.20 ± 81.72 | 290.60 ± 75.33 | 0.600 | 281.40 ± 78.40 | 288.50 ± 78.90 | 0.846 | |
CRP (mg/dL) [median (range)] | 40.00 (20.00–81.00) | 36.45 (24.00–81.00) | 43.57 (20.00–78.50) | 0.056 * | 39.65 (20.00–78.50) | 40.37 (24.00–81.00) | 0.337 | 18.50 (7.50–61.20) | 19.00 (9.31–57.60) | 17.95 (7.50–61.20) | 0.689 | 20.00 (7.50–61.20) | 16.30 (9.31–48.00) | 0.101 | |
ALB (g/dL) [median (range)] | 4.70 (3.30–6.30) | 3.40 (3.30–4.60) | 5.30 (4.70–6.30) | <0.0001 * | 5.10 (4.50–6.30) | 3.40 (3.30–3.50) | <0.0001 * | 4.48 (3.20–5.80) | 3.50 (3.20–4.80) | 5.30 (4.80–5.80) | <0.0001 * | 5.10 (3.50–5.80) | 3.40 (3.25–3.50) | <0.0001 * |
Variables (Mean ± SD) | CR-NET | CRC | |||||
---|---|---|---|---|---|---|---|
TNM Stage I + II (n = 13) | TNM Stage III (n = 12) | p-Value from Student’s t-Test | TNM Stage I (n = 12) | TNM Stage II (n = 14) | TNM Stage III (n = 34) | p-Value from One-Way ANOVA | |
DA (pg/mL) | 687.07 ± 270.39 | 1071.37 ± 454.62 | 0.024 * | 694.7 ± 583.7 | 782.4 ± 578.6 | 1099.0 ± 554.2 | 0.121 |
NE (pg/mL) | 7.67 ± 3.42 | 8.40 ± 3.78 | 0.527 | 6.55 ± 5.86 | 6.69 ± 5.71 | 7.63 ± 6.15 | 0.808 |
EPI (pg/mL) | 744.49 ± 284.60 | 784.85 ± 339.27 | 0.558 | 686.1 ± 308.4 | 692.1 ± 373.1 | 768.0 ± 392.0 | 0.716 |
ST (ng/mL) | 596.70 ± 418.60 | 863.17 ± 332.77 | 0.008 * | 254.3 ± 416.2 | 436.3 ± 362.1 | 531.3 ± 433.1 | 0.669 |
Hb (g/dL) | 11.40 ± 2.88 | 9.48 ± 1.56 | 0.038 * | 10.79 ± 2.18 | 10.40 ± 2.27 | 10.44 ± 2.05 | 0.869 |
WBC (×103/μL) | 8.19 ± 1.44 | 10.24 ± 2.67 | 0.046 * | 8.48 ± 1.94 | 8.56 ± 2.07 | 8.76 ± 1.82 | 0.937 |
NEU (×103/μL) | 5.33 ± 1.32 | 7.50 ± 2.37 | 0.034 * | 5.64 ± 1.85 | 5.79 ± 1.34 | 6.11 ± 1.92 | 0.050 * |
LYM (×103/μL) | 2.71 ± 0.75 | 2.95 ± 0.57 | 0.098 | 2.15 ± 0.75 | 2.01 ± 0.92 | 1.58 ± 0.63 | 0.097 |
MON (×103/μL) | 0.56 ± 0.21 | 0.53 ± 0.24 | 0.873 | 0.65 ± 0.26 | 0.58 ± 0.23 | 0.64 ± 0.19 | 0.549 |
PLT (×103/μL) | 268.50 ± 82.99 | 316.40 ± 74.13 | 0.293 | 294.40 ± 83.11 | 270.70 ± 84.36 | 273.20 ± 53.55 | 0.548 |
ESR (mm/1st h) | 44.84 ± 20.98 | 71.08 ± 27.69 | 0.049 * | 29.50 ± 14.37 | 47.29 ± 36.93 | 47.41 ± 25.65 | 0.132 |
NLR | 1.98 ± 0.43 | 2.56 ± 0.59 | 0.030 * | 2.97 ± 1.53 | 3.48 ± 1.75 | 4.74 ± 3.50 | 0.043 * |
PLR | 104.93 ± 37.15 | 111.03 ± 30.28 | 0.107 | 153.50 ± 69.60 | 163.80 ± 80.55 | 203.10 ± 109.90 | 0.039 * |
LMR | 5.25 ± 1.75 | 6.32 ± 2.19 | 0.134 | 4.17 ± 1.79 | 3.52 ± 2.02 | 2.70 ± 1.52 | 0.045 * |
Variables [median (range)] | |||||||
CRP (mg/dL) | 43.00 (28.50–78.50) | 32.45 (20.00–81.00) | 0.904 | 16.15 (7.50–48.00) | 17.31 (12.00–36.00) | 31.25 (15.80–61.20) | <0.0001 * |
ALB (g/dL) | 5.30 (4.70–6.30) | 3.40 (3.30–5.10) | <0.0001 * | 4.85 (3.20–5.60) | 4.65 (3.20–5.30) | 4.25 (3.20–5.33) | 0.038 * |
PNI | 53.01 (45.01–6.30) | 34.01 (33.01–51.01) | <0.0001 * | 48.50 (32.01–56.02) | 46.50 (32.01–53.02) | 42.50 (32.01–53.32) | 0.038 * |
NE | EPI | ST | ALB | NLR | PLR | LMR | PNI | GPS | |
---|---|---|---|---|---|---|---|---|---|
DA | r = 0.241 p = 0.045 * | r = 0.189 p = 0.041 * | r = 0.076 p = 0.718 | r = −0.247 p = 0.132 | r = 0.302 p = 0.046 * | r = −0.258 p = 0.038 * | r = 0.228 p = 0.273 | r = −0.247 p = 0.053 ** | r = 0.074 p = 0.723 |
NE | r = 0.244 p = 0.240 | r = 0.200 p = 0.336 | r = −0.175 p = 0.144 | r = 0.135 p = 0.517 | r = −0.065 p = 0.756 | r = 0.410 p = 0.141 | r = 0.174 p = 0.403 | r = 0.269 p = 0.194 | |
EPI | r = −0.136 p = 0.517 | r = −0.110 p = 0.601 | r = 0.072 p = 0.733 | r = 0.066 p = 0.751 | r = −0.147 p = 0.484 | r = 0.109 p = 0.601 | r = 0.018 p = 0.933 | ||
ST | r = −0.325 p = 0.155 | r = 0.210 p = 0.338 | r = −0.216 p = 0.299 | r = 0.372 p = 0.047 * | r = 0.125 p = 0.549 | r = 0.447 p = 0.225 | |||
ALB | r = −0.485 p = 0.009 * | r = −0.438 p = 0.028 * | r = −0.466 p = 0.019 * | r = −0.995 p < 0.0001 * | r = −0.859 p = 0.047 * | ||||
NLR | r = 0.654 p < 0.0001 * | r = −0.547 p = 0.124 | r = −0.507 p = 0.009 * | r = 0.292 p = 0.155 | |||||
PLR | r = −0.597 p = 0.002 * | r = −0.438 p = 0.028 * | r = 0.105 p = 0.616 | ||||||
LMR | r = 0.466 p = 0.118 | r = 0.560 p = 0.978 | |||||||
PNI | r = 0.159 p = 0.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cîmpeanu, R.C.; Boldeanu, M.V.; Ahrițculesei, R.-V.; Ciobanu, A.E.; Cristescu, A.-M.; Forțofoiu, D.; Siloși, I.; Pirici, D.-N.; Cazacu, S.-M.; Boldeanu, L.; et al. Correlation between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients. Int. J. Mol. Sci. 2024, 25, 6977. https://doi.org/10.3390/ijms25136977
Cîmpeanu RC, Boldeanu MV, Ahrițculesei R-V, Ciobanu AE, Cristescu A-M, Forțofoiu D, Siloși I, Pirici D-N, Cazacu S-M, Boldeanu L, et al. Correlation between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients. International Journal of Molecular Sciences. 2024; 25(13):6977. https://doi.org/10.3390/ijms25136977
Chicago/Turabian StyleCîmpeanu, Radu Cristian, Mihail Virgil Boldeanu, Roxana-Viorela Ahrițculesei, Alina Elena Ciobanu, Anda-Mihaela Cristescu, Dragoș Forțofoiu, Isabela Siloși, Daniel-Nicolae Pirici, Sergiu-Marian Cazacu, Lidia Boldeanu, and et al. 2024. "Correlation between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients" International Journal of Molecular Sciences 25, no. 13: 6977. https://doi.org/10.3390/ijms25136977
APA StyleCîmpeanu, R. C., Boldeanu, M. V., Ahrițculesei, R. -V., Ciobanu, A. E., Cristescu, A. -M., Forțofoiu, D., Siloși, I., Pirici, D. -N., Cazacu, S. -M., Boldeanu, L., & Vere, C. C. (2024). Correlation between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients. International Journal of Molecular Sciences, 25(13), 6977. https://doi.org/10.3390/ijms25136977