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In the field of virology, liquid–liquid phase separation (LLPS) has emerged as a piv-
otal mechanism enabling the compartmentalization required for specific steps of the viral
replication cycle. This phenomenon, leading to the formation of liquid-like cytoplasmic or
nuclear membraneless organelles (MLOs) in infected cells, has revolutionized our under-
standing not only of viral replication, but also of pathogenesis and control of host response
by viruses. Many viruses, and in particular negative-sense single-stranded RNA viruses
(-ssRNA), exploit LLPS for their replication either to form viral factories or to interfere
with the (dis)assembly and regulation of host MLOs [1–5]. Viral factories are sites where
viral replication and assembly take place and where specific viral and cellular proteins,
as well as nucleic acids, concentrate; not only do they serve as hubs for optimized viral
replication via the selective uptake or exclusion of cellular components, but they also enable
the evasion of the host response through the trapping of cellular proteins of innate immune
pathways [6]. Interference with host MLOs take places through interaction with cellular
proteins, which leads to the sequestration of cell sensors of pathogen-associated molecular
patterns (PAMPs), host cell proteins of the innate immune response, and/or proteins of the
integrated stress response, e.g., stress granule proteins. By compartmentalizing essential
viral components and hijacking host cell machinery, these liquid-like condensates thus
facilitate efficient viral propagation while evading the host immune system. More recently,
a cross-talk between membrane-delimited viral replication organelles (VROs), which are
typical of positive-sense single-stranded RNA viruses (+ssRNA), and biocondensates re-
sulting from LLPS has been highlighted [7,8], thus further extending the complexity of
viral replication compartment morphogenesis and dynamics.

So far, the majority of studies have focused on LLPS in relation to replication compart-
ments, and relatively few studies have described interference with host functions. Likewise,
only a few studies have focused on the functional impact of phase transitions towards
gelled and/or fibrillar states of viral condensates. Examples of fibrils made of viral proteins
have just begun to be reported, and the possible implications for pathogenesis are just
starting to be discussed [9].

Exploring the formation, dynamics, and material properties of viral condensates is key
to shedding light on fundamental virological processes and will also pave the way towards
the potential development of novel therapeutic strategies.

In the last few years, an increasing number of studies have shown that biomolecular
condensates resulting from LLPS are driven by weak and multivalent protein–protein
and/or protein–nucleic acid interactions [10–12]. Multivalency, i.e., the ability to establish
multiple interactions via multiple interaction domains or motifs, is typical of, although
not strictly restricted to, intrinsically disordered proteins (IDPs) and regions (IDRs), thus
explaining why MLOs are enriched in IDPs/IDRs [13]. LLPS can be further modulated by
post-translational modifications (PTMs) [14], with PTM sites being generally enriched in
IDPs/IDRs.
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The characterization of the intricate interplay between viral proteins, nucleic acids,
and cellular factors in MLOs morphogenesis and dynamics still remains to be elucidated.
Unraveling the structural and dynamic properties of viral condensates may unveil novel
vulnerabilities that can be exploited for therapeutic purposes, ranging from small-molecule
inhibitors to RNA-based therapeutics [15–17]. More specifically, targeting key regulators of
LLPS, such as viral RNA-binding proteins or host cell chaperones, presents a promising
avenue for disrupting viral replication and mitigating disease progression.

It is important to emphasize that the study of LLPS in vitro and in cellula has ben-
efited from huge advances in techniques and approaches, specifically in biophysics and
microscopy. However, studying these mechanisms and organelles in the context of viral
infections still remains highly challenging. Traditional biochemical and imaging tech-
niques often struggle to capture the transient and heterogeneous nature of these dynamic
structures. High-resolution microscopy techniques, such as super-resolution imaging and
live-cell imaging, offer glimpses into the spatio-temporal dynamics of viral condensates,
but are limited by phototoxicity, resolution, and sample preparation requirements. Ad-
ditionally, quantitative methods for analyzing LLPS, such as fluorescence recovery after
photobleaching (FRAP), Fluorescence Loss Induced by Photobleaching (FLIP), fluorescence
correlation spectroscopy (FCS), and single-particle tracking (SPT), require sophisticated
instrumentation and data analysis expertise. Finally, cryo-electron tomography (cryo-ET)
has emerged as a powerful tool for investigating the structures and dynamics of biomolec-
ular condensates [18]. This technique enables the three-dimensional reconstruction of
cellular compartments at nanometer resolution, providing insights into the morphology,
composition, and spatial relationships of MLOs formed through LLPS. Overall, it is increas-
ingly recognized that understanding LLPS during infections requires combining different
approaches, from molecular to cellular levels (Figure 1).
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Figure 1. Cloud analysis of key words of papers of the Special Issue on Viral Condensates and Virus
Interference with Host Membraneless Organelles.

In conclusion, unraveling the intricacies of LLPS in viral infections is of paramount
importance, with profound implications for both basic science and clinical practice. By
dissecting the molecular choreography of viral condensates and overcoming technical
hurdles, we can deepen our understanding of viral pathogenesis, identify druggable
targets, and accelerate the development of next-generation antiviral therapies. Embracing
multidisciplinary approaches will be essential in harnessing the full therapeutic potential
of LLPS modulation in combating viral diseases.

This Special Issue collects contributions that cover different aspects of viral condensate
formation, including emerging approaches for their quantitative study and new promising
antiviral approaches that target these processes.
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